






Figure 2: The thermodynamic cycle to compute ∆∆Gstretch(A,B). RNAs A and B. We simulate
the transitions from native to stretched, but not the transition from stretched to random coil, the
endpoint of optical melting experiments. We can approximate these transitions as sequence inde-
pendent, here indicated by ∆G◦Relax(12 −mer), thus they cancel when ∆∆G◦ are computed.51 In
the cycle, the free energies are subscripted to show which conformational state the system ends in,
when read from right to left. The sequence or sequences involved in the transition is indicated in
parentheses after the free energy, thus alchemical transitions are given as involving both sequences.
R.C. stands for Random Coil.
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Thus the uncertainty in the ∆∆G◦ described above and characterized by NA independent simula-

tions of ∆G◦(A) and NB independent simulations of ∆G◦(B) is given by:

δ
(
∆∆G◦(A,B)

)
=

√√√√
1
NA

NA∑
i=1

(
∆G◦i (A)−∆G

◦
pooled(A)

)2
+

1
NB

NB∑
j=1

(
∆G◦j (B)−∆G

◦
pooled(B)

)2
(6)

Assessment of Convergence

Trajectory Truncation

To estimate the amount necessary to exclude from sampling as equilibration, we truncated the

trajectories with increasing portions of each window trajectory from its beginning. As this equili-

bration is extended, the sampling is more distant from the system-building procedure and thus less

perturbed by it. We truncated between 0 and 600 ns from each trajectory, in steps of 100 ns. We

then used these FECs to calculate a series of ∆G◦stretch.

In a second analysis, the trajectories were truncated from the end, again in 100 ns increments

and removing between 0 and 600 ns. This analysis exposes how our results would vary if we had

stopped the simulations earlier.

Covariance Overlap by Window

We used a singular value decomposition (SVD) to solve for the the eigenvalues and eigenvectors

of the atomic motions in the simulations representing each window, then computed the covariance

overlap of the eigenvectors to evaluate their similarity:81–83

ΩA,B = 1−


∑3N
i=1

(
λAi +λ

B
i

)
−
∑3N
i=1

∑3N
j−1

√
λAi λ

B
j (vi · vj)

2∑3N
i=1

(
λAi +λ

B
i

)

1
2

(7)

where ΩA,B is the covariance overlap between trajectories A and B for N selected atoms, λAi is

the ith eigenvalue of the covariance matrix from A, and vi is the corresponding ith eigenvector.

We used algorithms to perform the SVD and the covariance overlap in the Lightweight Object-
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Oriented Structure analysis library project, LOOS.83,84

For each window, all heavy atoms in all four trajectories were aligned consistently.82 SVDs

were then computed for each replica of each window. The covariance overlap was then computed

for each non-redundant pairwise combination of the four replicas. We averaged the resultant per-

window scores and estimated the quality of that average by computing an SEM where the number

of replicas (not the number of combinations of replicas) determined the sample size.

All-to-all RMSD of Neighboring Windows

For WHAM, sequential windows must contain overlapping probability distributions along the reac-

tion coordinate, otherwise WHAM will produce a discontinuous free energy curve. The theoretical

basis of umbrella sampling, however, is repeated free energy perturbation, so the windows must

overlap in a more complete phase space.70 Overlap along our reaction coordinate is good as evi-

denced by our smooth FECs. To score phase-space overlap in dimensions not well characterized

by our reaction coordinate, we assessed the similarity of loop structure in consecutive windows

by computing a root-mean-squared displacement between each frame (an ‘all-to-all’ RMSD) in

trajectories from neighboring windows for all heavy atoms in the loop (residues 3-9). We wrote a

LOOS tool called trans-rmsd to perform the calculations between frames from two user specified

sets of trajectories, and have included it with the prebuilt tools that package ships with.84,85

To score similarity between windows, we consider a fraction of frame pairs whose RMSD is

below a chosen cutoff (2.5 Å). RMSD between loop heavy atoms below this cutoff implies similar

conformations. This quantity could be computed for any two windows, or indeed any pair of

trajectories. We refer to the fraction, F, for two windows (named by their window indices) v and

w, as F(v,w). Because we are interested in scoring overlap along the reaction coordinate, we only

consider neighboring windows, F(w,w+1). We also computed a ratio of the neighboring fraction

of frame pairs below the cutoff to the average fraction of frame pairs within the two neighboring
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windows that are below the cutoff:

R(w,w+1) =
F(w,w+1)

1
2(F(w,w) +F(w+1,w+1))

(8)

This ratio is a clearer representation of the degree of overlap where F(w,w +1) is small (less than

0.1), because F(w,w) and F(w + 1,w + 1) are also small. This occurs when windows with high

conformational heterogeneity are compared. We used pooled frames from all four trajectories of

each window sampled every 500 ps to compute these values.

