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Abstract5

In this work we consider a recent experimental data set describing heat conduction in living porcine tissues. Under-

standing this novel data set is important because porcine skin is similar to human skin. Improving our understanding

of heat conduction in living skin is relevant to understanding burn injuries, which are common, painful and can require

prolonged and expensive treatment. A key feature of skin is that it is layered, with different thermal properties in dif-

ferent layers. Since the experimental data set involves heat conduction in thin living tissues of anesthetised animals,

an important experimental constraint is that the temperature within the living tissue is measured at one spatial location

within the layered structure. Our aim is to determine whether this data is sufficient to reliably infer the heat conduction

parameters in layered skin, and we use a simplified two-layer mathematical model of heat conduction to mimic the

generation of experimental data. Using synthetic data generated at one location in the two-layer mathematical model,

we explore whether it is possible to infer values of the thermal diffusivity in both layers. After this initial exploration,

we then examine how our ability to infer the thermal diffusivities changes when we vary the location at which the

experimental data is recorded, as well as considering the situation where we are able to monitor the temperature at

two locations within the layered structure. Overall, we find that our ability to parameterise a model of heterogeneous

heat conduction with limited experimental data is very sensitive to the location where data is collected. Our modelling

results provide guidance about optimal experimental design that could be used to guide future experimental studies.
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Nomenclature8

A brief description of all variables used in the document are given in Table 1.9

Table 1: Variable nomenclature and description.

Variable Description
t time
t j jth sample in the time series
tc critical time
δt time between samples
x depth below the surface of skin
l1 depth of the interface between the skin and fat layers
l2 depth of the bottom of the fat tissue
p depth of first probe
q depth of second probe
T non-dimensional temperature
T1 non-dimensional temperature in skin layer
T2 non-dimensional temperature in fat layer
T̂ non-dimensional synthetic temperature data, obtained using (D̂1, D̂2)
T1 dimensional temperature in skin layer
T2 dimensional temperature in fat layer
T0 dimensional initial temperature in the experiments
Th dimensional temperature in the scald creation device
T̂ dimensional experimental temperature data
D1 thermal diffusivity of skin
D2 thermal diffusivity of fat
Deff homogenised averaged thermal diffusivity
D̂1 target thermal diffusivity of skin
D̂2 target thermal diffusivity of fat

D(min)
1 minimum value of D1

D(max)
1 maximum value of D1

D(min)
2 minimum value of D2

D(max)
2 maximum value of D2
d non-dimensional temperature discrepancy between model and data
ε discrepancy threshold
I1 indicator function for one probe
I2 indicator function for two probes
A area of the bounded (D1,D2) parameter space
A1 proportion of the bounded (D1,D2) parameter space where I1 = 1
A2 proportion of the bounded (D1,D2) parameter space where I2 = 1
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1. Introduction10

Injuries caused by accidental exposure to hot liquids are common, painful and often require extensive long-term11

treatment [1]. To improve our understanding of how thermal energy propagates through human skin, experimental12

studies often work with porcine (pig) skin because porcine skin is anatomically similar to human skin [2–8]. Many13

experimental studies deal with heat conduction in excised non-living tissues [6, 7, 9, 10]. In contrast, the experimental14

protocols developed by Cuttle and colleagues [11–14] are unique because they quantify heat conduction in living15

porcine tissues. Working with living tissues is far more biologically relevant than working with excised non-living16

tissues. Cuttle’s experimental protocol involves working with anesthetised living pigs that are given analgesia. A17

thermocouple probe, referred to as the subdermal probe, is inserted obliquely under the skin of the animal at various18

locations on the body [11–14]. To initiate an experiment, a cylindrical scald creation device is placed onto the surface19

of the skin so that the centre of the circular scald device is above the subdermal probe. Pre-heated water is pumped20

into the scald device and suctioned out of the device at an equal rate to ensure that a constant level of water at a21

particular temperature is maintained in the device at all times during the experiment. The temperature response in the22

living skin is measured by the subdermal probe as a function of time during the experiment. This time series data23

reveals information about how the thermal energy propagates through the living skin, and this experimental protocol24

can be used to study how thermal energy propagates through skin in different locations on the body. Further, by using25

pigs of different ages the same experimental protocol can be used to study how the propagation of thermal energy26

depends on skin thickness [2].27

A visual summary of Cuttle’s experimental porcine model is given in Figure 1. The image in Figure 1(a) shows28

a portion of excised skin at the conclusion of an experiment highlighting the location and size of the subdermal29

probe. The histology image in Figure 1(b) highlights the layered structure of the skin. The epidermis and dermis30

forms the upper layer of the skin where hair follicles are present [15, 16]. The epidermis and dermis are bright pink31

in Figure 1(b), and throughout this study we treat the epidermis and dermis as a single layer that we call the skin32

layer. Underneath the skin layer there is a layer of fat that is a lighter shade of pink in Figure 1(b). Throughout this33

work we refer to this lower layer as the fat layer. As indicated in Figure 1(c), we adopt a coordinate system where34

x = 0 corresponds to the skin surface. The interface between the fat and skin is located at x = l1 > 0, we have35

l1 = 1.6 mm in this case. The interface between the fat and the underlying muscle and bone is at x = l2 > l1, and we36

have l2 = 4.0 mm in this case. Our conceptual idealisation of the structure of the layered tissues is given in Figure37

