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Abstract: In this paper, we study the general problem of extracting information from spatially explicit20

genomic data to inform inference of ecologically and geographically realistic population models. We describe21

methods and apply them to simulations motivated by the demography of the Mojave desert tortoise (Gopherus22

agassizii). The tortoise is an example of a long-lived, threatened species for which we have an excellent23

understanding of range, habitat preference, and certain aspects of demography, but inadequate information on24

other life history components that are important for conservation management. We use an individual-based25

model on a discretized geographic landscape with overlapping generations and age and sex-specific dispersal,26

fecundity, and mortality to develop and test a method that uses genomic data to infer demographic parameters.27

We do this by seeking parameters that best match a set of spatial statistics of genomes, which we introduce28

and discuss. We find that for inferring only overall population density and mean migration distance, a simple29

statistical learning method performs well using simulated training data, inferring parameters to within 10%30

accuracy. In the process, we introduce spatial analogues of common population genetics statistics, and discuss31

how and why they are expected to contain signal about the geography of population dynamics that are key32

for ecological modeling generally and conservation of endangered taxa.33

Keywords: population genomics; inference; landscape genomics; forward-time simulations; individual based34

model; demography35

1 Introduction36

Mechanistic population models are a key tool used by basic and applied ecologists to understand the history37

and dynamics of natural populations. Population models inform fisheries management (Quinn and Deriso38

1999), conservation of endangered species (Caswell 2001), and understanding of emerging infectious diseases39

(Diekmann and Heesterbeek 2000). Population models are well suited to address both fundamental questions40

(e.g., how population regulation occurs in spatially extensive, age-structured populations) and applied concerns41

(e.g., movement of disease vectors across political geographies).42
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Often, a population model is used to project future abundance under a variety of scenarios that affect one43

or more parameters (e.g., Prates et al. 2016; Benson et al. 2016). For example, a model that includes the44

effect of temperature on egg hatching rate could be used to project the impact of climate change on future45

population survival. To provide meaningful information for management, model parameters must be known46

with enough certainty that one can realistically distinguish the future effects of management or landscape47

modification scenarios.48

Demographic quantities such as survival, growth, and fecundity can often be estimated by direct field49

observation (generally via mark-recapture studies) particularly for short-lived species where data can be50

collected over several generations. However, the degree to which current demographic parameters accurately51

reflect long term values is often unknown, particularly when those parameters may fluctuate substantially52

across time scales or geography. These demographic quantities determine abundance fluctuations and gene53

flow across the landscape, two processes with conceptually well-understood effects on patterns of genetic54

relatedness. Therefore, genomic data provide a promising source of additional information to bridge this gap.55

However, there has thus far been relatively little use of genomic data in fitting mechanistic ecological models,56

even though there must be a direct relationship between population dynamics and the geographical patterns57

of standing genetic variation observed in nature.58

A major barrier to integrating genomic data in ecological models is a lack of analytical results that describe59

genetic patterns expected under geographically explicit population models. Genomic data are often used for60

descriptive models – most commonly, either clustering-based methods that seek to identify substructure in a61

population (e.g., Pritchard, Stephens, and Donnelly 2000; Bradburd, Coop, and Ralph 2017), “resistance”62

methods that depict genetic similarity using a landscape descriptor of gene flow (e.g., McRae 2006; Petkova,63

Novembre, and Stephens 2016; Shaffer et al. 2017), or least-cost path analysis to find most likely routes64

of gene flow (e.g., Wang, Savage, and Shaffer 2009). Although these approaches can provide information65

about migration rates among a set of discrete populations (Greenwald 2010), none of these methods provide66

estimates in units that are directly interpretable as describing population dynamics in a generative model of67

continuous space, such as mean distance traveled by dispersing individuals per year, or number of adults68

per square kilometer. It is extremely well-understood how demography determines genetic patterns in69

large, randomly mating populations (e.g., the Wright-Fisher model), but when realistic geography and its70

idiosyncratic effects are introduced, few analytical predictions are available (but see Ringbauer, Coop, and71

Barton 2017).72

Simulations have proven useful in bridging this gap between ecological models and genomic data. A variety73

of simulation approaches can shed light on evolutionary and some ecological processes (Hoban, Bertorelle,74

and Gaggiotti 2012). Such studies generally use likelihood free (e.g., Approximate Bayesian Computation)75

approaches that require choosing summary statistics that describe the high-dimensional outputs (genomic76

or genome-like data). These simulation tools allow for inference of migration among complex, but discrete,77

spatially structured populations. For example Vallée, Luciani, and Cox (2016) used a general-purpose78

individual-based modelling (IBM) library to model the dynamics of 37 recombining markers across all human79

chromosomes during the Neolithic expansion among Southeast Asian islands. Alves et al. (2016) inferred80

short- and long-distance dispersal in Eurasian Neolithic expansions of humans using SPLATCHE2 (which81

combines forward simulations of population sizes with coalescent simulations of genetic data, Ray et al. 2010).82

Similarly, Prates et al. (2016) inferred past demography of neotropical forest lizards, and S. E. Harris et83

al. (2016) inferred recent population structure (and correlating it with urbanization) in white-footed mouse84

(Peromyscus leucopus) in the Northeastern USA, both using fastsimcoal2 (Excoffier and Foll 2011).85

Here, we use an ecologically realistic, individual-based model to simulate whole genomes of a closed population86

across a heterogeneous landscape. By simulating across a range of parameters and comparing results from87

our model to genomes obtained from real populations, we can make inferences about the parameter values88

corresponding to these real populations. Actual population-scale landscape simulations of individuals with89

gigabase-sized genomes pushes the limits of current computational feasibility. However, our method is made90

computationally feasible with large population sizes by recent advances in simulation methods (Kelleher et91

al. 2018), that allow more rapid simulation and simultaneously record the genealogical relationships across92

generations for all individuals across the simulated landscape.93
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This study is motivated by the Mojave desert tortoise, Gopherus agassizii and the need to create realistic spatial94

models to guide its conservation. The species lives across much of the Mojave desert in the Southwestern USA,95

and is threatened due to a combination of habitat destruction, mortality due to human-subsidized predators96

(Kristan and Boarman 2003; Esque et al. 2010), disease (M. B. Brown et al. 1994), vehicle-associated97

mortality (W. Boarman and Sazaki 2006), and other factors (Berry 1986; USFWS 2011). A substantial body98

of ecological fieldwork now characterizes desert tortoise habitat suitability (K. E. Nussear et al. 2009; USFWS99

2011), and several sizeable demographic studies have estimated sex- and age-specific mortality and fecundity100

