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Understanding the molecular mechanisms of protein thermal stability is an important challenge
in modern biology. Indeed, knowing the temperature at which proteins are stable has important
theoretical implications, that are intimately linked with properties of the native fold, and a wide
range of potential applications from drug design to the optimization of enzyme activity.

Here, we present a novel graph-theoretical framework to assess thermal stability based on the
protein structure without any a priori information. We describe proteins as energy-weighted inter-
action networks and compare them with ensembles of interaction networks. We investigated how
evolution shapes the position of specific interactions within the 3D native structure. We present a
parameter-free network descriptor that permits to distinguish thermostable and mesostable proteins
with an accuracy of 76% and Area Under the Roc Curve of 78%.

Introduction

Temperature is one of most crucial factors organisms
have to deal with in adapting to extreme environments [1]
and plays a key role in many complex physiological mech-
anisms [2]. Indeed a fundamental requirement to ensure
life at high temperatures is that the organisms maintain
functional and correctly folded proteins [2–4]. Accord-
ingly, evolution shapes energetic and structural place-
ment of each residue-residue interaction for the whole
protein to withstand thermal stress.

Studying thermostability is fundamental for several
reasons ranging from theoretical to applicative as-
pects [5], such as gaining insight on the physical and
chemical principles governing protein folding [6–8], and
improving the thermal resistance of enzymes to speed up
chemical reactions in biopharmaceutical and biotechno-
logical processes [9, 10].

Despite the strong interest in thermostability [11–13],
its prediction remains an open problem. A common de-
scriptor used to quantify the thermal stability of pro-
teins is the melting temperature (Tm), defined as the
temperature at which the concentration of the protein
in its folded state equals the concentration of the un-
folded protein. To date, computational approaches, both
sequence- and structure-based, have exploited statistical
analysis [8, 14, 15], molecular dynamics [16, 17] and ma-
chine learning [18, 19] to predict the melting tempera-
ture. Most of the studies are based on comparative anal-
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yses between pairs of homologues belonging to organisms
of different thermophilicity [20, 21].

Predicting the stability of a protein ab initio using a
structure based-approach has never been achieved so far.
Lack of success in this area is mostly due to limitations
in our knowledge about the relationship between ther-
mal resistance and role of the interactions that stabi-
lize a protein structure [22]. Some differences in terms
of amino acid composition or spatial arrangement of
residues have been reported [8, 23–25]. One of most
notable differences involves the salt bridges: hyperther-
mostable proteins have stronger electrostatic interactions
than their mesostable counterparts [26]. Recently Folch
et al. [22, 27] reported that distinct salt bridges may be
differently affected by the temperature and this might in-
fluence the geometry of these interactions as well as the
compactness of the protein. Core packing seems related
to thermal resistance at least to some extent [28]. Yet,
a lower number of cavities and a higher average relative
contact order (i.e. a measure of non-adjacent amino acid
proximity within a folded protein) have been also ob-
served while comparing thermostable proteins with their
mesostable paralogs and orthologs [6] . Noteworthy, the
hydrophobic effect and residue hydrophobicity seem to
play a rather marginal role on protein stabilization [29–
31] , while they are considered the main forces driving
protein folding.

Here, we present a new analysis based on the graph
theory that allows us to reveal important characteristics
of the energetic reorganization of intramolecular contacts
between mesostable and thermostable proteins. In light
of our results and to promote their application, we have
designed a new computational method able to classify

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 22, 2018. ; https://doi.org/10.1101/354266doi: bioRxiv preprint 

mailto:gian@tartaglialab.com
https://doi.org/10.1101/354266


2

each protein as thermostable or as mesostable without
using other information except for the three-dimensional
structure.

Results

Uncovering the differences in energetic organization

Aiming at the comprehension of the basic mechanisms
that allow proteins to remain functional at high tempera-
ture, we focused on the non-bonded interactions between
residues, that play a stabilizing role in structural organi-
zation [32]. In particular, we investigated how different
thermal properties are influenced by the energy distribu-
tion at different layers of structural organization. We an-
alyzed the interactions occurring in proteins of the Twhole

dataset, containing the union of the Tm dataset (proteins
with known melting temperature taken from ProTherm
database [33]) and the Thyper dataset (proteins belong-
ing to hyperthermophilic organisms, with Tenv ≥ 90oC
collected from Protein Data Bank [34]), for a total num-
ber of 84 proteins (see Methods). To describe the role
of single residues in the complex connectivity of whole
protein, we adopted a graph theory approach defining
each protein as a Residue Interaction Network (RIN):
each residue is represented as a node and links between
residues are weighed with non-bonded energies (as de-
scribed in Methods).

At first, we investigated the relationship between ther-
mostability and energy distribution of intramolecular in-
teractions. To this end, the Tm dataset was divided into
eight groups according to protein Tm and for each group
the energy distribution was evaluated, as shown in Fig-
ure 1a. The general shape of the density functions is
almost identical between the eight cases, independently
from the thermal properties of the macromolecules, and
this is clearly due to the general folding energetic require-
ments.