FEC Numerical Derivatives

To evaluate which bins along the reaction coordinate exhibit greater variation in free energy, we

computed a numerical derivative of the FEC as the difference between neighboring bin free ener-

gies (where the bin with lower index is subtracted from the bin with higher index) divided by the

bin width. We then computed the standard deviation of this quantity, σ , across the four replica

distributions of each bin, where we took the mean to be the free energy resultant from the pooled

distributions.

For any FEC, G, with distance between points δ, and free energy at the ith point G◦i :

∆G◦i = G
◦
i+1 −G

◦
i (9)

Then the numerical derivative between these points is:

dG◦
dx

(
i +

1
2

)
≈
∆G◦i
δ

(10)
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where the argument indicates that the expression approximates the derivative between points i and

i +1. We now have a force along the FEC, and can consider the spread in force per point between

runs by calculating the standard deviation in this quantity across N replicas for all the neighboring

pairs along our reaction coordinate, where ∆G◦i (j) represents the jth replica. ∆G◦i (best) is the

value of the neighboring point difference computed with the pooled distributions.

σ

dG◦dx

(
i +

1
2

) ≈
√√√√

1
N

N∑
j=1

(
∆G◦i (j)
δ
−
∆G◦i (best)

δ

)2
(11)

=
1

δ
√
N

√√√√ N∑
j=1

(
∆G◦i (j)−∆G

◦
i (best)

)2
(12)

To quantify these values per window, we collected the FEC derivative curves into segments

where the center of the segment was the restrained distance of the associated window. We assumed

each segment should be 1 Å wide, in keeping with our restraint spacing. We then integrated σ over

these segments using the trapezoid rule as implemented in NumPy.86 This quantity is in units of

energy, and computing its standard deviation provides a score of the variability observed within a

window. We provide the Python script we used to perform these calculations on FEC data files as

Supplementary Materials. This method is general to any comparison between curves with arbitrary

zeros, where the same problem (of offsets in parts of the curve proximal to the zero rendering a

variance distal to the zero incoherent) would apply for repeated measurements of the same curve

just as it does here.

Results

Free Energy Curves

We obtained free energy curves for the three sequences (Fig. 1) using WHAM as applied to our

umbrella sampling simulations (Fig. 3, panels A, C, and E). Our best estimate for the Free Energy

Curves (FECs) exclude the first 200 ns of sampling for equilibration and pool the sampling from
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each replicate of each window before running WHAM. This best estimate is shown in black, and is

considered the full length dataset. Because the simulations were done in quadruplicate, overlaying

the FECs shows regions that disagree across replicas. While agreement does not guarantee con-

vergence, disagreement is necessarily the result of insufficient sampling, though not always in the

same bin as the disagreement (see the section on Per-Bin Free Energy Variation below). Thus it

appears that our simulations provide consistent representations of the native basin, the region sur-

rounding the native structure at approximately 17 Å, and of the extended structures present beyond

45 Å. This is unsurprising; these regions of the reaction coordinate should correspond to relatively

small volumes in phase space by comparison with the middle of the reaction coordinate, where the

native stem is lost but the backbone is not taut.

To assess convergence, we removed increasingly large sections from the end of the trajectory

of each replica in 100 ns increments before pooling them and applying WHAM, as before (Fig.

3, panels B, D and F). This addresses the extent to which the ‘best estimate’ provided by the

pooled data is sensitive to the length of the simulations. We note that these curves exhibit some

disagreement when they are zeroed at their minima, which again is at 17 Å. We quantify the extent

to which this disagreement affects the calculation of ∆G◦ values from these data in the subsection

on Free Energy Changes below.