(e.g., Doak, Kareiva, and Klepetka 1994; Karl 1998; Reed, Fefferman, and Averill-Murray 2009). However,101

certain aspects of tortoise life history – in particular, the effects of juvenile and long-distance dispersal –102

remain relatively unknown. Since dispersal-mediated gene flow should leave strong signals across the genome,103

we can reasonably hope that genomic data could inform a mechanistic understanding of tortoise movement104

across the landscape.105

In this paper, we (1) Develop a landscape-scale individual-based model (IBM) simulation that maps ecological106

parameters to a population pedigree; (2) Introduce a general class of spatial population genetic statistics107

and motivate their use for inference problems such as those modeled here; (3) Develop a statistical method108

to estimate dispersal and population density by comparing patterns of relatedness on the landscape to109

simulations of expected relatedness; and (4) Use simulated data to show that our method can simultaneously110

estimate dispersal and density to within 10% percent of their true values, as long as the dispersal scale is not111

too large.112

We then infer two parameters from data produced under the model used for inference, presenting a limited113

test of the method. This reflects a common scenario where a great deal is known about certain ecological and114

demographic processes and the goal is to add information from genomic data. We establish a geographically115

and ecologically realistic population model, develop methods to produce consistent discretizations of the116

model, explore a class of spatial genetic statistics, determine procedures to match these spatial statistics117

between datasets, and assess our statistical power across a range of model parameters.118

The statistical problem we face here is an inverse problem, conceptually similar to estimating the migration119

rate between two randomly mating populations of size N by inverting the analytic relationship FST = 1
4Nm+1120

(Wright 1951), where FST can be computed from genetic data, and N and m are the effective population121

size and migration fraction, respectively. However, the functional relationship between genetic statistics122

and parameters in models of continuous, heterogeneous geography is generally unknown (but see N. H.123

Barton, Depaulis, and Etheridge 2002; Ringbauer, Coop, and Barton 2017). Much like Approximate Bayesian124

Computation or sequential Monte Carlo (Marjoram 2013), we use simulation to bypass this issue. We simulate125

under a range of values of parameters for dispersal and density, calculate a large number of spatial population126

genetics statistics of the resulting data from each, and use general-purpose statistical learning to approximate127

the inverse map from statistics back to the (originally unknown) two parameters. In so doing, we demonstrate128

how spatially-explicit landscape genomic data can be used parameterize population biology models that129

should be useful across a wide range of applications and taxa.130

2 Materials and methods131

Although there are a great number of possible aspects of an ecological model that could be inferred, we focus132

here on a simple case. Suppose we have a set of of georeferenced whole genomes sampled from individuals133

across a population range, and that features of this spatial range have been recorded and interpreted to134

yield a measure of habitat suitability for the population of interest. However, both the rate of movement of135

individuals across geography (dispersal) and the population density remain unknown. We assume (i) that a136

local measure of carrying capacity is equal to ρ individuals per hectare, multiplied by local habitat suitability,137

and (ii) that the yearly movement of individuals is Gaussian with a standard deviation of σ meters. This138

leaves only two scalar parameters to be estimated: ρ and σ.139

We model a landscape consisting of two large areas of high-quality habitat, which taper to low-quality140

habitat at their edges, connected by a narrow isthmus of low quality habitat (Figure 1A). Locations of141
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Figure 1: A) Spatial setting and example data, with axes labelled in meters and colors indicating habitat
quality (1.0, or green, corresponds to highest-quality habitat, 0.0, or white, corresponds to impassable terrain)
across the continuous geography. Individual samples are marked with ’+’. For clarity only 12 samples
are shown. B) The landscape discretized into patches used in simulations, defined by aggregating the fine
scale map (panel A), and labelled with their carrying capacity of mature individuals (for ρ = 0.1). C) The
landscape map partitioned into regions, labeled with letters; population genetic statistics are computed on
groups of samples with group membership determined by the region in which samples occur. D) Simulating
data for inferring dispersal σ and density ρ. We calculate n statistics for each of p independent simulations.

individuals whose genomes have been sampled are marked by ‘+’ (in a real dataset, these would be fixed by142

the sampling location). From these individual samples, we seek to compute statistics that are informative of143

the population’s demographic parameters, ρ and σ.144

2.1 Geographic genetic statistics145

To generate a wide class of potentially informative statistics, we use several population genetic statistics as146

spatial statistics, including Patterson’s F -statistics (Reich et al. 2009; Peter 2016). The F -statistics were147

originally used to compare variation among discrete, randomly-mating populations. In that context, the148

statistics convey information about admixture and shared branch lengths in the “population phylogeny”149

(Moorjani et al. 2013; Reich et al. 2009; Peter 2016) that describes how the populations are related to each150

other. Since we use these statistics in a nonstandard way, we now define them and motivate their use as151

informative spatial statistics.152

For a set of genomes, denoted A, we write the genetic diversity of A, i.e., the mean density of nucleotide153

differences between a randomly chosen pair of genomes from A, as π(A) = E[|a1 − a2|], where a1 and a2 are154

alleles at a random site in the genome, coded as 0 or 1, from genomes randomly chosen without replacement155

from A. We also denote the genetic divergence between two groups, A and B, as the mean density of156

nucleotide differences between randomly chosen individuals from the two groups, which can be written as157

π(A,B) = E[|a− b|], where a and b now come from randomly chosen genomes in A and B respectively (if158

any individual is in both groups, sample without replacement so π(A) = π(A,A)). Patterson’s F statistics159

can be written in the same way, but using four genomes: F4(A,B;C,D) = E[(a − b)(c − d)], where a, b,160

c, and d are now alleles of randomly chosen genomes from the four groups A, B, C, and D respectively.161

Similarly, F3(A;B,C) = E[(a1 − b)(a2 − c)] and F2(A,B) = E[(a1 − b1)(a2 − b2)], where now a1 and a2162

are randomly chosen without replacement from A (and likewise for b1 and b2). Note that we can write163
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F3(A;B,C) = F4(A,B;A,C) if we interpret the latter as sampling without replacement, as we did for164

π(A,B); for this reason, subsequently we write all F statistics using this format (and dropping the subscript165

‘4’).166

We also introduce analogous statistics that depend on choices of three genomes. We will write these in167

terms of y(A;B,C) = E[a(1 − b)(1 − c) + (1 − a)bc], the probability that a sample from A differs from168

two other samples, one from B and one from C. The three-point statistics we use derive from y, but are169

modified to be zero in a randomly mating population: Y (A;B,C) = y(a; b, c)− (1/2)(y(b; a, c) + y(c; a, b)),170

and Y2(A;B) = Y (A;B,B) = y(a; b1, b2)− (1/2)(y(b1; a, b2) + y(b2; a, b1)).171

An alternative way to think of these statistics is as estimates of weighted averages of branch length across172

all genealogical trees relating individuals selected from two or more groups, and scaled by mutation rate173