1(c) where the subdermal probe is placed at x = l2 since experimental data reported by Cuttle involves placing the38

probe at the bottom of the fat layer [2, 17]. A summary of the kind of experimental data reported by Cuttle is given39

in Figure 1(d). In this particular experiment the probe is located at the interface of the fat and muscle, x = l2, and40

a scald creation device of diameter 50 mm is placed on the surface of the skin [2]. Water at temperature of 50◦ C is41

maintained in the scald creation device for a duration of 120 s, and the time series data showing the temperature at the42

subdermal probe is recorded, as shown. It is worth noting that the total depth of the tissue (4 mm) is much smaller than43
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Figure 1: Developing a two-layer heterogeneous mathematical model to mimic the experimental porcine model. (a) Excised skin, showing the
location of the probe and the depth of the tissue. (b) Histological image of normal porcine skin. Scale bar is 1 mm. The depth below the surface
of the skin is denoted by x ≥ 0. (c) Conceptual two-layer model of the tissue with a skin layer (bright pink) sitting above the fat layer (lighter
pink). The interface between the two layers is at x = l1, and the probe is located at the bottom of the fat layer, x = l2. (d) Example of the temporal
variation of dimensional temperature, T̂ (l2, t), reported in [17]. Data is obtained from a subdermal temperature probe at x = l2. The water in the
scald creation device is held at 50◦ C for a duration of 120 s. (e) Schematic showing that the tissues are very thin (4 mm) compared to the diameter
of the scald creation device (50 mm). Images in (a) and (b) are reproduced from [17] with permission.
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the diameter of the scald creation device (50 mm), so that 4/50 = 0.08 � 1, as illustrated in Figure 1(e). Since the44

centre of the circular scald creation device is placed directly over the location of the probe the heat transfer downward45

through the skin can be idealised as a one-dimensional process [17].46

A prominent feature of the skin, highlighted in Figure 1(b), is the layered structure where we see that the fat layer47

is below the skin layer. This kind of histological information has been previously incorporated into mathematical de-48

scriptions of heat transfer in skin by explicitly accounting for the layered, heterogeneous structure of the tissue. These49

previous models have often been based on generalisations of Pennes’ bioheat equation [18–20] and re-formulated50

as a multilayer heterogeneous heat transfer model where the thermal properties can vary between the different lay-51

ers [21–25]. A key limitation of working with such a heterogeneous multilayer heat transfer model is that they are52

more challenging to parameterise than simpler single layer models. This is a consequence of the fact that there are a53

greater number of unknown parameter values in a multilayer heterogeneous model compared to a simpler single layer54

model of heat transfer. This challenge is particularly acute if we consider parameterising a mathematical model of55

heat transfer using Cuttle’s realistic experiments that report the temperature response at one location within the layered56

structure. This experimental limitation is difficult to overcome because inserting multiple probes simultaneously at57

different depths would risk compromising the integrity of the living tissues. Our previous work has involved calibrat-58

ing the solution of much simpler single layer homogeneous models to match data from Cuttle’s experiments [2, 17].59

However, these previous studies suffer from the limitation that they implicitly treat the thermal parameters of the skin60

layer and fat layer together into a simplified, vertically averaged, homogenised single layer [26]. While this approach61

is mathematically convenient, it is unclear whether a single layer model is appropriate since we know that one of62

the main biological roles of the fat layer is to provide thermal insulation [27]. Therefore, we expect that the thermal63

properties of the skin and fat layers could be very different.64

In this work we use a two-layer heterogeneous model to describe heat conduction in living tissues. Our aim is65

to perform a suite of synthetic experiments with realistic parameter values to mimic data generated by Cuttle’s ex-66

perimental protocol. With this synthetic data we explore the extent to which we can confidently estimate the thermal67

diffusivity in each layer when we have limited experimental observations where the temperature is reported at one68

single location within the layered tissues. To achieve this, we use the solution of the two-layer heterogeneous model,69

parameterised with biologically-relevant estimates of the thermal diffusivity of skin and fat, to generate synthetic data70

that mimics Cuttle’s experimental protocol where a single probe is placed at the bottom of the fat layer. Given that71

the synthetic data is generated with known estimates of the thermal diffusivity in the skin and fat layers, we then72

systematically explore the parameter space to investigate whether the kind of data can be used to reliably determine73

parameters in the heterogeneous mathematical model. Once we have demonstrated how delicate this parameter esti-74

mation task can be, we turn our attention to the question of experimental design. First, we explore whether our ability75

to determine the parameters in the two-layer model varies when we alter the location of the single subdermal probe.76

Second, we explore the extent to which our ability to estimate the parameters improves when we consider synthetic77

experiments with two probes so that the temperature is recorded simultaneously at two different positions within the78
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layered skin.79

2. Mathematical model80

We model the transfer of heat through the skin and fat layers using a one-dimensional model. This is a reasonable81

assumption given that the depth of the tissue is much smaller than the width of the scald creation device used in82

Cuttle’s experimental protocol [2, 17]. If the tissue depth was comparable to the diameter of the scale creation device83

it would be more appropriate to use a two- or three-dimensional mathematical model. In this work we assume that the84

temporal and spatial distributions of dimensional temperature in the skin layer, T1(x, t), and the fat layer T2(x, t), are85

governed by86

∂T1(x, t)
∂t

= D1
∂2T1(x, t)
∂x2 , 0 < x < l1, (1)