Hydrogen Bonding and Reaction Coordinate Partitioning

To identify the endpoint of stretching, we computed the average occupancy of hydrogen bonds

between non-neighboring bases along the reaction coordinate. We found that this average consis-

tently drops to 0.3 hydrogen bonds or below at 45 Å and, with the exception of the 53 Å window

from the first replica of CAGUGC, remains near zero along the rest of the reaction coordinate (Fig.

4). By monitoring all hydrogen bonds we considered non-native structures forming in windows

that are near the native basin, but distant enough to have disrupted the helix, as non-stretched struc-

tures. This can be seen from the heterogeneity in the hydrogen bond plots for each sequence (there

is also variability amongst replicas). The most consistent pattern is the near absence of such hydro-
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Figure 3: Free Energy Curves. Panels A, C, and E show the four replicas of the equilibrium-
excluded data for each system, plus the FEC produced by pooling that data, which is our best
estimate for the FEC. Panels B, D, and F show the results the pooled data from trajectories with
data excluded from their ends in 100 ns increments. Panels A and B correspond to CAGUGC, C
and D correspond to GUAAUA, and E and F correspond to UUAAUU. For each truncated FEC,
the curve corresponding to ‘0 ns excluded’ is the same as the pooled data in the plots showing
the overlay of the replicas of each system. Note that all FECs are zeroed at their minimum value,
which happens to be the same (the location of the native state, 17 Å) for all 12 FECs.
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Figure 4: The average hydrogen bond occupancy per window for hydrogen bonds between donors
and acceptors on non-neighboring bases. The transparent envelopes represent the standard error of
the mean (SEM). The hydrogen bonds were defined by an angle cutoff of 30◦ and a heavy atom
distance cutoff of 3.5 Å. The horizontal line is at 0.3 average hydrogen bonds. The vertical line at
17 Å indicates native Watson-Crick helix.

gen bonds beyond 45 Å, and we therefore chose this as the boundary between slack and stretched.

While the boundary would move for hairpin sequences of different lengths, this heuristic could

still be used to identify a boundary for such systems.

Convergence and Overlap of Windows

Figure 5 shows the controls we performed to further address convergence and window overlap. We

computed the covariance overlap (Eq. 7) for each replica of each window, and report an average

of these with an SEM as an envelope around each point in Panel A. The covariance overlap

gives a normalized distance between two covariance matrices (it is undefined for non-analogous

selections of atoms). A covariance overlap of 1 would indicate that the covariance matrices are

identical, whereas a covariance overlap of 0 would indicate that there is no similarity between
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Figure 5: Assessment of convergence and phase space overlap. Panel A shows the covariance
overlap between the pooled trajectories for all heavy atoms in the loop. The bold line indicates the
average value, with the transparent envelope indicating the SEM Panels B, C and D, corresponding
to CAGUGC, GUAAUA, and UUAAUU, respectively, plot the fraction of pairs of frames with a
pairwise all-heavy-atom loop RMSD less than 2.5 Å that occurs between each window w, and
its neighbor w + 1, F(w,w + 1) is show on the left axis. The relative fraction, R(w,w + 1) =
F(w,w+1)/ F(w,w)+F(w+1,w+1)2 , is shown on the right axis.
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the two covariance matrices.81 Because the key component of this distance is defined as the dot

product of all pairs of eigenvectors from the covariance matrices for the two simulations (the

principal components of the motions) these scores can also be viewed as measuring the extent to

which the principal components overlap.83,87 For perspective, we computed the covariance overlap

for just an alignment and PCA based on the helical residues of the native window. We view this

as a best-case covariance overlap for a structured RNA because the ends of the helix are restrained

to be at the native distance and the helix should be less flexible than the loop, although the loop-

closing bases and the helix closing bases can still fray. The average and standard deviation of these

calculations was 0.55 ± 0.19. We conclude from this that there is still heterogeneity in the loop

motions in restraint distances shorter than 45 Å. However, by comparison with our helical reference

few of our windows exhibit disparate motions, and our more extended windows exhibit remarkably

similar ones. We also calculated the subspace overlap of the first 25 modes of the neighboring

simulations (see Supplementary Fig. 1); they were uniformly higher than the covariance overlaps,

which is not surprising because the subspace overlap treats the eigenvectors as unit vectors.

To assess phase space overlap between windows, we computed the fraction of all frame pairs in

neighboring windows with loop heavy atom RMSD below 2.5 Å (Fig. 5, panels B, C, and D). All

three molecules have substantial fractions of such frames from neighboring windows before 25 Å.