(Ralph 2015; Peter 2016). Averaging over marginal gene-trees under an infinite sites model of mutation, and174

omitting a scaling factor of the mutation rate, the corresponding “branch length” quantities (denoted with a175

superscript (b)) are:176

• π(b)(A,B): the average sum of the lengths of the two branches going from a and b back to their most177

recent common ancestor (MRCA), averaged over trees and choices of a and b.178

• π(b)(A): the same as π(b)(A,B) but with both genomes chosen from A.179

• Y (b)(A;B,C): the difference between (the average length of any branches that separate a from b and c)180

and (one-half of the sum of the lengths of any branches that would separate either b or c from the other181

two), averaged over trees and choices of a, b, and c.182

• F (b)(A,B;C,D): the difference between (the average length of any branches that separate a and c from183

b and d) and (the average length of any branches that separate a and d from b and c), averaged over184

choices of a, b, c, d.185

To avoid scaling factors and to make this correspondence exact, we measure branch lengths in expected186

number of mutations, i.e., scaling branches by the mutation rate per unit time. For instance, since π(A,B) is187

the average number of mutations per site that have occurred between a or b and their MRCA, this makes188

the expected value of π(A,B) equal to π(b)(A,B) under an infinite-sites model of neutral mutations. These189

relationships between statistics computed using genotypes and the summaries of branch lengths are shown in190

Figure 2.191

The F and Y statistics are defined so that they have expected values of zero if samples are exchangeable (e.g.,192

if they all come from a single randomly mating population), because in this case each topology is equally193

frequent and has the same distribution of branch lengths, so the contributions of each topology cancel. Figure194

2 also shows formulas for the statistics in terms of divergence.195

To help develop an intuition for how the statistics work in continuous geography, consider the situation where196

population density is constant, and movement in any direction is equally likely. Define groups of individuals197

by whether they fall in different geographic regions. Then, since regions of equal area have equal population198

size, distance between regions determines how closely connected they are by dispersal – i.e., how likely is a199

recent MRCA – analogous to the migration rate for discrete populations.200

This makes it possible to consider the relative frequencies with which various marginal genealogies occur, and201

hence in which settings Y or F are expected to have positive, zero, or negative values. The frequency with202

which the first coalescence occurs provides a particularly good heuristic. For example, if group A’s region lies203

physically between the regions of groups B and C, then Y (A;B,C) will be negative due to a deficit of trees204

with topology (A, (B,C)), which has overall positive weight, as shown in Figure 2B. Conversely, if B or C lie205

between the other two, then Y (A;B,C) will be positive. Figure 3 shows several geographic configurations of206

regions and corresponding effects on F and Y . Across sites where none of the samples are closely related –207

i.e., there is no recent coalescence – all three rooted topologies in Figure 2B are roughly equally likely and208

have equal branch lengths on average (Wilkins 2004), and will therefore cancel out.209

Population size also affects the probability of first coalescence. For example, F2(1, 2) = F (1, 2; 1, 2), which210

corresponds to Figure 2(C) with A = C = 1 and B = D = 2. If within-group coalescence is more likely than211

between-group (as is often the case), then unrooted topology (AC)(BD) = (11)(22) is the most common,212

implying that F2(1, 2) > 0. However, an increased population density in one region reduces the magnitude of213
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F2, since it makes it more likely that two lineages in that region trace back to ancestors outside the region214

before they coalesce, decreasing this bias. Thus, increased population density is expected to decrease the215

value of the statistic. Figure 4 shows how varying region size (i.e., group population size) affects F and Y .216

How many statistics? If we have divided our samples into k groups we can compute a large number of217

statistics. The statistics we consider here are averages over choices of two, three, or four genomes chosen218

from varying numbers of groups. We call a statistic that depends on k groups a “k-point statistic” since we219

imagine each group standing in for a spatial location. “Groups” may be arbitrary: single genomes, single220

diploids, or larger collections. The total number of statistics of each type is:221

• diversity, π(A) = π(A,A), a one-point statistic, k.222

• divergence, π(A,B), a 2-point symmetric statistic, k(k − 1)/2.223

• F2(A,B), a 2-point, symmetric statistic, k(k − 1)/2.224

• Y2(A;B), a 2-point statistic, k(k − 1).225

• F3(A;B,C) and Y3(A;B,C), both 3-point statistics symmetric in B and C, k(k − 1)(k − 2)/2.226

• F4(A,B;C,D), a 4-point statistic with one symmetry and two anti-symmetries, k(k−1)(k−2)(k−3)/8.227

As the number of groups grows, it becomes impossible to compute all possible statistics in reasonable time.228

For example, with groups of size 20 each statistic takes 15 seconds to compute for a 10Mb region of a human229

genome (using Python tools from Kelleher, Etheridge, and McVean 2016), so for k = 30 it would take roughly230

451 hours to compute all 108,345 statistics. For a fixed amount of computing power we must either keep231

the number of groups reasonably small and compute all statistics, or choose sets of statistics to compute,232

motivated by the biology or geography of the landscape.233

Branch lengths or sequence? The theory outlined above equates each statistic to a corresponding234

summary of branch lengths in marginal genealogies. Our simulations actually record all marginal genealogies235

that relate sampled individuals to one another at every point on the genome. As described in Kelleher et al.236

(2018), this is done for speed, but it has the benefit that we have access to the underlying marginal gene-trees.237

This means that we can directly compute expected values of the statistics on branch lengths. The alternative238

is to compute them using genome sequence, generated for simulations by placing mutations on the marginal239

genealogies. (Since neutral mutations do not, by definition, affect genealogies, placing mutations on the trees240

post hoc is equivalent to generating them as the simulation progresses.) For efficiency we take the former241

path, working directly with statistics calculated using the branch lengths of the underlying genealogies from242

simulations (e.g., using F (b) rather than F ). We expect performance with sequence-based statistics to be243

identical, because the deviation of the sequence-based statistic from the underlying tree-based statistic has244

mean zero with standard deviation inversely proportional to the square root of the sequence length (Ralph245

2015) – in practice, they will be quite close for large data sets. A set of simple simulations confirms this246

predicted close agreement between the two methods (See Supplement B and Figure B.1). With empirical247

data, the statistics must be computed using sequence differences, but these are directly comparable to the248

branch length statistics after a rescaling.249

2.2 A statistical method to infer population density and dispersal250

Our overall goal is to estimate dispersal (σ) and population density (ρ) based on the statistics computed251

from a given genomic dataset with known geographical coordinates. Since the focus of this work is on the252

establishment of an ecologically realistic model and computation of informative spatial statistics, we do this253

in a relatively simple way. First, we simulate from an individual-based model across a grid of parameter254

values. Second, we compute statistics on each output. After this procedure (shown in Figure 1D) we obtain255

a table containing inputs (values of ρ and σ) and corresponding outputs, i.e., the statistics we calculate,256

denoted generically here as (s1 . . . sn). We seek to infer the relationship between inputs and outputs and do257

so using inverse interpolation.258
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C)

Topology T1
F Topology T2

F Topology T3
F

A)

B)

Topology T1
Y Topology T2

Y Topology T3
Y

Figure 2: Genomic statistics between groups can be computed as a sum of weighted branch lengths across all
gene trees; shown are the weights for the three types of statistic: (A) genetic diversity π, (B) the three-point
statistic Y , the four-point statistic F . Branches are measured in number of mutations (for the usual statistics)
or in units of expected mutations (for the ’branch length’ versions). In the formulas, π(A,B) = π(b)(A,B)
denotes the mean tree distance measured in terms of expected mutations from a random sample in A to a
random sample in B, averaged over trees and choices of samples. Weights may depend on the tree topology
and are marked on each branch; positive contributions are shown in blue and negative contributions are
shown in yellow; gray is zero contribution. The equations in (B) and (C) show how the branch weights for
Y (b) and F (b) in depend on those for π(b) in (A). Equating π(b)(A,B) with the path between a sample from
A and a sample from B yields the weights. For instance, in TY