∂T2(x, t)
∂t

= D2
∂2T2(x, t)
∂x2 , l1 < x < l2, (2)

where D1 > 0 is the thermal diffusivity of the skin and D2 > 0 is the thermal diffusivity of fat. We have not included87

any source terms in Equations (1)-(2). Although some previous studies have incorporated source terms to account for88

the transfer of thermal energy from the skin tissues to the the blood supply [18], known as perfusion, our previous89

work, in which we calibrated the solution of a single layer model to match data from Cuttle’s experiments suggests90

that the role of perfusion is negligible in these experiments [17]. We note that the assumption that perfusion plays a91

negligible role has also been adopted in other modelling studies [21].92

Experimental data suggests that the initial variation in temperature with depth is negligible [2]. Therefore we93

choose the initial condition to be94

T1(x, 0) = T0, 0 < x < l1, (3)

T2(x, 0) = T0, l1 < x < l2, (4)

where T0 is the initial dimensional temperature of the skin and fat layers.95

The boundary condition at x = 0 corresponds to the placement of the scald creation device on the skin surface.96

Cuttle’s experimental protocol carefully maintains a constant temperature in the scald creation device by pumping97

water of a constant temperature into the device at the same rate as water is pumped from the device, thus ensuring the98

maintenance of a constant temperature at the skin surface [2]. Therefore, we represent this as a Dirichlet boundary99

condition at x = 0. For simplicity, we assume that the flux of thermal energy at the base of the fat layer, x = l2, is100

negligible and we will comment on the validity of this assumption in Section 4. Together, these boundary conditions101

are incorporated into the model by specifying102

T1(0, t) = Th, (5)

∂T2(l2, t)
∂x

= 0. (6)

6
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where Th is the dimensional temperature of the water in the scald creation device.103

In the literature, there are several different interface conditions that can be implemented in multilayer models of104

heat transfer [28–32]. Here we take the simplest, most fundamental approach by assuming perfect contact between105

the skin and fat layers. This amounts to assuming that the temperature and the flux of thermal energy are continuous106

at the interface107

T1(l1, t) = T2(l1, t), (7)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)
∂x

. (8)

An attractive feature of Cuttle’s experimental design is that the temperature of the water in the scald creation108

device can be easily altered [2, 17]. For example, this experimental protocol has been used previously to study how109

skin responds to different temperature burns by using water at 50◦ C, 55◦ C and 60◦ C in the scale creation device [2].110

Therefore, to ensure that our analysis can easily incorporate this feature of the experiments we non-dimensionalise111

the dependent variable in Equations (1)-(8) so that all of these different experimental conditions can be represented112

by the same mathematical model without explicitly considering the role of Th. To non-dimensionalise the dependent113

variable we introduce114

T1(x, t) =
T1(x, t) − T0

Th − T0
, (9)

T2(x, t) =
T2(x, t) − T0

Th − T0
, (10)

where T1(x, t) ∈ [0, 1] is the non-dimensional temperature in the skin layer and T2(x, t) ∈ [0, 1] is the non-dimensional115

temperature in the fat layer. Re-writing the governing equations in terms of these non-dimensional variables gives116

∂T1(x, t)
∂t

= D1
∂2T1(x, t)
∂x2 , 0 < x < l1, (11)

∂T2(x, t)
∂t

= D2
∂2T2(x, t)
∂x2 , l1 < x < l2. (12)

The initial condition for the non-dimensional model is117

T1(x, 0) = 0, (13)

T2(x, 0) = 0, (14)

and the relevant boundary conditions are118

T1(0, t) = 1, (15)

∂T2(l2, t)
∂x

= 0. (16)

Finally, the interface conditions are written as119

T1(l1, t) = T2(l1, t), (17)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)
∂x

. (18)
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Equations (11)-(18) constitute the mathematical model that we consider in this study. For any particular choice of120

D1 and D2, the model can be solved to predict the temporal and spatial distribution of non-dimensional temperature121

within the two-layer problem, T1(x, t) and T2(x, t). These non-dimensional temperature profiles can be re-scaled,122

according to Equations (9)-(10), to give T1(x, t) and T2(x, t), which represent any particular experimental condition123

characterised by different choices of T0 and Th. A convenient feature of the mathematical model is that Equations124

(11)-(18) can be solved, very efficiently, using Laplace transforms [33]. This Laplace transform solution can be125

evaluated at little computational cost, regardless of the choice of D1, D2, l1 and l2. A full description of the Laplace126

transform solution technique, and validation of the accuracy of this approach is given in the Supplementary Material127

document. Algorithms and code used in this work are available at GitHub.128

3. Results and discussion129

Throughout this work we consider a fixed tissue geometry by setting l1 = 1.6 mm and l2 = 4.0 mm, which130

match the histology measurements in Figure 1(a)-(b). To solve Equations (11)-(18) we must specify D1 and D2. Our131

approach is to:132

1. Select biologically-relevant estimates of the target parameters, (D̂1, D̂2);133

2. Solve Equations (11)-(18) with the target parameters;134

3. Extract time series data from the solution generated in Step 2 so that the synthetic data from the mathematical135

model is consistent with Cuttle’s experimental data;136

4. Explore the solutions of Equations (11)-(18) across the (D1,D2) parameter space to assess how well we could137

estimate (D̂1, D̂2) using the synthetic data generated in Step 3; and138

5. Use the mathematical modelling tools to explore whether we can optimise the experimental design to improve139

our ability to reliably estimate (D̂1, D̂2).140

3.1. Parameter inference: single probe141

To generate synthetic data we must first estimate target parameters, (D̂1, D̂2). Previous work that interprets data142

from Cuttle’s experiments with a simplified, single-layer, homogenised mathematical model leads to an estimate of143

the homogenised effective thermal diffusivity, Deff = 0.014 mm2/s. We will use this estimate to guide our choice of144