After 30 Å, the fraction drops below 0.05. Beyond this point there is no native structure, and most

conformations are only observed for a single frame. To calibrate this fraction we also computed

a ratio between the fractions of frames below the cutoff from neighboring windows and that same

fraction from the average of both neighboring windows compared to themselves. It scores overlap

relative to how heterogeneous the window under consideration is, which is useful in understanding

the region of low overlap in the middle of the reaction coordinate. These quantities are computed

between neighboring windows. For each window, the trajectory analyzed was the pooled frames

from all four of the replicas, sampled every 500 ps. Interestingly, while both scores are below 0.01

for the middle windows, for the higher windows near the ‘stretched’ state they begin to rise again,

suggesting those windows have more similar conformational ensembles.
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Per-Bin Free Energy Variation

In the free energy curves in Figure 3, we noted a pattern in the disagreements between curves from

the same sequence; disagreement usually occurs starting at a certain position on the curve, the

distance between a truncation and its neighbors (or a replica and its neighbors) rises, then begins

to mirror its neighbors again. Because variability at a certain bin produces an offset in bins more

distant from where curves are zeroed across replicas, we consider a numerical derivative that will

only score variability between two neighboring bins (see the Methods subsection FEC Numerical

Derivatives).

In Figure 6, the regions of lowest variability are near the native distance where the replicas are

overlapped in Figure 3. There is a region of low variability in the windows that also lack non-

neighboring base-base hydrogen bonds (Fig. 4). Bins from the ‘stretched’ state tend to be less

variable than those in the extended but not taut middle region of the curve. But note the variability

in CAGUGC that corresponds to a rearrangement in the base pairing of the terminal base pair in

shorter than native distance (compressed) windows in some replicas

The window integrals of the standard deviation (Fig. 6, panels B, C and D) suggest the extent of

convergence for individual windows with respect to their part of the FEC. Low variability windows

have almost no (less than 0.1 kcal/mol) difference between the truncated and full trajectories, and

the total variability estimated from truncations also remains low (below 0.15 kcal/mol). Windows

that vary substantially can be twice as variable for truncated trajectories, and even with the full

dataset score higher than 0.2 kcal/mol.

Free Energy Changes

To estimate how much of the trajectory to exclude as equilibration, we plotted the free energy of

stretching (Eq. 1) from end-distance distributions that had been truncated from the beginning in

100 ns increments in the panel A of Figure 7. While it is challenging to determine how much

equilibration is sufficient and not excessive, for two of our three systems it appears that the free
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Figure 6: The standard deviation σ per bin in the FECs. Panel A shows σ for the derivative of each
FEC with respect to the reaction coordinate (see Methods subsection FEC Numerical Derivatives)
for data derived from the full length trajectories. In panels B-D, the regions corresponding to each
window are integrated along the reaction coordinate using the trapezoid rule, and plotted as boxes.
Panel B corresponds to CAGUGC, C to GUAAUA, and D to UUAAUU. The longer trajectories
(fewer ns omitted from the end) are overlaid on the shorter trajectories.
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energy of stretching stops systematically changing after the first 200 ns. For UUAAUU, there ap-

pears to be a steadier drift in the value of free energy that occurs over the course of the trajectories,

although it leveled off considerably after excluding 200 ns. Based on this evidence, and by inspect-

ing our FEC derivatives as a function of truncation from the beginning, we conclude that a 200 ns

equilibration is sufficient.

Table 1: The free energy changes (kcal/mol), measured, predicted using the nearest neighbor
(NN) parameters,61,69 and simulated, for each sequence with uncertainty for each value. The
∆∆G◦melt−stretch quantifies the error in the thermodynamic cycle calculations because that quantity
should be a constant up to the variability from incomplete sampling. The mean with propagated
error for this quantity is 6.70± 0.79 kcal/mol.