1 the weight of -1/2 on the branch above b (ii)
is obtained by adding +1/2 (because it is on the path from a to b) to -1 (since it is on the path from b to c).
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i)

ii)

iii)

iv)

v)

Figure 3: Effects of differing spatial configurations of regions in isotropic space on the signs of Y and F
statistics. In all cases the sign is derived by reasoning about the probability of the first coalescence involving
two regions and then connecting this to the probability that topologies occur in Figure 2. All population sizes
(i.e., areas) are equal. Larger distances between regions in isotropic space result in decreased probability that
the first coalescence involves these regions. Equivalent distances between equal-sized regions results in equal
probability that the first coalescence involves these regions. If the actual sign is in doubt, the comparator is
marked by ‘?’. Recall that F3(1; 2, 3) = F (1, 2; 1, 3) and that F2(1, 2) = F (1, 2; 1, 2). See Supplement A for
justification.
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Figure 4: Effects of differing sizes and configurations of regions in isotropic space on Y and F statistics. In
all cases the sign is derived by reasoning about the probability of the first coalescence involving two regions
and then connecting this to the probability that topologies occur in Figure 2. All distances between centroids
of adjacent populations are assumed equal. Regions denoted by larger circles have twice the population
size (e.g., twice the population density) of those denoted by smaller circles. The probability of the first
coalescence involving two members from a larger population is less than that of the first coalescence involving
two members of a smaller population. Recall that F3(1; 2, 3) = F (1, 2; 1, 3) and that F2(1, 2) = F (1, 2; 1, 2).
See Supplement A for justification.
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2.2.1 Inference via inverse interpolation259

Consider using real genomic data to infer migration. In a classic Wright-Fisher model there is a clean260

parametric dependence of a genetic statistic, FST , on migration rate m and population size N . For our more261

complex model there is an unknown analytic relationship between σ, ρ, and the statistics we introduce above.262

More generally, simulations give us noisy observations of an unknown function f(θ) that maps parameters263

(here, θ = (σ, ρ)) to the n statistics: for each simulation, run with parameters θi, we can think of the resulting264

set of statistics as265

Si = (si1, . . . , sin) = f(θi) + εi

εi ∼ N(0,Σ),
where Σ is an unknown covariance matrix defining how the noise εi is correlated across observations i. Given266

a new set of statistics S̃, we then seek to estimate the corresponding parameters, θ̃.267

For our purposes, it suffices to take an average over the known parameter values θi, each weighted according268

to the proximity of its associated statistics Si to the observed S̃:269

θ̃ =
∑

i

θi

exp
(
−‖S̃ − Si‖2/2ω2)∑

j exp
(
−‖S̃ − Sj‖2/2ω2

)
We choose the bandwidth, ω, by k-fold crossvalidation. To do this, we randomly divide the data S and θ into270

k blocks; denote by S(i) the i-th block and S−(i) the rest of the data. Then, for each bandwidth ω and each271

1 ≤ i ≤ k, use the other data S−(i) and θ−(i) to predict parameters for every entry in the ith block θ̃(i), and272

then compute the mean relative error in the ith as:273

REi = 1/2
∑

j

|θ̃(i)
j − θ

(i)
j |/|θ

(i)
j |.

We choose the bandwidth ω that minimizes the median relative error across all k validation blocks.274

2.2.2 Individual-based simulations of a desert tortoise population275

Our focal species, the Mojave desert tortoise (Gopherus agassizii) is widespread and exists as a collection276

of semi-discrete populations spread across the landscape. For species like this, one of the most important277

parameters for any spatial population model—dispersal—is also one of the most challenging to estimate278

empirically. In G. agassizii adults are generally dependent on burrows and therefore relatively stationary.279

But tortoises are also long-lived, so rare adult dispersal may provide significant, but rarely observed, genetic280

connectivity. At the same time, juveniles are secretive and have low survival, and movement is presumably281

much more common but also much more difficult to observe. Thus the long life, sparse distribution, and282

low juvenile survival rates all make it very challenging to accurately estimate the lifetime-averaged dispersal283

rate directly. Data from direct observations can provide some insights, particularly on short-term movement284

(e.g., radio telemetry, Nafus et al. 2017), but analyses of genetic samples from across the population’s range285

can potentially tell us much more about the recent history of movement in the population. The genomes286

of individuals encode information about their relatedness both across space and back through time. With287

genomic data from many individuals it is possible to accurately estimate statistics that describe these patterns288

of genetic relatedness and thus reflect movement and post-migration breeding of these elusive animals.289

We developed a landscape-scale individual-based model (IBM) simulation of a closed population of inter-290

breeding individuals, including relatedness across the genome. The model includes several demographic291

complexities, including sex (individuals are diploid, with sex fixed at birth), age structure (i.e., varying292

survival and fecundity by age class), density-dependence, movement in space, and maturity (which increases293

survival). Our IBM simulates a closed population, which could be an entire species.294

We implement the model by discretizing continuous space into a grid of discrete patches, where the patches295

are contiguous and each represents a subpopulation (Figure 1B). In the simulation below, each of these296
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includes approximately 50-500 individuals. Within each patch, we assume that individuals mate randomly.297

We also implement population regulation within the patches.298

Movement between patches is parameterized by the standard deviation of the dispersal kernel, σ. We compute299

the migration matrix M whose (i, j)th entry is the probability that an individual in patch i moves to patch j300

in a given year. This is computed as the probability that an individual uniformly located in patch i moves a301

random, Gaussian-distributed distance with mean zero and standard deviation σ and ends up in patch j; if302

the corresponding geographic regions are denoted Ai and Aj then this can be computed as303

Mij =
∫

Ai

∫
Aj

1
2πω2 e

− |x−y|2

2ω2 dxdy.