A strong dependence between thermal stability and
the percentage of strong interactions is evident looking
at the disposition of the density curves (in Figure 1a):
the higher the thermal stability the higher the prob-
ability of finding strong interactions. Yet, less ther-
mostable proteins possess a larger number of weak in-
teractions. In particular, as shown in Figs.1a-d, it is
possible to identify three ranges of energies that corre-
spond to three peaks of the probability density, i.e. a very
strong favorable energy region (E < −70[kCal/mol]), a
strong favorable energy region between −70 kCal/mol
and −13 kCal/mol, and a strong unfavorable interaction
region(E > 11[kCal/mol]). More formally, for a protein
the probability of having an interaction with energy E,
P (E), in the three ranges linearly depends on the protein
melting temperature with correlation coefficients of 0.90,
0.85, 0.87, respectively (Figure 1c).

In order to have strong-signal sets, we reduced the divi-
sion in just two groups, classifying proteins as mesostable

or thermostable if their melting temperatures are, respec-
tively, lower or higher than 70oC, regarded as the opti-
mal reaction temperature of thermophilic enzymes [35–
40]. In this way the energy distributions in Figure 1a are
calculated only for the mesostable and thermostable dis-
tributions in Figure 1d (Twhole dataset). The two-group
division allows us to include the hyperthermophilic pro-
teins in our analysis, since their Tm is surely higher than
the threshold. The two resulting distributions, found to
be significantly different with a p-value of 4.2 × 10−46

(nonparametric test of Kolmogorov-Smirnov [41]), have
an expected value at −0.5 kCal/mol and negative in-
teractions have a probability of more than 60% to be
found. Regions below the −13 kCal/mol and above the
11 kCal/mol represent the 6.6% and 5.2% of the total
energy for thermostable and mesostable proteins respec-
tively. Typically such energies require the presence of at
least one polar or charged amino acid and in particular
Arg, Asp, Glu and Lys are involved in more than 90% of
the interactions.Noteworthy, the small fraction of ener-
gies centered near -120 kCal/mol (see Figure 1a) are due
to polar or charged amino acid interactions taking place
at short distance.

The two strength distributions for mesostable and
thermostable proteins are shown in Figure 1c. Even in
this case, they are different according to Kolmogorov-
Smirnov test with a p-value of 1.9× 10−9.

For the first time, our analysis provides both a general
intuition on the protein folding and a specific insight on
thermal stability. Even if strong positive and strong neg-
ative peaks have a comparable height (Figure 1a), the
rearrangement of protein side chains masks the positive
interactions, substantially preventing the condensation of
unfavorable interactions in a single residue, as testified by
the small probability of finding a residue with a positive
strength. Indeed, for the whole dataset, there is more
than 97% of probability of finding a residue with nega-
tive strength. The most frequent value is found in -27
kCal/mol, with a change in the slope of the density func-
tions around -70 kCal/mol and 5 kCal/mol, correspond-
ing to the regions with negative and positive strengths.
At the strength level of organization, a difference be-
tween thermostable and mesostable proteins is found.
Indeed, residues belonging to the group of thermostable
proteins show a higher probability of having high nega-
tive strength values with respect to the mesostable ones,
testifying an overall higher compactness of thermostable
protein fold. In particular, the probability of finding a
node having a strength below -70 kCal/mol is 19.9% and
16.1% for thermostable and mesostable respectively while
the trend is inverted in the positive region with a proba-
bility of 1.8% and 2.5%.

Figure 1d shows a schematic representation of the or-
ganization of strong energies both for mesostable proteins
and thermostable proteins. In fact, the most important
finding of our analyses is that thermostable proteins have
more favorable energies concentrated in a few specific
residues. In contrast, mesostable proteins tend to have a
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FIG. 1: (color online) a) Probability density distributions of total interaction energies for the eight subsets defined in the Tm

dataset. Each distribution is built from a group of proteins whose melting temperatures lie in the same range. The eight ranges,
from lower to higher Tm, are represented by colors from darkblue to darkred. The density functions exhibit a dependence with
the melting temperatures ranges, in fact peak heights increase with the temperatures. Inset shows the energy distribution
in log-scale obtained using all proteins. b) Correlation between the area of each density peak and the average Tm for the
eight dataset groups. c) Probability density distributions in log-scale of total interaction energies for mesostable (blue) and
thermostable (red) proteins belonging to the Twhole dataset. Inset shows the energy distribution in log-scale obtained using all
proteins. d) Probability density distributions in log-scale of strength network parameter for mesostable (blue) and thermostable
(red) proteins belonging to the Twhole dataset. Inset shows the strength distribution in log-scale obtained using all proteins. e)
Schematic representation of the strong favorable and unfavorable interactions both for a mesostable (left) and a thermostable
network (right).

less organized negative residue-residue interactions net-
work. Given this different way to rearrange amino acidic
side chains between proteins with different thermal prop-
erties, we mapped the energetic distribution on the pro-
tein secondary structures in order to study how energetic
allocation is reflected on a higher level of organization.