(D̂1, D̂2). To achieve this we assume that Deff corresponds to the homogenised thermal diffusivity of the two-layer145

tissue that is given by a weighted harmonic mean, l2/Deff = (l2 − l1)/D̂1 + l2/D̂2 [28]. In addition, we make use of the146

fact that a key physiological role of the fat layer is to provide thermal insulation [27]. Therefore, we incorporate this147

into our heterogeneous multilayer model by requiring that D2 < D1, and we set D̂1 = 10 D̂2 to reflect this. Combining148

these two biologically-motivated assumptions gives D̂1 = 0.09 mm2/s and D̂2 = 0.009 mm2/s, and we hold these149

target parameters constant throughout this work.150

The solution of Equations (11)-(18) parameterised with (D1 = D̂1,D2 = D̂2) is shown in Figure 2(a). Here, the151

initial temperature is zero, and we see that energy is introduced into the system through the Dirichlet boundary at152
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x = 0 mm, for t > 0. As the solution evolves, the temperature is continuous at the interface but the spatial gradient153

of temperature is discontinuous at the interface. From a modelling perspective, it is natural for us to visualise the154

entire spatial and temporal features of the solution of Equations (11)-(18) in Figure 2(a). However, this level of detail155

is not available in Cuttle’s experimental protocol [11–14] because temperature is measured at one spatial location156

only. Therefore, to ensure that the synthetic data we extract from the solution of Equations (11)-(18) is compatible157

with Cuttle’s experimental data, we use the solution of the mathematical model to generate time series data, showing158

T2(l2, t), at one spatial location only. At first we focus on x = l2 as the probe is placed at the bottom of the fat layer in159

the experiments [2, 17]. Later, in Section 3.2, we also consider the influence of varying the location of the probe.160

9
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(a) (b)

(c) (d)

t = tc

t = tc

Figure 2: Solutions to Equations (11)-(18) for l1 = 1.6 mm and l2 = 4 mm. In (a) we set the thermal diffusivities to be the target parameters,
D̂1 = 0.09 mm2/s and D̂2 = 0.009 mm2/s. The solutions of Equations (11)-(18) are plotted at t = 10, 20, 50, 100, 200, 500 and 1000 s, with the
arrow showing the direction of increasing t. (b) Synthetic time series data, T̂ (l2, t), shows the temperature at the location of the probe, x = l2. The
time series is constructed using 100 equally-spaced time point between t = tc/100 and t = tc, where tc = 1447.5 s. (c) Comparison of T1(x, t) and
T2(x, t) for two different parameter pairs. The black curves show the solution using the target parameters, D̂1 = 0.09 mm2/s and D̂2 = 0.009 mm2/s,
and the green curves show solutions of the same model for a very different choice of parameters, D1 = 0.45 mm2/s and D2 = 0.0077 mm2/s. In
(c) solutions are shown at t = 10, 200 and 500 s with the arrow showing the direction of increasing t. (d) Comparison of time series T̂ (l2, t) (black)
and T (l2, t) (green), over the interval 0 ≤ t ≤ tc, using the spatiotemporal solutions in (c). The bright pink and lighter pink background colours in
(a) and (c) are chosen to correspond with the colour of the skin and fat layers in Figure 1(b). Subfigures (b) and (d) contain an inset showing the
geometry of the skin layers with the brown circle showing the location of the probe, x = l2. In (b) and (d), the vertical dashed black line indicates
the critical time, tc.

To construct the time series data from the solution of Equations (11)-(18), we must first decide on the interval161

of time that we will focus on. Since our aim is to estimate D1 and D2, it is useful to recall that an estimate of162

the duration of time required for the solution of Equations (11)-(18) to asymptote to the corresponding steady state163

solution will depend upon D1 and D2 [34–36]. This duration of time, called the critical time [37, 38], can be estimated164

by calculating the time required for the transient solution to reach within some small tolerance of the corresponding165

steady solution. For our choice of boundary conditions the long-time steady state solution of Equations (11)-(18)166

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2018. ; https://doi.org/10.1101/354563doi: bioRxiv preprint 

https://doi.org/10.1101/354563


is lim
t→∞T1(x, t) = lim

t→∞T2(x, t) = 1. In this work we denote the critical time as tc, and we estimate the critical time by167

calculating tc that satisfies T2(l2, tc) = 0.99, corresponding to a tolerance of 1%. For our values of l1, l2, D̂1 and D̂2168

we have tc = 1447.5 s. In this work we treat l1, l2, D̂1 and D̂2 as constants which means that tc is also a constant169

throughout this study. With our estimate of the critical time we generate the time series T2(l2, t j) with t j = jδt, where170

j = 1, 2, ..., 100 and δt = tc/100 s. This time series simply corresponds to 100 equally-spaced time points between171

t = tc/100 and t = tc, and we visualise this time series in Figure 2(b) for the problem shown previously in Figure 2(a).172