This computation is done by numerical integration using the R package landsim (Ralph 2017).304

Our simulation performs one step in the life cycle for each year, as follows:305

1. Dispersal: Females each choose to disperse with probability 1/2; males are more vagile and disperse306

every year. Each dispersing individual in patch i independently chooses a new location, moving to j307

with probability Mij . Since Mii > 0, this may result in no movement.308

2. Maturation: Newly born individuals are immature, and to mature they need to find available resources.309

The probability per immature individual of maturing is K/(S +K), where S is the local number of310

already mature individuals, and K is the local “carrying capacity”. Each subpopulation’s carrying311

capacity is equal to the product of ρ and the integral of habitat quality over the corresponding geographic312

patch.313

3. Birth: If there are available mates, every mature female produces offspring in a single clutch, mating314

with a randomly chosen male of reproductive age (at least 15 years old) from the same population as315

the mother, if any males are available. (If none are available, she produces no offspring.) The new316

offspring have age 0, and the number of these produced per clutch is Poisson with a mean that depends317

on age (see Supplement D), derived from (Reed, Fefferman, and Averill-Murray 2009).318

4. Growth: increment all ages by one year.319

5. Survival: kill individuals (including new ones) with probability depending on their age determined as in320

(Reed, Fefferman, and Averill-Murray 2009) and listed in Supplement D, Table D.2.321

As our model structure is inspired by G. agassizii, parameters for survival and fecundity are both drawn322

directly from literature on tortoises. Potentially critical aspects of tortoise biology, however, are missing from323

the model including variation in dispersal rates by age.324

Further details and parameters of the model are given in Supplement D.325

Implementation with pedigree recording. We implemented our IBM in simuPOP (Peng and Kimmel326

2005), a flexible individual-based simulation library with a python interface. Patches were implemented327

as subpopulations, with sex structure to allow different dispersal probabilities for males and females. Age-328

dependence of survival and fecundity were both implemented via python functions passed to simuPOP.329

To record the population pedigree (actually the embellished pedigree recording all relationships between all330

genomic segments in the entire population, or ‘nedigree’) from our forward simulations into a ‘tree sequence’331

data structure we used the efficient pedigree recording method described in Kelleher et al. (2018) and332

implemented in python for simuPOP in ftprime 0.0.6rc. In this method, haploid genomes correspond to333

nodes in the tree. Using data from every recombination, we record the tree structure on every genomic334

interval. Periodically during a forward simulation, this data structure is simplified, and its size reduced in335

memory, to the genomes of living individuals and their ancestors. At the end of the simulation, this tree336

sequence can be queried to describe underlying genealogies or genome sequence, and enables extremely fast337

computation of statistics.338
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2.3 Evaluating the method339

We simulated single chromosomes of length 108 base pairs, with a recombination rate of 10−8 per base pair340

per generation on the landscape of Figure 1A. We ran one simulation for 15,000 years at each of the 225341

parameter combinations from 15 values of ρ evenly spaced in the range 0.05 to 0.2 individuals per hectare and342

15 values of σ logarithmically spaced in the range 10 to 1000m per year. The range of density ρ corresponds343

to 500-2000 individuals in a patch with optimal habitat (value 1.0 on the landscape of Figure 1A). Although344

historic estimates of tortoise density are elusive (USFWS 2011), desert tortoises have been reported at345

densities on the order of 10 per km2 (0.1 per hectare) (Allison and McCoy 2014), and yearly home range346

sizes span 0.01-88.6 hectares (since 1980 in CA/NV from Table 11.1 of Berish and Medica 2014). These347

ranges are consistent with our ranges of σ and ρ. Simulations were initialized with the results of a coalescent348

simulation in a very small population, as for instance might result from a rapid expansion. This means that349

the populations are not at demographic equilibrium (at least for larger population sizes), which makes the350

inference problem both more difficult and more realistic.351

Geographic regions for statistical computation. We merged adjacent patches into seven regions based352

on geography (Figure 1C). For each simulation, we sampled 500 individuals (see next paragraph for how these353

individuals are chosen) and grouped them according to the seven regions, so that individuals whose location354

fell in a region were all in the same group. We then computed all statistics between these seven groups of355

individuals By using only seven groups, we can compute all 406 possible statistics among the groups in a356

reasonable amount of time.357

Choice of sampled individuals. Our next step was to compare statistics computed from each simulation358

to those obtained from data. However, these patterns of statistics can be sensitive to the geographic positions359

of the sampled individuals, even within the geographic regions defining each group. To remove this source of360

noise, we developed a scheme to choose, in each simulation, a set of individuals closely matching the spatial361

positions in our dataset. To achieve this, we first defined a reference simulation (with values ρ ≈ 0.104 and362

σ ≈ 100), and chose 500 individuals from the reference simulation. (For inference from non-simulated data363

the reference would be the empirical samples.) Our goal was then to choose individuals in other simulations364

that are geographically close to these. Suppose, however that we chose 50 reference individuals from a given365

patch; we are not guaranteed in a different simulation to have 50 individuals (total) in that same patch,366

a problem that becomes worse as the spatial discretization becomes finer. Therefore, for each reference367

individual we assigned weights to each patch corresponding to the distribution of that individual’s location368

after 800 migration steps (by applying the migration matrix 800 times to a vector that indicates the initial369

location). This yields 500 weightings of the patches to sample from, each corresponding to a reference sample.370

To choose individuals from other simulations, then, we choose a patch based on the weighting and then371

sample an individual uniformly from it. (If it is empty or all individuals have been sampled, we choose from372

the next patch.) This process is illustrated in Figure 5.373

Evaluation by crossvalidation. We evaluated the model using k-fold crossvalidation. This is a similar374

procedure to how we chose ω̂ but now we use it to evaluate the model’s performance in terms of relative375

error. We randomly divided the simulated data into validation blocks. Then for every block we used the376

simulations not in that block to infer parameters for each simulation in that block. For each validation block377

we computed mean relative error. We did this using all possible statistics (n = 406): each of the six types378

computed across all seven groups.379

In many other supervised learning contexts, having a large number of predictors (here, the statistics) relative380

to observations (here, the number of simulations) can cause overfitting and biased predictions (Hastie,381

Tibshirani, and Friedman 2009). Thus, for comparison, we did the same thing with a much smaller set382

(n = 7) of transformations computed on individual or groups of the statistics. These were designed based on383

the geographic and biological setting to give us more nearly independent information. We refer to these as384

“custom” or “biologically-motivated” statistics (see Supplement C for definitions of these).385
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All (n=8) samples I1...I8
and replicates R1

(j)...R8
(j) 

for j-th simulation

Distribution (grey) to 
draw a replicate Ri

(j)

of sample Ii  in j-th 
simulation

Ii Ri
(j)

Individual sample Ii
in discretized space

Figure 5: A method to choose simulated samples that match n reference samples: 1. identify patch locations
of samples (Ii) on the discretized landscape, 2. for each sample Ii construct a distribution to draw a replicate
in the j-th simulation (R(j)

i ) based on the location of Ii (solid arrow), 3. for each of j simulations draw
the n replicates (connected by gray lines). Samples Ii could be empirical data or individuals in a reference
simulation, in which case their location is simply their patch.