Sequence ∆G◦melt ∆G◦NN ∆G◦stretch ∆∆G◦melt−stretch
CAGUGC −0.21± 0.39 −1.61± 0.23 −6.75± 0.39 6.55± 0.55
GUAAUA −3.47± 0.24 −3.70± 0.27 −10.97± 0.34 7.51± 0.38
UUAAUU −2.35± 0.32 −2.05± 0.24 −8.39± 0.27 6.03± 0.42

To compare our stretching experiments to experimental folding stabilities (Tables 1 and 2), we

followed our approach from Spasic et al.,51 where a thermodynamic cycle describing differences

in folding stability (Fig. 2) was used. By approximating the stretched to random-coil transition

as sequence independent, as is done in single-molecule pulling experiments,58 we can compare

the ∆∆G◦ between two sequences to analogous differences in stability from optical melting ex-

periments. To quantify the sequence independence of the stretched state from our data, we fit

the free energy curves to quadratic functions in the stretched region (45 to 60 Å), and found that

the quadratic and linear coefficients are similar (Supporting Table 2). This lack of variability in

the stretched region of the curve supports our approximating it as sequence independent; if the

curve were variable in this region it would be harder to distinguish whether this variability were a

property of the sequence or whether it was random variability from sampling.

Table 1 shows the changes in ∆G◦ we observed. As discussed in the Introduction, the changes

in state between the in silico stretching and in vitro melting are not the same, so it is expected

that these free energies would be different. Our assumption that the differences in stabilities be-

tween sequences (Table 2) should be comparable whether the stabilities were obtained from melts
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Figure 8: The ∆∆G◦stretch and residuals as a function of truncation. Panel A shows the ∆∆G◦stretch
with SEM from replicas. Panel B shows the residual between that value and its reference ∆∆G◦

with propagated error.
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or stretches also implies that there is some approximately constant component of the stretching

free energy that is a sequence-independent offset. When we compute relative stabilities using

our thermodynamic cycle, the sequence-independent components cancel. In the column labeled

∆∆G◦melt−stretch we estimate this quantity by taking the difference between the ∆G◦melt and the

∆G◦stretch for the same sequence. In principle, if there were no sequence dependence and no sam-

pling error, these numbers would be the same for all three sequences. We assessed statistical errors

in our study using technical replicas, therefore differences in this quantity that are outside our

uncertainties can be interpreted as systematic differences. We estimate the difference (Table 2;

Melt-Stretch) to be similar for UUAAUU and CAGUGC, but that for GUAAUA appears to be the

outlier. It is interesting that the similar comparison between stabilities estimated using the nearest

neighbor model88 and those obtained from optical melting experiments (Table 2; Stretch-NN), the

largest outlier is CAGUGC. Our simulations appear to model the instability of this loop although

the nearest neighbor model does not.

Because the residuals average to 1 kcal/mol and the errors for individual residuals are of order

kBT , we conclude that we are nearing chemical accuracy and precision, respectively, with this

technique. We propagated uncertainty in both the physical measurements and the experiments

to a residual to determine whether these values are significantly different. If they are not, the

residuals (∆∆∆G◦stretch−melt) would be close to zero in free energy, and zero would be within the

error-envelope of the values. Based on Table 2 and Fig. 8, we cannot reject the null hypothesis

that the residuals are zero for two of the three residuals. This is also true even in highly truncated

trajectories (Fig. 8), and this indicates less sampling would have reached the same conclusion. The

deviation from zero residual seems to vary by sequence—the two residuals involving GUAAUA

are more erroneous. While this can likely be explained in part as systematic (rather than sampling)

error in these free energy differences, the differences from zero are not significant (Table 2).
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Table 2: The difference in free energy change (kcal/mol) of unfolding for pairs of sequences. Each
of these differences are from the thermodynamic cycle in Fig. 2. The differences are calculated
as alchemical transitions between sequences, with ∆∆G◦ = ∆G◦Product −∆G

◦
Reactant. The ‘stretch’

transitions are those calculated from simulations, and the melting transitions are our reference data
from the literature. ∆∆G◦NN is what the nearest-neighbor model estimates for each sequence pair.
The column Melt-Stretch is the difference between the experiment and the simulation, referred to
as the residual. Stretch-NN is the difference between ∆∆G◦NN and ∆∆G◦stretch. The uncertainties
given for the residuals are the uncertainties propagated from the ∆∆G◦ using Eq. 5. The P values
are provided in parentheses after the residuals and are the probability of the null hypothesis that the
differences are zero given the data. They are computed from a two-tailed t-test against a particular
value, zero, with three degrees of freedom.