This time series confirms that T2(l2, 0) = 0, and T2(l2, t) approaches unity as t increases.173

Now that we have specified the target parameters, (D̂1, D̂2), and defined how we extract synthetic data from174

the solution Equations (11)-(18), we explore how well we can estimate (D1,D2) so that the time series of T2(l2, t)175

matches the synthetic data. Ideally, there would be a unique choice of (D1,D2) for which the solution of the model176

matches the synthetic time series data. However, in practice we find there is large range of parameter pairs, (D1,D2),177

for which the time series data matches the synthetic time series data remarkably well. To illustrate this we show178

solutions of Equations (11)-(18) with very different choice of (D1,D2) in Figure 2(c). Here, we show the full spatial179

profile of the two solutions and it is obvious, from visual inspection alone, that the two solutions are very different.180

However, for these same two solutions, we see almost no difference when we view the time series, T2(l2, t), in Figure181

2(d). This observation suggests that data provided by Cuttle’s experimental protocol might not be appropriate to182

constrain estimates of (D1,D2). This would be particularly challenging since Cuttle’s data will also be subject to183

experimental, biological and measurement variability that we have not accounted for in Figure 2. For simplicity and184

clarity, throughout this study we neglect the influence of such experimental variability, and we will comment on this185

assumption later, in Section 4.186

Since the two time series in Figure 2(d) are difficult to visually distinguish, we introduce a discrepancy measure187

to assist in distinguishing between these time series quantitatively. In this work we use188

d(D1,D2|p) =

100∑
j=1

∣∣∣∣T̂ (p, t j) − T (p, t j)
∣∣∣∣ , (19)

where T̂ (p, t j) is the solution of Equations (11)-(18) parameterised with the target parameters (D̂1, D̂2), at location189

x = p and at time t = t j, and T (p, t j) is the solution of Equations (11)-(18), with some other choice of (D1,D2), at190

location x = p and at time t = t j. Here the sum is taken over 100 equally-spaced time points from t = tc/100 to t = tc191

where tc is first calculated for each choice of (D1,D2) that we consider. The key feature of this discrepancy measure192

is that there is a single probe at location x = p. Intuitively, we expect that choices of (D1,D2) that give rise to smaller193

values of d(D1,D2|p) could be reasonable estimates of (D̂1, D̂2). To help visualise which (D1,D2) parameter pairs194

lead to a close match with the synthetic data we use an indicator function195

]I1(D1,D2|p, ε) =


1, if d(D1,D2|p) ≤ ε,
0, otherwise.

(20)
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The indicator function is unity if the discrepancy is smaller than some specified threshold, ε, and zero elsewhere.196

Plotting I1(D1,D2|p, ε) as a function of (D1,D2) is a useful way to visualise which combinations of (D1,D2) lead197

to good matches between T (p, t) and T̂ (p, t). Plots of I1(D1,D2|p, ε) as a function of (D1,D2) are constructed by198

discretising the (D1,D2) parameter space using a fine square mesh, and evaluating I1(D1,D2|p, ε) at each point on the199

mesh for various choices of ε. All results presented in this work use a fine mesh of 2001×2001 equally-spaced values200

of D1 and D2. Each time we sweep across the parameter space we evaluate the solutions of Equations (11)-(18) more201

than 4 million times. Therefore, it is vitally important that the method we use to solve the governing equations is both202

accurate and efficient.203

Results in Figure 3 show the region of (D1,D2) parameter space where I1(D1,D2|l2, ε) = 1 for ε = 0.5, 1.0 and204

1.5. Regardless of our choice of ε, we see that there are multiple combinations of (D1,D2) for which the time series,205

T (p, t), is very close to the synthetic time series, T̂ (p, t). As ε decreases, the area for which I1(D1,D2|l2, ε) = 1206

decreases, as the discrepancy measure is more restrictive. However, even with further reductions in ε > 0, we still207

observe a very large number of (D1,D2) pairs at which it is very difficult, if not impossible, to reliably distinguish208

between T̂ (p, t) and T (p, t). This result indicates that relying solely upon Cuttle’s experimental protocol may not209

allow us to reliably identify unique choices of (D1,D2). We note that reducing the tolerance to zero, ε = 0, means that210

the region in (D1,D2) parameter space where I1(D1,D2|l2, ε) = 1 does shrink to a unique point. However, working211

with a zero tolerance is impractical as we wish to allow for a small positive tolerance to account for some variability212

in the experimental measurements. Furthermore, working with a zero tolerance on a discretised parameter space is213

impractical since any regular meshing of the (D1,D2) parameter space would not precisely coincide with (D̂1, D̂2).214
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Figure 3: Regions of bounded parameter space where I1(D1,D2 |l2, ε) = 1, for l1 = 1.6 mm and l2 = 4 mm. The black circle indicates the target
parameters, (D̂1, D̂2). We plot I1(D1,D2 |l2, ε) on the bounded region D(min)

1 ≤ D1 ≤ D(max)
1 and D(min)

2 ≤ D2 ≤ D(max)
2 , where D(min)

1 = D̂1/20,
D(max)

1 = 5D̂1, D(min)
2 = D̂2/20 and D(max)

2 = 5D̂1. The coloured regions satisfy I1(D1,D2 |l2, ε) = 1 for ε = 0.5 (green), 1.0 (red) and 1.5 (blue).
The central inset shows a magnified region, identified by the dashed rectangle in the main Figure, about the target parameter pair. The right-most
inset indicates the geometry of the skin layers with the brown circle showing the location of the probe, p = l2.