To do so, we retrieved the secondary structures (he-
lices, strands, loops) for all the proteins of the Tm dataset
using DSSP [42] and assigned each residue-residue inter-
action occurring in a protein to six possible classes (helix-
helix, helix-strand, helix-loop, strand-strand, strand-loop
and loop-loop), according to the secondary structure
residues belong to (see Methods).

The goal of the analysis is to determine whether a
class containing more energy than one would expect by
chance exists. To this end, we estimated the differ-
ence in energy of a specific class with respect to the en-
ergy that the same class would have had if uniformly
reassigned. In the group of mesostable proteins, pair-
ing between residues of the same structure (helix-helix,
strand-strand and loop-loop) is associated with higher-
than-average energies, while mixed combinations (helix-
strand, loop-strand and loop-helix) have lower energies.
As shown in Figure 2b, a surplus is committed to helix-
helix interactions, while helix-strand has a negative dif-
ference of about 8.5%. When the thermal resistance is
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FIG. 2: a)Cartoon representation of a thermostable protein (PDB code:1Y4Y). Strong interactions between charged-charged
amino acid belonging to loop-helix secondary structure are shown in yellow sticks. Loop and alpha helix secondary struc-
tures are indicated in green and cyan respectively. All the interactions are represented in yellow and charged amino acids
(Arg,Asp,Glu,Lys) are colored in red. b) For each class of interaction, we report the difference in percentage between actual
energy and the expected value of the specific group assuming an uniform distribution of energies.

taken into account the most significant distinction be-
tween the mesostable and thermostable groups is in the
helix-loop pairing. Thermostable proteins have a larger
shift than the mesostable counterparts. These results
suggest a stabilizing role of helix-loop interactions and
we argue that thermostable proteins preferentially gather
their energy to this specific class (Figure 2a).

Assessing protein thermal stability

In the light of our findings on the difference on the en-
ergy organization between mesostable and thermostable
proteins,we looked for a way to assess the thermal re-
sistance of a protein given its structure. The simplest
way to quantify the impact of energy distribution on the
thermal resistance, limiting fold dependent effects, is the
comparison with a protein of same structure but differ-
ent energy organization, i.e. a homologue (and indeed
this has been widely done [43]). In fact, ideally, the dif-
ferences between two homologous proteins with different
thermal stability are attributable only to their different
thermal resistance. The more pronounced reorganization
of the interactions in thermostable proteins confirms that
they undergo an evolutionary optimization process which
introduces fold-independent correlations in the spatial
distribution of the interactions. By contrast, mesostable
proteins have not these correlations, thus with respect to
thermal stability, their energy organization can be con-
sidered more random.

We design a procedure that compares a given protein

with its modified version where protein structure is pre-
served, while chemical interactions have energies typical
of mesostable proteins and randomly assigned in a phys-
ical way, i.e. maintaining residue-residue distance infor-
mation (see Methods). In this way, the randomization
strategy provides a way to compare each real protein net-
work with an ensemble of re-weighted cases, having the
same number of nodes and links but with new weights
(i.e. energies). These energies are extracted from the
mesostable energy distribution using the interaction dis-
tance as constraint for the sampling. This procedure has
the purpose of disrupting the evolutionary optimization
and it is expected to have a larger effect on the highly
organized network of thermostable proteins. By virtue
of the different energy distribution between mesostable
and thermostable proteins, sampling mesostable ener-
gies allows to properly assess the difference between the
real thermostable protein network and its randomized
counterpart. All steps of the randomization process is
schematically illustrated in Figure 3. In particular, given
a link characterized by an energy weight Eij and by a
distance of interaction dij , we replaced the energy with
a new one (E′ij ) extracted from a energy distribution
defined for the specific distance interval dij belongs to.
For each distance interval k, we generated a probability
density function ρk(E), using only the energies values ob-
served in such interval in the mesostable proteins. At the
end of the process, for each real RIN, we generated an en-
samble of random networks (rRINs). The randomization
allows us to develop a classifier based on the distance be-
tween the real network strength and the random strength
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FIG. 3: (color-online) Given a protein structure (a), the method represents it as a RIN, where each amino acid becomes a node
and the energetic interactions between amino acids are weighted links connecting the nodes (b). The first step of the method’s
procedure is to calculate - for each residues pair - the minimal atom-atom distance, which is indicated in yellow on the left
of panel (c). In the example here, the minimal distance between the two residues is 8.4 Angstrom. The energy value related
to such contact is replaced with another one, randomly extracted from the energy distribution of mesostable proteins derived
only considering energies in the distance interval which corresponds to the minimal distance of the specify contact. In the
middle of panel the density of energy belonging to the distance range 8-8.5 Angstrom is shown. The new energy is represented
with the green line in the right of the panel. Performing this procedure for each residues pair a new network of intramolecular
interactions is established characterized by a new energy organization. Reiterating the process many times, we obtain an
ensamble of random networks (d). Finally, for each random network the average strength parameter can be calculated. Panel
(e) shows the strength distribution obtained iterating the procedure. Green line represents the mean strength value of the real
network, while red and blue region in the random strength distribution show the classification criterion: if real strength lies in
red region the protein is classified as thermostable while if it sets in the blue region it will be labeled as mesostable.