Reactant Product ∆∆G◦stretch ∆∆G◦melt ∆∆G◦NN Melt-Stretch (P) Stretch-NN (P)
GUAAUA UUAAUU 2.58± 0.44 1.11± 0.40 1.65± 0.35 1.47± 0.60(0.90) 0.93± 0.57(0.198)
UUAAUU CAGUGC 1.64± 0.48 2.15± 0.52 0.44± 0.33 −0.52± 0.70(0.514) 1.20± 0.58(0.131)
CAGUGC GUAAUA −4.22± 0.52 −3.26± 0.46 −2.09± 0.36 −0.95± 0.70(0.264) −2.13± 0.63(0.044)

Discussion

FF99+bsc0+χOL3 Brackets the Relative Stability of RNA Hairpins

This study was designed to determine whether there is systematic error in the free energies simu-

lated for RNA hairpin pulling. There is a growing consensus that the RNA force fields for standard

molecular dynamics are inadequate, but this is commonly evaluated in a structural context with

the observation that simulations do not preserve native conformations.24,32 The argument could be

made that folding stability could be approximately correct even if the balance of conformations

were incorrect, if the number of microstates available to the RNA and their relative energies were

approximately correct. Our results suggest that FF99+bsc0+χOL3 can perform with chemical accu-

racy to estimate relative stabilities of RNA hairpins along an end to end reaction coordinate with

adequate sampling. While convergence is never promised when sampling on a rough free energy

surface, these results suggest that in spite of the parameter imbalances discussed in the literature,

the folding free energies of RNA hexaloops can be adequately modeled.24,32,33,37

This work also provides a framework for benchmarking force fields that displays incremental

progress, which is a current challenge. Consider for example comparisons between simulations
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and two dimensional Nuclear Overhauser Effect (NOE) spectra.24 It is clear that a simulation in-

dicating the presence of strong NOE cross-peaks that are not observed in experimental spectra of

the same system is a problem. What is not clear is how inaccurate this comparison shows the force

field to be. It is conceivable that minor adjustments in the right parameters would tune the force

fields and eliminate these artifacts entirely, although we find this unlikely given the breadth of ef-

forts, including our own, to rectify these issues.40 Such efforts have in some cases resulted in force

fields that sample structures with unobserved NOEs less frequently, but do not totally reduce them

to levels that would be undetectable by NMR. If the difference in free energy between a minor

conformation and a major one is mis-estimated by the force field by as little as 2.0 kcal/mol at 277

K, it could be the dominant conformation in the simulation and so rare as to be unmeasurable by

NMR. Because we cannot measure the features of the free energy surface of the tetramer systems

experimentally, it is challenging to differentiate between force fields that are becoming more ac-

curate from those that are introducing new errors. In particular, it is hard to determine whether

a given modification is part of a necessary set of changes to the force field, but not in its own

right sufficient. The progressive nature of free energy benchmarks therefore makes them a needed

addition to the nucleic acid force field test suite.

Convergence

In principle, molecular dynamics simulation (MD) allows for the sampling of the thermodynamic

ensemble of the simulated system. This ensemble could then determine any equilibrium quantity

of interest and be compared with or estimate experimental data. In practice, especially because

of technological limits, sampling is usually incomplete, causing statistical errors in results.23 For

RNA simulations, the statistical problem is pronounced; while protein folding simulations have

been the focus of pioneering work in enhanced sampling,89 swarms-of-trajectories approaches

that harness the aggregate idle power of many personal computers,90 and most recently brute force

sampling by specialized supercomputers,91 similar simulations of RNA have either only been tried

recently,32 or have not yet been performed. Because of this lack of focus by the broader MD field,
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the source of reported inaccuracies is not obvious.

The RNA folding landscape is not completely defined by the end to end distance. For spe-

cific windows in umbrella sampling, there might be slowly equilibrating degrees of freedom that

are nearly orthogonal to the reaction coordinate, and some of these degrees of freedom might be

poorly sampled. These degrees of freedom must overlap for the results of an umbrella sampling

approach to be interpretable, even though the overlap between adjacent windows along the reac-

tion coordinate is specifically what determines whether WHAM produces a continuous curve. To

score the overlap of window ensembles on potentially orthogonal degrees of freedom, we consid-

ered all-to-all frame RMSDs for nearest neighbor and next-neighbor windows along the reaction

coordinate (Fig. 5, panels B, C and D). This RMSD was calculated for all heavy atoms in the loop

residues. The loop is the most distal part of the RNA from the restraint, and therefore the most

likely to contain degrees of freedom for which the biasing potentials enhance sampling the least.