While the plot of I1(D1,D2|l2, ε) in Figure 3 is shown on the bounded region, D̂1/20 ≤ D1 ≤ 5D̂1 and D̂2/20 ≤215

D2 ≤ 5D̂2, we also generated additional results by plotting I1(D1,D2|l2, ε) over a larger support. These additional216

results (not shown) indicate that increasing the support leads to further choices of (D1,D2) pairs for which T (p, t) is217

very difficult to distinguish from T̂ (p, t). That is, the extent of the coloured regions in Figure 3 continue to expand as218

the (D1,D2) support increases. This observation further corroborates our notion that it can be very difficult to infer219

(D1,D2), using a single probe located at p = l2 [17], and this observation motivates us to consider whether different220

choices of p could alter our ability to estimate (D1,D2).221

3.2. Parameter inference: optimal placement of single probe222

All results in Section 3.1 follow Cuttle’s experimental protocol by considering a single probe placed at p = l2.223

Therefore, we now repeat the process of generating the data in the same format as Figure 3 but for difference choices224
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of probe location, p. To first explore the role of p we assume that some reasonable alternative choices to place the225

probe are:226

1. the centre of the skin layer, p = l1/2,227

2. the layer interface, p = l1;228

3. the centre of the two-layer system, p = l2/2; and229

4. the centre of the fat layer, p = l1 + (l2 − l1)/2.230

Results in Figure 4 show plots that are equivalent to Figure 3 except that we consider these four different choices of231

p. Comparing data in Figures 3-4 shows that the choice of p has a dramatic impact upon the sensitivity of our ability232

to distinguish between T (p, t) and T̂ (p, t). Perhaps the most obvious result is that choosing p = l1/2, as in Figure233

4(a), leads to a very poor ability to estimate (D1,D2) since the extent of the coloured region is very large. This result234

makes intuitive sense because placing a single probe in the skin layer provides very little direct information about D2.235

In contrast, placing the probe at the centre of the two-layer system, p = l1 + (l2 − l1)/2, as in Figure 4(c), provides236

a better opportunity to estimate (D1,D2) since the extent of the coloured regions are smallest compared to the other237

choices of p in Figures 3-4. Overall, it appears to be optimal to place the probe in the fat layer, rather than the skin238

layer. This is a useful outcome as it is consistent with Cuttle’s experimental protocol [11–14].239
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(a)

(d)(c)

(b)

Figure 4: The role of probe location, p. As in Figure 3 the target parameter pair, (D̂1, D̂2), is highlighted with a black circle and the insets show
various experimental designs with the brown circles showing the probe location relative to the tissue geometry. In each subfigure, the coloured
regions satisfy I1(D1,D2 |p, ε) = 1 for ε = 0.5 (green), 1.0 (red) and 1.5 (blue). (a) Probe at the centre of the skin layer, p = l1/2; (b) Probe at the
layer interface, p = l1; (c) Probe at the centre of the two-layer system, p = l2/2; (d) Probe at the centre of the fat layer, p = l1 + (l2 − l1)/2. In all
cases we set l1 = 1.6 mm and l2 = 4 mm.

All discussion of the results in Figures 3-4 are so far based on qualitative visual interpretations of the extent of the240

coloured regions in these plots. To provide more quantitative insight we introduce a metric241

A1 =
1
A

∫ D(max)
2

D(min)
2

∫ D(max)
1

D(min)
1

I1 dD1dD2, (21)

where A =
(
D(max)

1 − D(min)
1

)
×

(
D(max)

2 − D(min)
2

)
is the total area of the bounded parameter space in Figures 3-4. Here,242

A1 is the proportion of the bounded parameter space where the indicator function is unity when we consider data243

collected at a single probe. Although we writeA1 in terms of a double integral in Equation (21), we find it simplest to244
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interpretA1 as the proportion of the parameter space in which the indicator function is unity. Therefore, we estimate245

A1 by calculating I1 at each point on the discretised (D1,D2) parameter space and computing the proportion of the246

20012 evaluations of I1 that are unity. To interpret these results we note that smaller values ofA1 are associated with247

improved experimental designs since the region of parameter space where T (p, t) is a close match to T̂ (p, t) is reduced248

when A1 is smaller. Plotting A1 as a function of p in Figure 5 gives us greater quantitative insight into the role of249

probe placement.250

A 1

Figure 5: The influence of probe location, p, onA1 for D̂1/20 ≤ D1 ≤ 5D̂1 and D̂2/20 ≤ D2 ≤ 5D̂2, and l1 = 1.6 mm and l2 = 4 mm. Plots ofA1
are shown for ε = 0.5 (green), ε = 1.0 (red) and ε = 1.5 (blue). Calculations are performed for 20 equally-spaced values of p, from p = 0.2 mm to
p = 4 mm. The bright pink and lighter pink background colours are chosen to correspond with the colour of the skin and fat layers in Figure 1(b).