distribution. The Ts score, defined in Eq. (7) (see Meth-
ods), is a measure of how much the original RIN average
strength value deviates from the expected average value
of the rRIN distribution. Note that our descriptor is gen-
eral and parameter-free and can be computed for every
kind of weighted graph. The Ts score can be used as a
thermal stability classifier setting the threshold value at
0; substantially considering true all predictions for which
the Ts score is higher than 0 and the protein Tm is higher
than 70oC or alternatively the Ts score is lower than 0

and the protein Tm is lower than 70oC. A so defined
method is completely parameter-free. It only requires
a probability density of mesostable protein interactions.
In order to evaluate a possible dependence of the method
from the chosen dataset, we performed a cross-validation
(7-folds see Method) using the Ts score computed with
total energy strength. The method achieves an average
accuracy of 72% plus or minus 3% with a mean ROC
curve characterized by an AUC value of 80% plus or mi-
nus 2%. The small error on both the performances (due
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to the dimensions of the dataset) indicates the indepen-
dence of the method from the input information.

Classifying on the basis of the 0 threshold of the Ts
score loses part of the information contained in the de-
scriptor. In order to have a more sensible classification,
we evaluated three different scores, using the total en-
ergy (defined in Eq. 5) and specific interaction terms, i.e.
the Coulomb and Lennard-Jones interactions (Eq. 3 and
Eq. 4), and performed a clustering analysis. Figure 4(a)
shows the hierarchical clustering obtained clustering all
the proteins of our Twhole dataset using the Ward method
as linkage function while the Manhattan distance among
the three descriptors was used as distance metric. We
also tested different metrics and clustering methods ob-
taining very similar results (data not shown). The op-
timal clustering cut was estimated using the silhouette
parameter [44] varying the number of clusters. There is
a clear maximum for the silhouette value for two clusters
and we called these groups Mesostable (right group in
Figure 4) and ”Thermostable (left group). Indeed, the
right cluster, containing 47 proteins, includes almost ex-
clusively mesostable proteins (38), while the left cluster
contains 26 thermostable proteins over the total 37 pro-
teins. The overall accuracy of the method is 76%. We
correctly assign the right thermal stability to 64 out of
84 proteins. The AUC of the ROC curve for the three Ts
descriptors are 0.78, 0.79 and 0.68 (Figure 5a).

A. Key residues identification

Here, we investigated the thermal resistance proper-
ties of proteins at the residue level. As protein stability
is the result of the cooperative effects and the synergic
actions of several residues, assessing the specific contri-
bution of each amino acid is difficult [45]. We define the
T i
s score for each residue according to Eq. 8, creating

two groups of residues for each protein: with T i
s lower or

higher than zero. We will consider residues belonging to
the first group to have a more stabilizing role than the
ones in the second group. Consequently, along the lines
of the global-protein classification procedure, we defined
”thermostable” (respectively ”mesostable”) residues be-
longing to the first (second) group. Using a total-energy
based score, thermostable residues are the (11 ± 4)% of
total residues.

As expected, thermostable proteins have more ther-
mostable residues with respect to mesostable ones (12%
compared to 9%). Furthermore, by repeating the same
analysis using Coulomb (C) and van der Waals (vdW)-
based scores, we found that the average number of ther-
mostable residues is the 11% and 16% of total residues,
respectively. Interestingly, for the van der Waals net-
work, 17% of residues are thermostable in mesostable
proteins and 15% of all residues are thermostable in ther-
mostable proteins. In the Coulomb network (see Fig-
ure 6a), the most frequent thermostable amino acids
are the four charged amino acids: Arg, Asp, Glu and

Lys, which cover the 96.6% and 96.1% of thermostable
residues in thermostable and mesostable proteins respec-
tively.

Apolar and aromatic residues (Leu, Met, Phe and Tyr)
are typically thermostable residues of the van der Waals
network, including 53% and 54% of the total residues in
mesostable and thermostable proteins, respectively (see
Figure 6b).

In order to investigate the role of each residue in the
complexity of the whole system, we analyzed the proper-
ties of all residues using a graph-theory approach, calcu-
lating 8 network parameters, i.e. Betweenness Centrality,
Closeness Centrality, Strength, Diversity Index, Mean
Shortest Path, Hub Score, Clustering Coefficient and De-
gree (see Methods). A Principal Component Analysis
(PCA) have been performed in both kinds of network.
In Figure6c-d, all residues were projected along the first
three principal components, which represent the 82% and
63% of the variance for van der Waals and Coulomb
network respectively. Thermostable residues are neatly
separated from others if we consider the largest eigen-
value of the PCA in the Coulomb network and more
weakly if we take into account the second and third ones.
The Strength and the Closeness Centrality are the most
relevant loadings along the first eigenvector both in fa-
vorable and unfavorable interactions. In vdW networks
(Figure 6d), residue splitting in the PCA planes is less
pronounced , even if a separation does occur along the
second and third components, having the Clustering Co-
efficient and the Diversity Index as principal loadings.
In both kinds of network, independently from the pro-
tein of origin, thermostable residues populate the same
regions of the PCA planes (green and orange dots in Fig-
ure6). Considering all dataset residues, about the 25%
of them are charged and only the 11% is classified as
thermostable. A similar evidence is found for the four
thermostable amino acids identified by vdW score. The
role played by charged and aromatic amino acids in ther-
mal resistance has been investigated in previous compar-
ative studies [46, 47]. Generally, charged residues form
highly energetic electrostatic cages which prevent water
inclusion [48, 49]. On the other hand, apolar and aro-
matic amino acids form short-ranged vdW interactions
that confer stability to the overall structure [50, 51]. Here
we identify key residues whose peculiar spatial disposi-
tion confers them a particular role in the stabilization of
the protein.