3 Results386

3.1 Model behavior387

The IBM simulations produced a population with age-structure and dynamics similar to that seen in the388

models of tortoise demography (e.g. Reed, Fefferman, and Averill-Murray 2009; Doak, Kareiva, and Klepetka389

1994) from which the age-structure in the model was largely parameterized. For example, the shape of mean390

realized lifetime fitness (number of offspring) versus age for females (see Supplement D, Figure D.4) agrees391

qualitatively with that of reproductive value seen in other models.392

3.2 The simulated data393

Plots of all 406 statistics are difficult to interpret (see Supplement E). However, it is clear that many of394

the statistics carry significant signal regarding both density and dispersal. For example, separating relative395

divergence comparisons between regions into three categories — within regions, between neighbors, and396

between non-neighbors (Figure 6) — results in interpretable patterns. In self-comparisons, divergence dips397

well below the mean as dispersal declines, especially for less-dense populations. Meanwhile comparisons398

between neighbors display varying patterns that relate to geography. For example, the E–F divergence,399

which involves neighbors on the low-quality habitat isthmus (Figure 1A), behaved differently than the other400

statistics. Further intuition can be gained from examining other biologically-motivated combinations of401

statistics (see Appendix C, Figure C.2).402

3.3 Performance403

Using all possible statistics, the median relative error across all 5 cross-validation blocks was 0.104 (10.4%)404

with standard deviation of 0.016. In contrast, using only the few biologically motivated “custom” statistics405

the median relative error was 0.169 with standard deviation of 0.028. These results indicate the work needed406

to develop and specify statistics for a given geography was counterproductive: using only “custom” statistics407

had almost twice the prediction error as the method using all statistics. Figure 7 shows predicted versus408

actual values for the inferred parameters, density and dispersal scale.409
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Figure 6: All pairwise divergences (scaled to mean divergence) for varying dispersal scale (σ) for comparisons
(A) within regions, (B) between neighbors, and (C) between non-neighbors. Neighbors are defined based
on King’s neighborhood; see Supplement C. Within each panel there are three subpanels labelled with the
population density ρ (in individuals per hectare).
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Figure 7: A, B) Inferred versus actual simulated parameters from 5-fold crossvalidation for dispersal (σ, A)
and density (ρ, B). In each panel the solid line is 1:1. C, D) Relative error, i.e., the difference between the
predicted value and the actual value divided by the actual value, for both dispersal (σ, C) and density (ρ, D).
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4 Discussion410

The methods described here enable simultaneous estimation of dispersal distance (σ) and carrying capacity411

(ρ) in a spatially explicit model of an age-structured population. Using data simulated from a model for412

which other parameters (e.g., age-specific survival) are fixed based on empirical values for G. agassizii, we413

show that our methods can estimate dispersal and carrying capacity parameters to within 10% of their true414

values. Thus, these methods provide a way to estimate parameters for which it is difficult to obtain data415

within the context of relatively well-known parameters.416

In addition, we have introduced spatial analogues of common population genetic statistics and showed how417

and why they contain signal about geographic dynamics. Over the past decade, the four-point statistic418

has been widely applied in population genetics (Reich et al. 2009; Peter 2016) but its utility in continuous419

geography has not been appreciated. Here we show that the information derived from calculating all possible420

statistics for a partitioning of continuous space provides sufficient information to recover spatial population421

dynamics. However, as the equations in Figure 2 show, the three-point Y and four-point F are actually linear422

combinations of the two-point statistic π. Thus, to learn about geographic dynamics it would be sufficient423

to use only the pairwise, two-point statistic π in a statistical learning method that discovers correlations424

between outcome variables and arbitrary linear combinations of inputs. General purpose machine learning425

methods that are capable of such discovery include Random Forests (Breiman 2001) and techniques from426

deep learning. However, this assumes perfect data. Because the four-point statistic F2 is most robust to427

sequencing error as it is not affected by singleton mutations (and the other F -statistics can be written as428

linear combination of F2; Peter 2016), in practice it may be wise to also use all pairwise F2s as input data for429

inference.430

We use inverse interpolation to estimate parameters from our simulations, and cross-validation to quantify the431

uncertainty in parameters inferred from simulated data. For empirical data, where the parameters are truly432

unknown, cross-validation cannot be used to quantify the parameter uncertainty. Therefore the bootstrap433

or jackknife, which like cross-validation are based on sampling, will be necessary to estimate uncertainty in434

estimates from empirical data.435

These results show that integrating genomic data into structured ecological models is a feasible way to436

estimate parameters— in our case, carrying capacity and dispersal scale— for which it is difficult to gather437

sufficient data to estimate directly. There are additional caveats to keep in mind. First, although our method438

incorporates prior knowledge by fixing parameters based on literature values, it is not formally Bayesian.439

Because of this, the results here do not account for uncertainty in these estimates from the literature. Second,440

the model we used does not account for temporal or spatial variation in survival rates or fecundity.441

Using our method requires spatially-resolved samples of individual genomes. In practice these locations only442

need be resolved to the scale of discrimination of the model. However, the spatial scale of discretization affects443

inference and additional work is needed to understand these effects. Further, the distribution of these samples444

on the landscape likely affects inference. Exactly how remains unclear, but because pairwise comparisons445

contain information about both density and space we suggest matching the distribution of samples to the446

population density.447

As noted above, a lack of analytical results is a barrier to performing demographic inference with geographically448

explicit populations. We overcame this barrier with individual-based forward simulations. Another issue,449

however, is the possible influence of deep time: genetic variation can be influenced by both modern geography450

and existing variation present long before the present landscape became recognizable. To address this issue451

fully is beyond the goals of the current paper. However, as discussed in Kelleher et al. (2018) our simulation452

framework permits combining coalescent simulations in deep time with our forwards simulations. This453

approach (which Liu, Athanasiadis, and Weale 2008 called “sideways”) would permit analyzing multiple454

scenarios for deep time dynamics in tandem with a set of forward simulations as we have used here.455
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Supplemental Information for461

“Demographic inference in a spatially-explicit ecological model from genomic462

data: a proof of concept for the Mojave Desert Tortoise”463

Jaime Ashander, Peter Ralph, Evan McCartney-Melstad, H. Bradley Shaffer464

A Supplementary explanations of spatial statistics465

We lay out the reasoning behind the statements on Figures 3 and 4 below with reference to the diagrams in466

Figure 2 depicting Y -statistics (with tips A,B,C) and F -statistics (with tips A,B,C,D). In each case we467

describe the labelling of the tips with a dictionary-like notation: {key : value}. We also denote the probability468

that the first coalescence involves individuals from groups A and B, for example, as ĀB.469

For Y statistics our heuristic is B̄C − 1
2 (ĀC + ĀB). For F -statistics our heuristic is ĀC + B̄D− (ĀD+ B̄C).470

We conjecture that for both of these heuristics, if the value is positive, so is the statistic. For example, if471

ĀC + B̄D − (ĀD + B̄C) > 0 then F > 0.472

A.1 Figure 3: Spatial configuration and statistics473

A.1.1 Y -statistics:474

• i): Y has tips {A : 1, B : 2, C : 2} and because B = C then B̄C > ĀC = ĀB and the statistic is positive;475

• ii): Y has tips {A : 1, B : 2, C : 3} and the geometry means B̄C = ĀB > ĀC and the statistic is positive;476

• iii): Y has tips {A : 2, B : 1, C : 3} and the geometry means B̄C < ĀB = ĀC and the statistic is477

negative;478

• iv): Y has tips {A : 1, B : 2, C : 3} and the geometry means B̄C = ĀB = ĀC and the statistic is zero.479