Results in Figure 5 show that A1 appears to decrease with p for all values of ε we consider. The data in Figure 5251

is useful because it provides a quantitative framework for examining the importance of the choice of probe placement,252

p. Overall we see that larger values of p lead to improved experimental designs, and we see that once p > 1.8 mm253

that A1 becomes relatively insensitive to any further increase in p. A simple recommendation we can provide from254
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this exploration is that placing a single probe into the fat layer is a good experimental design.255

All results presented in this study so far focus on the case where temperature data is recorded at a single location,256

x = p. While this constraint is an important feature of Cuttle’s experimental protocol [11–14], our mathematical257

modelling tools give us the flexibility to quantitatively explore the benefit of collecting data at more than one location258

in a controlled manner that is not possible experimentally. Therefore, we will now consider how our ability to estimate259

(D1,D2) are influenced if we were able to collect temperature data at two locations, x = p and x = q.260

3.3. Parameter inference: two probes261

To keep the presentation of our results manageable, when we consider the case where data is collected at two262

locations, x = p and x = q, we restrict our attention to the subset of cases where the location of the first probe, x = p,263

is fixed at p = l2 as in Cuttle’s experiments [11–14]. With this constraint, we then focus on how we might choose the264

location of the second probe, x = q. To achieve this we modify our definition of the indicator function to be265

I2(D1,D2|p, q, ε) =


1, if d(D1,D2|p) ≤ ε and d(D1,D2|q) ≤ ε,
0, otherwise,

(22)

where d(D1,D2|q) is defined in exactly the same way as d(D1,D2|p) except that the spatial location is different. The266

key difference between I1 and I2 is that I2 measures the closeness of T (x, t) and T̂ (x, t) at both x = p and x = q,267

whereas I1 measures the closeness of T (x, t) and T̂ (x, t) at x = p only. We follow our previous approach from Section268

3.2 by proposing four sensible choices for the placement of the second probe:269

1. the centre of the skin layer, q = l1/2;270

2. the layer interface, q = l1;271

3. the centre of the two-layer system, q = l2/2; and272

4. the centre of the fat layer, q = l1 + (l2 − l1)/2.273

Results in Figure 6 show plots of the regions where I2(D1,D2|l2, q, ε) = 1. The arrangement of the subfigures274

in Figure 6 corresponds to the arrangement of the subfigures in Figure 4 except that we now have two probes in the275

layered system. Comparing the extent of the coloured regions where I2(D1,D2|l2, q, ε) = 1 in Figure 6 to the extent of276

the colored regions where I1(D1,D2|l2, ε) = 1 in Figure 4 provides information about how the collection of additional277

data at a second location would improve our ability to reliably distinguish between T (x, t) and T̂ (x, t) at x = l2278

only (Figure 4), compared to our ability to distinguish between T (x, t) and T̂ (x, t) at both x = l2 and x = q (Figure279

6). Overall, regardless of the choice of q, we see that working with a second probe always reduces the extent of the280

coloured region. Furthermore, comparing results across the four subfigures in Figure 6 indicates that the configuration281

in Figure 6(b), where the second probe is placed at the layer interface x = l1, is the best configuration of these four282

possibilities since the extent of the coloured regions is smallest.283
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(a)

(d)(c)

(b)

Figure 6: The role of the second probe location, q. As with Figure 4 the target parameter pair, (D̂1, D̂2), is highlighted with a black circle and
the insets show various experimental designs with the brown circles showing the fixed first probe location and the red circles showing the variable
second probe location relative to the tissue geometry. In each subfigure, the coloured regions satisfy I2(D1,D2 |l2, q, ε) = 1 for ε = 0.5 (green), 1.0
(red) and 1.5 (blue). (a) Second probe at the centre of the skin layer, q = l1/2; (b) Second probe at the layer interface, q = l1; (c) Second probe at
the centre of the two-layer system, q = l2/2; (d) Second probe at the centre of the fat layer, p = l1 + (l2 − l1)/2. In all results we set l1 = 1.6 mm
and l2 = 4 mm.

3.4. Parameter inference: optimal placement of second probe284

To extend the results in Figure 6, we now explore whether there is some optimal placement of the second probe.285

To explore this question we introduce286

A2 =
1
A

∫ D(max)
2

D(min)
2

∫ D(max)
1

D(min)
1

I2 dD1dD2, (23)

where A2 is the proportion of the parameter space that satisfies I2(D1,D2|l2, q, ε) = 1. Similar to our approach in287

Section 3.2, we seek to find q which minimises A2. Results in Figure 7 show A2 as a function of q, for different288
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choices of ε. Remarkably, we see that setting q = 1.6 mm minimises A2, for all ε considered. This results implies289

that the optimal location for a second probe, given that a first probe is already located at the bottom of the fat tissue290

p = l2, is at or near the layer interface, q = l1.291

A 2

Figure 7: The influence of the second probe location, q, on A2 for D̂1/20 ≤ D1 ≤ 5D̂1 and D̂2/20 ≤ D2 ≤ 5D̂2, and l1 = 1.6 mm and l2 = 4 mm.
Plots ofA2 are shown for ε = 0.5 (green), ε = 1.0 (red) and ε = 1.5 (blue). In all cases p = l2 and calculations are performed for 20 equally-spaced
values of q from q = 0.2 mm to q = 4 mm. The bright pink and lighter pink background colours are chosen to correspond with the colour of the
skin and fat layers in Figure 1(b).