The mean shortest path (L) and the clustering coeffi-
cient (C) are able to catch the effect of the thermostable
residues on maintaining these important structural mo-
tifs. The former provides information about the posi-
tion of the residue in the network with the most central
residues, having higher shortest path values. The latter
quantifies the residue surrounding packing, being a ratio
between the actual links and maximal number of possible
links [52–54].

In Figure 6e (left panel), we projected all residues
in the LC plane coloring in dark red the charged

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 22, 2018. ; https://doi.org/10.1101/354266doi: bioRxiv preprint 

https://doi.org/10.1101/354266


7

FIG. 4: Cluster of the Twhole dataset proteins with three strength based descriptors, i.e. Coulomb, Lennard-Jones and total
energy. Stars indicate proteins on the Thyper dataset.

thermostable residues and in cyan the charged non-
thermostable residues. Charged residues are concen-
trated in the region characterized by both small L and
C values, with their thermostable subset tending to pos-
sess the smaller possible value of C. This means that
thermostable residues have both to be exposed and sur-
rounded by residue that make low energetic interaction
between each others. In analogy with coulombian net-
works, we projected in the LC plane the four kinds of
key residues identified in the vdW networks. Even if the
signal is weaker, key residues in the thermostable van
der Waals network (Leu, Met, Phe e Tyr) tend to pos-
sess a higher clustering coefficient, testifying the packing
stabilizing effect of vdW interactions. Densities of C pa-
rameter are found to be different with a p-value < 10−16

(nonparametric test of Kolmogorov-Smirnov).

These finding allow us to divide residues in 8 groups:
four groups are identified by the Coulomb interac-
tion, i.e. thermostable charged/uncharged residues
and non-thermostable charged/uncharged residues; while
vdW interaction networks divide residue according to
thermostable/non-thermostable being or not being in the
Leu-Met-Phe-Tyr group. For each protein of the Twhole

dataset it is possible to compute the sum of the T i
s

scores in each of the 8 possible groups, obtaining a vec-
tor of 8 descriptors for each protein. Performing a linear
regression with the four Coulomb-based vector compo-
nent, the four vdW-based ones and with the whole eight-
component vector we end up with a preliminary AUC of
the ROC curves of 0.81 e 0.77 and 0.83 respectively (see
Figure 5b), and we are currently developing a residue-
specific approach for Tm prediction.

I. DISCUSSION

Proteins evolved to be functional in very distinct ther-
mal conditions. At a molecular level, the mechanisms
proteins have developed to face thermal noise have been
studied for a long time, given the influence that the com-
prehension of these mechanisms could exert on both the
academic and theoretical industrial field. However, the
complete comprehension of the reasons that rule the fold
stability is a challenging and unsolved problem in which
a number of factors has to be taken into account at the
same time.

Comparative studies of homologous pairs have previ-
ously reported a change of content in the amino acids of
thermostable proteins [55]. Amino acids as Arg, Glu and
Tyr are more frequently at the surface of thermophilic
proteins with Tyr being involved in the formation of sta-
bilizing aromatic clusters [22, 27, 47]. Undoubtedly, these
studies have contributed to unveil mechanisms of thermal
resistance typical of specific protein families, yet they
do not provide a unifying, global theory describing the
rules of adaptation at extreme conditions. In fact, dis-
tinct chemical physical characteristics or different com-
binations of attributes contribute differently to the sta-
bilization of a protein family or fold, making not trivial
to use homologous-based findings to infer the thermal
stability of a given protein.

At present, just two methods have been developed to
predict the melting temperature of a given protein with-
out need of comparison with homologs and relying on a
dataset of known Tm. Ku et al. [19] proposed a sequence-
based methods of statistical inference that relates the
number of dipeptides within the amino acid sequence to
the protein Tm allowing us to separate high thermostable
from low thermostable proteins. More recently, Pucci et
al. [15] developed a method, based on the thermodynamic
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FIG. 5: a) ROC curves of the three descriptors with the whole network Ts scores. b) ROC curves of the three descriptors with
the single-residue T i

s scores.

statistical potentials, that is able to predict the melting
temperature of a given protein using as inputs the three-
dimensional structure and the additional information of
the optimal temperature (Tenv) the protein host organ-
ism lives in.

The present work aims to represent a step toward
the understanding of the thermal properties of a pro-
tein, given its 3D structure. In fact, while the ax-
iom thermophilic organisms have thermostable proteins
is certainly correct, mesophilic proteins may as well be
thermostable [31]. Knowledge on the organism optimal
growth temperature, Tenv, used to classify mesophiles
and thermophiles, may be misleading, with high value of
correlation due to the fact that Tenv is always a lower-
bound for Tm.