In the longer distance windows the restraint becomes a more effective bias for all the degrees

of freedom. Within more distal windows (those above 25 Å restraint distance) there is still con-

formational heterogeneity as evidenced by the relatively low fraction of frame pairs below our

cutoff, however it appears that these windows exhibit less diverse motion according to the covari-

ance overlap, suggesting that perhaps lever-arm effects from the extended structures are at play in

reducing the fraction of frame pairs below the RMSD cutoff.

While the relative fraction of pairwise RMSDs suggests there is less overlap of ensembles in

the middle windows, we note that no neighboring windows have zero frame pairs below the 2.5 Å

cutoff in RMSD. We also note that this calculation, where only the loop conformations are scored,

is a conservative choice. If we had selected all heavy atoms, the molecule overlaps would have

been higher because they would have contributions from atoms that are more directly restrained

to be in similar positions. Finally, we note that in studying the variation in FEC derivatives per

window (Fig. 6), it appears that windows for distances of 26-60 Å (the windows with the greatest

conformational heterogeneity by this metric) result in the smallest changes in the free energy curves

themselves. Their loop motions are also more self similar, even though the loop structures are not
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self similar (Fig. 5A). In other words, for the purposes of precisely calculating the free energy of

stretching, additional sampling of the middle and terminal windows would yield the least change

in the computed free energies. It therefore appears that our reaction coordinate is nearly orthogonal

to the loop conformations in the mid-range windows.

One might wonder whether, with more extensive sampling, we might find our residuals trending

to zero. While this question is hard to answer, considering the residual as a function of truncation

might suggest whether extending our sampling further would result in different conclusions.92

From Fig. 8, we see the residuals increase as the trajectory gets shorter, which is what one might

expect if instead of excluding unequilibrated parts of the trajectory we were simply excluding

viable samples from our dataset.

The Reaction Coordinate

The major benefit of the end-to-end distance reaction coordinate is the well defined character of

the endpoint. Sampling the random coil ensemble for an RNA large enough to have structure is

not feasible given the level of access most simulators have to computing power. Thus simula-

tions of stretching transitions are more likely to provide useful estimates of stability given current

technology. A minor benefit is that force-driven extension experiments also follow this reaction co-

ordinate, although the experiments currently use molecular handles that are are too large to include

in our calculations.

Simulations estimating stability from pulling-like restraining forces have historically suffered

from the problem of having more arbitrary distinctions between native and stretched states.38,93

Using the aggregate non-neighboring base-base hydrogen bonds as a score of extension avoids the

problem of searching for a point along the reaction coordinate were native structure has been lost.

This point is not always obvious because it is difficult to distinguish between native fluctuations

and an unfolded conformation. Our choice is a way to define the point where the chain is stretched,

which allows us to lump many of these potentially native-like structures into the slack state. The

hydrogen bond metric can be applied to unimolecular stretching experiments of RNAs of arbitrary
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size and sequence.

Standard Deviation of Free Energy Derivative

In umbrella sampling, a deviation between two technical replicas is usually particular to specific

bins along the reaction coordinate. Given the pattern of variability along the reaction coordinate

it might seem natural to consider a standard deviation per-bin. This is problematic because the

bins are zeroed at one location along the reaction coordinate. At points along the reaction coordi-

nate distant from the zeroed location, statistical fluctuations will have accumulated. Computing a

variance or standard deviation with these values directly would therefore be incorrect.

To assess the agreement in FECs by bin, we computed the standard deviation in the numerical

derivative of the FEC across replicas (see section FEC Numerical Derivatives in the Methods and

Fig. 6). We submit this as the best approach for analyzing FECs, as it provides information about

consistency and accurately identifies regions of disagreement across replicas or even across sub-

datasets. It would certainly apply to discretized FECs assembled from simulations by other means,

such as the Multistate Bennett Acceptance Ratio,? weighted ensemble simulation,? and well-

tempered Metadynamics.? Computing numerical integrals of this quantity across the width of a

window illustrates how variability is localized to a given window. Both quantities combine nicely

with dataset exclusion approaches such as those discussed in the section Trajectory Truncation,

because they can indicate which parts of a FEC are not as well converged.