A.1.2 F -statistics:480

• i): F has tips {A : 1, B : 2, C : 1, D : 2} then because A = D and B = C, B̄C = ĀD > ĀC = B̄D and481

the statistic is positive;482

• ii): F has tips {A : 1, B : 2, C : 1, D : 3} then because A = C and the geometry, ĀC > ĀD = B̄D > ĀD483

and this statistic is positive;484

• iii): If F has tips {A : 1, B : 2, C : 1, D : 3} then because of the geometry, ĀC > ĀD = B̄C = B̄D and485

the statistic is positive; If F has tips {A : 2, B : 1, C : 2, D : 3} then because A = C and the geometry,486

ĀC > ĀD = B̄C > B̄D and this statistic has ambiguous sign (but if coalescences within the same487

group are greater than between groups, it’s positive);488

• iv): if F has tips {A : 1, B : 3, C : 2, D : 4} then because of the geometry, ĀC = B̄D = B̄C > ĀD,489

the statistic is positive; if F has tips {A : 1, B : 2, C : 3, D : 4} then because of the geometry,490

B̄C > ĀC = B̄D > ĀD and the statistic has ambiguous sign that depends on how the chance of first491

coalescence involving individuals from any two groups decays with the distance between the groups;492

• v): if F has tips {A : 1, B : 2, C : 4, D : 3} then because of the geometry, ĀD = B̄C > ĀC = B̄D,493

the statistic is negative; if F has tips {A : 1, B : 3, C : 2, D : 4} then because of the geometry,494

B̄C = ĀD < ĀC = B̄D and this statistic is positive.495

A.2 Figure 4: population size and statistics496

A.2.1 Y -statistics:497

• i): If Y has tips {A : 1, B : 2, C : 2} and because B = C then B̄C > ĀC = ĀB and the statistic is498

positive; the tips {A : 2, B : 1, C : 1} are equal by symmetry. When 2 is replaced with 2′, then B̄C > B̄C
′

499

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 23, 2018. ; https://doi.org/10.1101/354530doi: bioRxiv preprint 

https://doi.org/10.1101/354530
http://creativecommons.org/licenses/by/4.0/


and so without other changes under the first labelling statistic must be less positive. However under500

the second labelling, coalescence within group 2′ has no effect and so it should be equal to the statistic501

on equal-sized groups.502

• ii): For Y , coalescence within the group 1′ has no effect and so it should be equal to the statistic on503

equal-sized groups.504

• iii): For Y , coalescence within the group 1′ has no effect and so it should be equal to the statistic on505

equal-sized groups.506

A.2.2 F -statistics:507

• i): As in Figure 2, line 1 but when 2 is replaced with 2′ and F has tips {A : 1, B : 2′, C : 1, D : 2′} then508

B̄C declines and the statistic is less positive.509

• ii): As in Figure 2, line 2 but when 1 is replaced with 1′ and F has tips {A : 1′, B : 2, C : 1′, D : 3} then510

ĀC declines and the statistic is less positive.511

• iii): As in Figure 2, line 4 but when 1 is replaced with 1′ and F has tips {A : 1′, B : 2, C : 1′, D : 3}512

then ĀC declines and the statistic is less positive.513

B Branch lengths or sequence details514

Using msprime 0.5.0 we simulated populations on a 10-subpopulations stepping stone with the total515

migration proportion out of each subpopulation set to 10−4 per generation. For each of 5 replicate populations516

we performed coalescent simulations of 500 samples for a genome length of 106 base pairs with recombination517

rate and mutation rate both set to 10−8 per base pair. Code for the simulations is shown below. For both518

F4 and Y3 we chose 22 random statistics (among all possible using the 10 subpopulations as groups) and519

computed both using site-based and branch length-based methods. The results are shown in Figure B.1.520

import msprime
import numpy as np
import time

def run_sim(M, nsamples, **kwargs):
assert(M.shape[0] == M.shape[1])
n = M.shape[0]
print("Simulating on a landscape of {} patches.".format(n))
# sample a total of nsamples, uniformly spread
sample_sizes = [int(np.ceil(nsamples/n)) for _ in range(n)]
while sum(sample_sizes) < nsamples:

sample_sizes[np.random.choice(range(len(sample_sizes)))] -= 1
population_configurations = [

msprime.PopulationConfiguration(sample_size=k)
for k in sample_sizes]

# run the simulation
begin_time = time.time()
ts = msprime.simulate(

population_configurations=population_configurations,
migration_matrix=M,
**kwargs)

end_time = time.time()
print("Simulation took {} seconds.".format(end_time - begin_time))
return ts
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np.random.seed(111)
n = 10
# stepping stone migration
# outmigration rate
outmig = 0.0001
M = np.zeros(shape=(n, n))
for ii in range(n):

M[ii, ii] = 0
if ii > 0:

M[ii, ii - 1] = 1 * outmig / 2
if ii < n - 1:

M[ii, ii + 1] = 1 * outmig / 2

ts = tuple(run_sim(M,
nsamples=500,
length=1e6, Ne=1e4,
recombination_rate=1e-8,
mutation_rate=1e-8,
num_replicates=5))

tsl = tuple(run_sim(M,
nsamples=500,
length=1e6, Ne=1e4,
recombination_rate=1e-8,
mutation_rate=1e-10,
num_replicates=5))

nstats = int(n * (n-1) / 2 / 2)

C Biologically-motivated custom statistics521

The first custom statistic aims to capture the overall timescale over which sampled alleles find a common522

ancestor; for this we use divergence averaged across all comparisons. The next three custom statistics aim to523

quantify the timescale over which individual alleles sampled from opposite sides of the population range find524

a common ancestor; for this we apply the three-point statistics to groups spanning the range, with the focal525

group in one corner and the two comparison groups on the opposite end of the landscape. For example, the Y526

statistic with a focal group in the northwest corner and the comparison groups on the east side is Y3(A;C,G).527

Specifically, we computed Y3 with focal groups in the west, Y W
3 = 1

2 (Y3(A;C,G) + Y3(D;C,G)); and east528

Y E
3 = 1

2 (Y3(C;A,D) + Y3(G;A,D)). We also computed F̄ corners
3 , the average of the four F3 statistics having529

a corner population as focal and the two most distant corner populations as the other two arguments.530

The final three custom statistics aim to quantify differences in timescales over which alleles find common531

ancestors depending on whether they are sampled from i) within the same region, ii) neighboring regions, or532

iii) non-neighboring regions. To do this, we categorized every divergence statistic π(A,B) according to these533

three categories, i.e., whether i) A = B, ii) A and B were neighbors, or iii) otherwise, and averaged mean534

divergences within each of these three categories, denoting these quantities πw, πn, and πnn, respectively.535

Then, we took differences of these average divergences to create three statistics: between neighbors and536

within-region, πn − πw; between non-neighbors and within-region, πnn − πw; and between neighbors and537

non-neighbors, πn − πnn. The neighbors and non-neighbors for each group in Figure 1C (using a King’s538

neighborhood) are listed in Table C.1.539

We compare performance of interpolating parameter values from two different sets of statistics. First, all the540

statistics meaning every one of the six types of statistics computed across all 7 groups (n = 406). Second,541

custom statistics only, meaning the biologically motivated predictors (n = 7): mean divergence π̄, neighbor542
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Figure B.1: Comparing F4 and Y3 calculated using sequence data (y-axes) and using branch lengths of
marginal genealogies (x-axes) for high (circles and red lines) and low (gray dots and blue lines) mutations
rates. The slopes of the lines in each plot are the mutation rates.
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Table C.1: Regions, their neighbors, and their non-neighbors.