The basic idea behind our method relies on the as-
sumption that thermostable proteins undergo an opti-
mization process during evolution that leads to specific
structural arrangement of their energy interactions. Our
analysis is based on a residue interaction network (RIN)
in which the three dimensional structure of a protein is
schematized as a graph with the residues acting as nodes
and the molecular interactions as links. The graph repre-
sentation is frequently adopted to study complex biolog-
ical systems involving multiple interacting agent [56–60].

In our definition of network, links are weighted ac-
cording to the sum of two nonbonded energetics terms:
electrostatic and Lennard-Jones potential. The analy-
sis of the distribution of energies (links) highlighted the
correlation between the thermal stability of protein sets
(grouped according to their Tm) and the probability of
finding high intramolecular interactions, with a highest
correlation of 0.90 considering eight groups of proteins

(Figure 1).

Unfortunately, neither it is possible to further divide
the dataset in more groups due to the dataset dimension,
nor we could not consider the energy distribution for the
single protein because the small number of links makes
the statistics noisy, especially in strong energy regions.
Moreover, moving to higher orders of organization, e.g.
considering the individual residual energies (strength pa-
rameter), further reduces the data. For this reason, the
next-up analysis were performed with a two-groups divi-
sion of the dataset.

Interestingly, we found that not only strong negative
energies determine the thermal stability of a protein, but
also strong positive interactions play a role. Such find-
ing confirms the complex nature of the protein interac-
tion network and in fact the stabilizing role of repulsive
energies can be explained in cases where repulsion be-
tween a couple of residues results in a better spatial rear-
rangement of protein regions. In order to investigate the
complex arrangement of the interactions in the 3D pro-
tein structure, we performed an analysis based on graph
theory approach aimed at the comprehension of the fa-
vorable and unfavourable energies disposition. We de-
termined the stabilizing contribution of each amino acid,
defining the strength of a residue (Eq. 6) as the sum of
the energies of all the interactions (favorable and unfa-
vorable) the residue establishes with all other residues.
Indeed, this parameter gives an estimate of the residue
significance in the overall protein architecture and can be
used both as a local property of each individual amino
acid and as a global average network feature of the entire
protein. Moving to the higher level of organization we
investigated the biological role of the secondary struc-
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FIG. 6: a-b) The frequencies of all the amino acids are shown in gray. The frequencies of the thermostable amino acids for the
thermostable and mesostable proteins are shown in red and blue respectively. c-d) the projection along the first three principal
components of all residues are shown. Thermostable residues for the mesostable and thermostable proteins are indicated in
green and in orange dots, respectively. e-f) All residues are mapped in LC space. In red Arg, Asp, Glu and Lys amino acids
are shown as the most frequent thermostable residues of the Coulomb network. In yellow dots, Tyr, The, Leu and Met are
shown as the most frequent thermostable amino acids identified by van der Waals based Ts score.

ture interactions in thermal stability. The interactions
between residues belonging to alpha helixes and loops
concentrate more energy in thermostable proteins than
mesostable ones. Those results suggest that the ther-
mal stability of a given protein is deeply linked both to
the intensity of interactions and to their spatial disposi-
tion, and that both are fine-tuned during the evolution-
ary process. In order to assess the thermal stability, we
investigated the network energy organization and com-
pared it against an ensemble of randomized networks.
The ensemble comparison has two main purposes: The
first consists in overcoming the limitation of the need of
pairs of homologous proteins for direct comparison. The
second purpose, raised from the observation that ther-
mostable proteins are enriched of hubs (high connected
nodes) and have more organized networks of interactions

respect mesostable proteins [61–63],relies in the need in-
troducing a quantitative measure of the evolutionary op-
timization process thermostable proteins underwent, i.e.
the distance between real protein interaction network and
a randomized one, in which we disrupt the optimization
of energy achieved by thermostable proteins during evo-
lution. As described in the method section, the ener-
gies of a network are always obtained from a distribu-
tion of mesostable protein interactions. In this way, the
more the original network diverts from the ensemble, the
higher the probability that the protein belongs to the
thermostable class. Moreover, the comparison allows us
to assess in a quantitative way the effect of the energetic
topology of the protein. Using this protocol to build up
the Ts parameter-free descriptor and performing a cluster
analysis, we are able to discriminate between mesostable
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and thermostable proteins, with a maximum accuracy of
76% and an maximum Area Under The Curve (AUC) of
78%.

At last, we investigated whether evolution acts on par-
ticular residues to optimise protein thermal stability or
if stability is given by a cooperative effect with evolu-
tion acting on the whole protein. Our analysis identifies
two sets of key (thermostable) residues according to the
kind of energetic interactions the network is built with
(Coulomb or van der Waals). Surprisingly, thermostable
residue frequency in thermostable and mesostable pro-
teins is comparable and they represent only a small sub-
set of all residues. In order to better understand the
theoretical aspects of thermostability and improve the
classification to be used in more applicative fields, we
created a new parameter dependent Ts score given by a
linear combination of the Ts score of the eighth possible
set of residues (see Results ). The improved performance
of 83% of ROC’s AUC highlighted the promising features
of the single residue approach.