4. Conclusions and future directions292

In this work we consider an experiential protocol designed by Cuttle and co-workers [11–14] to quantify the293

conduction of heat in living porcine (pig) tissues. This unique experimental protocol is very important because many294

experimental studies that examine heat conduction in skin tissue focus on non-living excised tissues [6, 7, 9, 10]295

whereas the protocol developed by Cuttle is far more realistic because they deal with living tissues, in situ. One of296

the constraints of Cuttle’s experimental protocol is that the temperature within the living tissues is monitored using a297
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subdermal probe at a single location within the layered skin. Because skin is a layered structure, with the epidermis298

and dermis layers overlying a deeper fat layer, it is natural for us to model the conduction of heat in this system using299

a heterogeneous multilayer model where the thermal diffusivity in each layer can be different. In this work we idealise300

the skin tissues as a two-layer system with the upper layer representing the epidermis and dermis combined, and the301

lower layer representing the subdermal fat. Since one of the main biological functions of the fat layer is to provide302

thermal insulation [27], we expect that the thermal diffusivity of the fat layer to be different to the thermal diffusivity303

of the skin layer.304

The key question we address in this work is to explore whether temperature data at a single location in a two-305

layer system is sufficient for us to reliably estimate the thermal diffusivity in the skin and fat layers, (D1,D2). Using306

biologically-motivated target values, (D̂1, D̂2), we solve the two-layer model and convert the spatiotemporal solution307

into a simple time series at a single location. This data is compatible with the kind of data recorded and reported by308

Cuttle and colleagues [11–14]. We then systematically scan the (D1,D2) parameter space, solving the model over four309

million parameter pairs, to explore the extent to which this time series data can be used to reliably identify the target310

parameters, (D̂1, D̂2). Our results show that our ability to estimate the parameters can be very sensitive using this kind311

of data as there are many combinations of parameter pairs, (D1,D2), leading to virtually indistinguishable time series312

data at a single location. Once we have demonstrated this sensitivity, we then explore the question of experimental313

design by using the mathematical model to explore the extent to which our ability to estimate (D1,D2) depends on the314

depth at which the subdermal probe is placed. In summary, we find that it is best to place the probe in the fat layer.315

This result is reassuring since Cuttle’s experimental protocol places the probe at the bottom of the fat layer [11–14].316

We conclude by exploring the extent to which our ability to estimate (D1,D2) improves if we consider the case where317

two subdermal probes, placed at different locations, are used. Our results show that using a second probe always318

improves our ability to estimate (D1,D2), but there is still some sensitivity in terms of the placement of the subdermal319

probes. In summary, if it were possible to use two subdermal proves we find that given the first probe is placed at the320

bottom of the fat layer, and second probe ought to be placed at the interface of the skin and fat layers.321

There are many ways that our study could be extended since we have invoked several simplifications and as-322

sumptions that could be relaxed. A key assumption in our work is that we treat the synthetic data generated by the323

mathematical model, T̂ (p, t) and T̂ (q, t), as being deterministic. This means that we neglect the role of experimental324

variability which is known to be important when dealing with biological data [39, 40]. If we had an estimate of the325

experimental variability in Cuttle’s measurements, we could incorporate this into our parameter sensitivity analysis by326

adding an appropriate noise signal, such as white noise, to T̂ (p, t) and T̂ (q, t), and then exploring how the incorporation327

of experimental variability influences our ability to estimate (D1,D2). Another feature of our mathematical model that328

could be explored further is our assumption that the boundary between the bottom of the fat layer and the underlying329

muscle and bone tissues, at x = l2 is perfectly insulating. In reality, we expect that there would be some transfer of330

heat from the fat tissues into the underlying muscle and bone, and this could be incorporated into the model using a331

Robin boundary condition. This approach would introduce an additional unknown heat transfer coefficient, thereby332
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increasing the dimensionality of the parameter space to be explored. Both of these extensions could be considered in333

future studies.334

Another natural extension of our current work would be to treat the conduction of heat in living skin as a three-335

layer problem instead of a two-layer problem. The three-layer problem could be constructed by treating the epidermis,336

dermis and fat as three distinct layers. While the semi-analytical solution strategy for solving the two-layer model337

generalises perfectly well to a three-layer model, the challenge of identifying three values of the thermal diffusivity338

instead of two values would become even more challenging when dealing with experimental observations where tem-339

perature is recorded at a single location in the layered system. Given that the main result of the current work highlights340

how challenging it can be to estimate parameters for a two-layer model, we anticipate that it is presently infeasible to341

meaningfully interpret data from Cuttle’s current experimental protocol using a three-layer model. However, if some342

of the current experimental constraints were to be alleviated and it became feasible to collect experimental temperature343

data at multiple positions simultaneously, then it is possible that working with a three-layer model could be reasonable344

in the future.345

Overall, our work points to an important role for mathematical models and parameter estimation when dealing346

with complex biological processes that take place in complex biological environments. It is well-known that biology347

experiments can be difficult to reproduce and the issues associated with experimental reproducibility has important348

scientific and economic consequences [41]. Our view is that one way to start dealing with issues of experimental349

reproductivity in the biological sciences is to routinely apply mathematical models to quantitatively mimic experi-350

mental data and to explore questions of optimal experimental design [42, 43]. Working with mathematical models351

can be more transparent than complicated experimental protocols, and this is one of the reasons why all code and352

algorithms associated with this work are freely available at GitHub.353
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