region neighboring regions non-neighboring regions
A B, D, E C, F, G
B A, D, E, F C, G
C G A, B, D, E, F
D A, B, E C, F, G
E A, B, D, F C, G
F B, E, F, G A, C, D
G C, F A, B, D, E

vs within-region divergence πn − πw, non-neighbor vs within-region divergence πnn − πs, non-neighbor vs543

neighbor divergence πnn − πn, F̄ corners
3 , Y W

3 , and Y E
3 .544

Intuition from custom statistics. For example, the difference between Y W
3 and Y E

3 likely relates to the545

relative strength of migration and population sizes on the east and west parts of the landscape. Between-546

subpopulation migration is higher and population sizes are lower on the eastern part of the landscape. This547

means that when the focal group is in the west, the other two groups are likely to have coalesced earlier and548

thus Y3 has a larger value. This is similar to Figure 4i where the three-point statistic decreases in magnitude549

when the non-focal population is larger: Y (1; 2, 2) > Y (1; 2′, 2′) because group 2′ has a larger population size550

than 2.551

D Simulation parameters552

Simulations were run for 15000 years, starting from the age distribution shown in Figure D.3, which is553

roughly at equilibrium. Table D.2 gives age-specific survival and fecundity. Genetics were specified as a554

single chromosome of length of 108 base pairs with 10 recombining loci and a recombination rate of 10−6 per555

generation.556

Table D.2: Life table of age-based female fecundity and survival
after Reed et al. (2009) but with fecundity (r0) doubled (life tables
model only female offspring). Males are non-reproductive below
age 15 and of equal fitness above this cutoff. Immature individuals
survive at 0.5 the rate of immature individuals.

min age max age female fecundity survival immature survival
0 0 0.000 1.0000 0.50000
1 1 0.000 0.7645 0.38225
2 2 0.000 0.7711 0.38555
3 3 0.000 0.7793 0.38965
4 4 0.000 0.7878 0.39390
5 5 0.000 0.7960 0.39800
6 6 0.000 0.8044 0.40220
7 7 0.000 0.8131 0.40655
8 8 0.000 0.8214 0.41070
9 9 0.000 0.8300 0.41500
10 10 0.000 0.8383 0.41915
11 11 0.000 0.8478 0.42390
12 12 1.608 0.8618 0.43090
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13 13 1.864 0.8745 0.43725
14 14 3.176 0.8874 0.44370
15 15 4.642 0.9000 0.45000
16 16 5.178 0.9086 0.45430
17 17 6.152 0.9173 0.45865
18 18 6.568 0.9238 0.46190
19 19 6.750 0.9276 0.46380
20 20 7.356 0.9317 0.46585
21 21 7.478 0.9348 0.46740
22 22 7.680 0.9365 0.46825
23 23 7.754 0.9382 0.46910
24 24 7.820 0.9391 0.46955
25 25 7.886 0.9404 0.47020
26 26 7.946 0.9414 0.47070
27 27 8.006 0.9420 0.47100
28 28 8.064 0.9439 0.47195
29 29 8.128 0.9444 0.47220
30 30 8.184 0.9452 0.47260
31 31 8.238 0.9463 0.47315
32 32 8.292 0.9467 0.47335
33 33 8.346 0.9484 0.47420
34 34 8.400 0.9482 0.47410
35 35 8.450 0.9493 0.47465
36 36 8.500 0.9508 0.47540
37 37 8.550 0.9498 0.47490
38 38 8.600 0.9518 0.47590
39 39 8.648 0.9526 0.47630
40 40 8.696 0.9537 0.47685
41 41 8.742 0.9532 0.47660
42 42 8.790 0.9547 0.47735
43 43 8.836 0.9545 0.47725
44 44 8.880 0.9565 0.47825
45 45 8.924 0.9545 0.47725
46 46 8.966 0.9569 0.47845
47 47 9.010 0.9573 0.47865
48 48 9.052 0.9579 0.47895
49 49 9.092 0.9587 0.47935
50 50 9.132 0.9596 0.47980
51 51 9.172 0.9579 0.47895
52 52 9.212 0.9619 0.48095
53 53 9.248 0.9604 0.48020
54 54 9.286 0.9587 0.47935
55 55 9.322 0.9636 0.48180
56 56 9.360 0.9588 0.47940
57 57 9.398 0.9642 0.48210
58 58 9.432 0.9628 0.48140
59 59 9.468 0.9614 0.48070
60 60 9.502 0.9639 0.48195
61 61 9.536 0.9625 0.48125
62 62 9.568 0.9654 0.48270
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63 63 9.598 0.9641 0.48205
64 64 9.630 0.9674 0.48370
65 65 9.660 0.9615 0.48075
66 66 9.690 0.9650 0.48250
67 67 9.718 0.9689 0.48445
68 68 9.748 0.9626 0.48130
69 69 9.780 0.9667 0.48335
70 70 9.806 0.9713 0.48565
71 71 9.834 0.9645 0.48225
72 72 9.860 0.9693 0.48465
73 73 9.888 0.9684 0.48420
74 74 9.910 0.9673 0.48365
75 Inf 9.934 0.0500 0.02500

The mean realized lifetime fitness (number of offspring) versus age for both males and females is shown in557

Figure D.4. This quantity is computed from simulated data by sweeping forward in time and recording the558

number of offspring produced after an individual reaches a given age (recorded on the x-axis); the y-axis559

shows the mean of this quantity versus age.560

E Extended Results561

E.1 All statistics562

With all possible statistics shown, the biological meaning in the patterns is difficult to discern (Figure E.5).563

E.2 Crossvalidation results564

Figure E.6 shows the median relative error (black dots) across all k folds of cross-validation for our method,565

either with “custom” statistics or all possible statistics. In all cases, the method inferred parameters within566

a few percent of their true (simulated) values. The number of folds in cross-validation did not much affect567

performance.568
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Figure C.2: Custom statistics for varying dispersal scale (σ). Within each panel there are three subpanels
labelled with the population density ρ in individuals per hectare (0.05, 0.125, 0.2). A) Divergence averaged
across all populations. B) divergencen−nn scaled by mean divergence for neighbors defined in Table C.1.
Three-point statistics with focal population in NW, SW, SE or NE corner (see legend): C) F3, in the main
text F corners

3 is the average of the lines shown, and D) Y3, in the main text Y W
3 is an average of the values

for W focal populations and Y E
3 is an average of the values for E focal populations.
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Figure D.4: Mean number of future offspring versus age (analog of reproductive value) observed in the model.
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Figure E.6: Model performance under k-fold crossvalidation (for values of k noted in the titles) for both
inverse interpolation with all predictors or just a few biologically motivated ones: mean relative error (blue
dots) of the k crossvalidation replicates and the median across all replicates (black dot).
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