Methods

Datasets

Proteins with known melting temperature (Tm) were
obtained from the ProTherm database[64]. We selected
all wild-type proteins for which the following thermody-
namic data and experimental conditions were reported:
Tm ≥ 0 oC; 6.5 ≤ pH ≤ 7.5 and no denaturants. Exper-
imentally determined structures were collected from the
PDB [34] and filtered according to method (x-ray diffrac-
tion), resolution (below 3Å) and percentage of missing
residues (5% compared to the Uniprot[65] sequence).
Proteins for which experimentally determined structures
were only available in a bound state, i.e. in complex with
either a ligand or a ion, were excluded. Proteins were fil-
tered using the CD-HIT software [66] to remove proteins
with chain sequence identity ≥ 40% to each other. The
final dataset, hereinafter referred to as the Tm dataset,
consisted of 71 proteins. Consistently with previous re-
ported dataset, thermostable proteins (Tm ≥ 70oC) rep-
resent about a third of the overall dataset [47, 67, 68].
In order to have a dataset as balanced as possible, we
also manually collected a second, independent dataset
consisting of proteins from hyperthermophilic organisms
with optimal growth at T ≥ 90 oC and pH between 6.5
and 7.5 (Table I). Experimentally determined structures
were collected and filtered according to same criteria de-
scribed above for the Tm dataset, leading to a total of 13
protein structures. This second dataset is referred to as
the Thyper dataset. The union of the two dataset, referred
as the Twhole dataset, accounts of 84 proteins.

CATH class and architecture for protein domains were
checked: the most representative class for thermostable
domains is Alpha Beta (84% respectively) with only a
few Mainly Beta domains (11%) and just 1 Mainly Al-

pha domain (0.02%). On the other hand, Mainly Alpha
and Mainly Beta constitutes the 21% and 26% of the
mesostable domains, with Alpha Beta sets to 53%. 15
different folds are available for mesostable proteins, with
the most representative one being 3-Layer(aba) Sandwich
(19%) while the thermostable domains count 9 different
folds, with 31% of 2-Layer Sandwich and 3-Layer(aba)
Sandwich.

Protein structures were minimized using the standard
NAMD [77] algorithm and the CHARMM force field [78]
in vacuum. A 1 fs time step was used and structures were
allowed to thermalize for 10000 time steps.

Structural analysis

Proteins from both the Tm and Thyper datasets were
analyzed for their secondary structure content and archi-
tecture according to the CATH Protein Structure Clas-
sification database[79]. Per residue secondary structure
assignment was done using the DSSP software[80]. In or-
der to assess how the energy is distributed among protein
secondary structure elements we assigned each couple of
residues to a class of interaction, based on which sec-
ondary structure element they belong to. Possible inter-
action classes are: helix-helix, helix-strand, helix-loop,
strand-strand, strand-loop and loop-loop. To evaluate
the fraction of total energy proteins devolve to each class
we defined the difference between the fraction of observed
energy and a theoretical fraction:

%∆Ei = %Ei
obs −%Ei

the (1)

where i represents the pair of secondary structures con-
sidered (e.g. helix-helix), %Ei

obs is the ratio between the
energy of class i and the total energy (Etot) . %Ei

the esti-
mates the expected fraction of energy for class i assuming
equivalent distribution of energy among classed:

%Ei
the =

N i
intEint

Etot
(2)

where N i
int is the number of interactions of class i and

Eint is the average energy value. In other words Eq. (2)
gives the ratio between the number of interactions of class
i and the total number of interactions. Energy distribu-
tion densities were calculated using the R density func-
tion with default parameters.

Network representation and analysis

In the present work, protein structures are represented
as Residue Interaction Networks (RINs), where each node
represents a single amino acid aai. The nearest atomic
distance between a given pair of residues aai and aaj is
defined as dij . Two RIN nodes are linked together if dij ≤
12 Å [77, 78] . Furthermore links are weighted by the sum
of two energetic terms: Coulomb (C) and Lennard-Jones
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Name Organism PDB Ref.

Formylmethanofuran Methanopyrus kandleri 1ftr [69]

pyrrolidone carboxyl peptidase Pyrococcus furiosus 1iof [70]

L7Ae sRNP core protein Pyrococcus abyssi 1pxw [71]

malate dehydrogenase Aeropyrum pernix 2d4a [72]

D-Tyr-tRNA(Tyr) deacylase Aquifex aeolicus 2dbo To Be Published

hypothetical protein (Aq-1549) Aquifex aeolicus 2e8f To Be Published

3-oxoacyl-[acyl-carrier-protein] synthase III Aquifex aeolicus 2ebd To Be Published

aq-1716 Aquifex aeolicus 2p68 To Be Published

3-dehydroquinate dehydratase Aquifex aeolicus 2ysw To Be Published

splicing endonuclease Pyrobaculum aerophilum 2zyz [73]

archaeal asparagine synthetase A Pyrococcus abyssi 3p8t [74]