Thus, both quantities would find use in further efforts to converge umbrella sampling calcula-

tions. The window integral standard deviations indicate windows that need further sampling. To

initialize simulations for additional sampling, the derivative can suggest what frames to start from

because it is a per-bin score of variability. Frames from a variable window exhibiting distances

along the reaction coordinate that would be binned under a peak in the derivative curve are the

best frames from which to start new simulations, because they are adjacent to some under-sampled

event that has resulted in variability at that position. This could be done to adaptively guide addi-

tional sampling while simulations are ongoing.
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Furthering in Silico Pulling

A number of approaches could be used to improve the efficiency of these types of in silico pulling

experiments. Our results specifically suggest:

1. Sample the stretched state less, or not at all. The stretched windows do not contain much

information about our systems but are the most computationally expensive because they are

larger and therefore have much greater water content. The windows with restraint distances

45 Å and greater are some of the most well converged by our metrics, especially the covari-

ance overlap and the free energy derivative SDs. Because we approximate the stretched state

as sequence independent, we could add additional sequences onto our analysis by averaging

the stretched windows together and considering only their differences in the slack state, or

by simply subtracting their slack-state-sums from one another.

2. Sample the native basin less. Although these windows are not as expensive to run, they also

show so little variability across both replicas and slices that having run them for much less

time (a factor of ten less) would not have perturbed the free energy change estimates.

3. Extend the sampling for windows that show deviation across slices. By the same logic as

the previous two points, windows that show high variability are necessarily more poorly

defined, and will therefore change the resultant free energy change of stretching the most

if more completely sampled. Use the standard deviation of the FEC derivative approach to

identify which regions produce this variability and to determine the starting structures for

follow up simulations that would target them.

4. Use window to window Hamiltonian replica exchange. Using replica exchange to exchange

restraints between neighboring windows is a classic technique in umbrella sampling simu-

lations that enhances convergence across the FEC.44 While our computational environment

restricted us from using this technique on all windows, identifying poorly behaved windows

given sequence length (for us the range is consistently 18-25 Å) may markedly speed up
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convergence in these regions.

5. Bias other reaction coordinates to more efficiently sample the loss of structure. End-to-end

distance may not be the most efficient path between the native structure and a stretched state.

Because such simulations possess both well-defined start and endpoints, path-finding meth-

ods like nudged elastic band94–96 or finite temperature string methods97–100 might provide

more useful window spacings, window positions, or additional restraints. Such methods

might yield reaction coordinates that, while specific to RNA (and likely to RNA of a partic-

ular length) are not particular to any sequence, allowing results from a few careful reaction

coordinate finding simulations to be used for many new RNA sequences.

6. Use fixed positional restraints rather than distance restraints. This would eliminate the RNA’s

translational and rotational rigid body degrees of freedom, restraining the end-to-end posi-

tions of the RNA would the allow a hexagonal prism or rectangular box to be used, which

would reduce the number of solvent molecules in more extended windows. This also mimics

stretching experiments more directly, since having both ends of the chain tethered prevents

long axis rotations and, for a given extension distance, center of mass translations.

7. Analyze error by computing the average difference between RNA stretches and melts (Table

1). This value can be thought of as the sequence-independent free energy of relaxation from

stretched to random coil states (and sequence independent errors of stretching or of the force

field) that is being subtracted away in the thermodynamic cycle. This error term should

contain both systemic, sequence-specific error and sampling error, but the variability in it is

already low enough to discern outliers (GUAAUA is more overly stable than the other two

sequences). Adding to the diversity of stretched sequences would make such an observation

a more firm conclusion. It would also allow the approximate accuracy of a newly stretched

sequence to be estimated without multiple replicas or reference to a pre-existing melt, which

will be important in the future as this technique becomes more accurate and the collection of

sequences with known reference melts to which it has been applied grows.

32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/354332doi: bioRxiv preprint 

https://doi.org/10.1101/354332
http://creativecommons.org/licenses/by/4.0/


Conclusions

In this study we furthered an approach to compare in vitro folding stabilities and in silico free en-

ergy curves. We refined methods for analyzing such data, and situated future studies on this topic

to add sequence diversity more efficiently. Most notably, we showed that the thermodynamic land-

scape of FF99+bsc0+χOL3 is chemically accurate where previously questions had lingered about

whether differences could be due in part to lack of convergence.
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