Cas6 Pyrococcus furiosus 3ufc [75]

tRNA methyltransferase Trm5a Pyrococcus abyssi 5hjj [76]

TABLE I: Table of Hyperthermophiles proteins manually collected on the PDB bank [42]

(LJ) potentials. The C contribution between two atoms,
al and am, is calculated as:

EC
lm =

1

4πε0

qlqm
rlm

(3)

where ql and qm are the partial charges for atoms al
and am, as obtained from the CHARMM force-field: rlm
is the distance between the two atoms, and ε0 is the vac-
uum permittivity. The Lennard-Jones potential is in-
stead given by:

ELJ
lm =

√
εlεm

[(
Rl

min +Rm
min

rlm

)12

− 2

(
Rl

min +Rm
min

rlm

)6
]

(4)
where εl and εm are the depths of the potential wells of
atom l and m respectively, Rl

min and Rm
min are the dis-

tances at which the potentials reach their minima. There-
fore, the weight of the link connecting residues aai and
aaj is calculated by summing the contribution of the sin-
gle atom pairs as reported in equation 5.

Eij =

 Ni∑
l

Nj∑
m

(
EC

lm + ELJ
lm

) (5)

where Ni and Nj are the number of atoms of the i-
esime and j-esime residue respectively.

Network analysis has been performed using the igraph
package[81] implemented in R[82]. For each RIN, the
strength local parameter [83] is defined as:

si =

Ni
aa∑

j=1

Eij (6)

where the strength si of the i-esime residue is calculated
as the sum of all energetic interactions for that residue
(N i

aa). The 3D images of the protein networks were gen-
erated using Pymol [84].

Network randomization

In order to distinguish mesostable from thermostable
proteins, we compare the strength calculated in the real
network against the same parameter obtained from an
ensemble of random RINs. More specifically, the strength
of each real network is compared against a distribution
of mean strength values from 500 randomized networks
obtained from the real one using the procedure described
below.

Given a RIN link characterize by an energy weight Eij

and an interaction distance dij , we replace the energy
value with a new one (E′ij), randomly extracted from the
energy distribution observed in mesostable proteins from
the Tm dataset and in the same distance interval. Given
the global range of interaction distances 0-12 Å, twenty-
four consecutive, non-overlapping distance intervals are
obtained by dividing the entire range into a grid of bins
using a bin width of 0.5 Å. A Ts score, defined as:

Ts = s̄protein − (s̄− σ) (7)

is calculated to estimate how much the original RIN mean
strength value deviates from the expected mean value of
rRIN distribution. s̄protein is the average of the strength
parameter for the RIN; s̄ and σ are the mean and stan-
dard deviation of the average values of the rRIN distribu-
tion. At the level of single residue, we define a T i

s score,
similarly to the one in Eq. 7, as

T i
s = si − (〈s〉 − σ〈s〉) (8)

where si represents the strength of residue i, 〈s〉 is the
average strength of residue i over the 500 randomized
networks and σ〈s〉 is the standard deviation.
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Performance evaluation

We evaluated the performance of the Ts score in dis-
criminating between termostable and mesostable pro-
teins by a seven cross validation. The 49 mesostable pro-
teins of the Tm dataset were divided in seven groups,
guaranteeing that number of residues and Tm values
were as broad distributed as possible. For each group
of mesostable proteins:

1. twenty-four density distribution ρgk(E) are built,
where g indicates the groups out of the seven cre-
ated and E stands for the total energy defined in
Eq. 5.

2. The remaining 42 mesostable proteins and the 22
thermostable ones together with the Thyper dataset
proteins, are randomized according to previous de-
scribed procedure sampling the weights from the
ρgk(E).

3. All randomized proteins are classified as mesostable
or thermostable proteins according to the obtained
Ts score.

This procedure ensures that the classification of the
mesostable proteins is not biased by their own presence
in the energy density distributions used in the random-
ization process. We used the R package pROC[85] to plot
the ROC curve and calculate the AUC values.

Clustering analysis

We clustered the Ts descriptors using the Euclidean
distance and the Ward method as linkage function [86]

via the hclust function of the Stats package of R [82]. To
better compare the different Ts score between them we
normalize the data dividing each Ts score for the max-
imum of the absolute values. Finally, we computed the
silhouette values for all clusters using the silhouette func-
tion of the Cluster package of R, to evaluate the goodness
of cluster analysis.

A. Principal Component Analysis

PCA was performed over eight graph-based descrip-
tors using ”princomp” function of R software and the
correlation matrix was used for the analysis [87]. Each
descriptor has been computed using a specific function
available in the R i-graph package. The involved descrip-
tors and corresponding functions are:

• Betweenness Centrality (betweenness func-
tion) [88];

• Closeness Centrality (closeness function) [88];

• Strength, (strength function) [83];
• Diversity Index, (diversity function) [89];

• Mean Shortest Path, (distances function, with ”di-
jkstra” algorithm) [90];

• Hub Score, (hubscore function) [91];

• Clustering Coefficient, (transitivity function, with
”barrat” algorithm)[83];

• Degree, (degree function) [90].
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