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Abstract

HIV-1 samples a large number of sequence variants that help the virus to evade the immune

system and escape from antiviral drugs. However, it is unclear how amino acid changes that re-

quire multiple nucleotide mutations contribute to the evolution of HIV-1. In a large database of

HIV-1 protease sequences from circulating viruses we find that the most frequently observed amino

acids are disproportionately accessible by single-base mutations from the consensus amino acid.

Multiple-base mutations at a codon may be rarely sampled and/or exhibit fitness defects. To in-

vestigate the impact of fitness effects on mutant frequency, we quantified the experimental impacts

of all individual amino acid changes in protease on the expansion of HIV-1 in tissue culture. Many

amino acid changes requiring multiple nucleotide mutations that efficiently supported viral repli-

cation were observed rarely, or not at all, in the sequence database. Frequently observed amino

acid changes that require multiple nucleotide mutations were accessible by single nucleotide muta-

tional intermediates with higher fitness, on average, compared to the intermediates for unobserved

amino acid changes. An additive quasispecies model that combined different mutational barriers

for single- and multiple-base mutations with the experimental fitness effects showed an improved

correspondence with clinical observations of mutant frequencies compared to fitness alone. Our

results indicate that mutational sampling provides a larger barrier than fitness effects to amino

acid changes requiring multiple base mutations in HIV-1 protease.
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INTRODUCTION

Mutations are important to HIV-1 and many other viruses because they enable evasion

of immune recognition1 and escape from anti-viral drug treatments2. For example, when

mutation rate was reduced by engineering a high-fidelity polymerase in polio, the resulting

viruses had an impaired ability to infect and colonize in mice3,4. Similar observations of

reduced infectivity for engineered high-fidelity viruses have been made in chikungunya virus5

and human enterovirus 716. In HIV, mutations that either increase or decrease the mutation

rate show reduced replication efficiency in cell culture7, suggesting that the mutation rate

of HIV-1 has been subject to natural selection.

HIV-1 generates mutations as an inherent part of its infection cycle. HIV-1 is an RNA

virus that replicates in host cells through a DNA intermediate. The process of reverse tran-

scribing viral RNA into DNA is error prone and is a main contributor to the mutations that

HIV-1 accumulates8,9. The error rate of HIV-1 replication in cell culture has been measured

as 3 × 10−5 mutations per base per replication cycle10. This corresponds to 1 mutation for

every 2-3 genomes of HIV-1. In addition to errors that occur during genome copying, ad-

ditional mutations are caused after synthesis by host cytidine deaminases. Recent analyses

of the frequency of null alleles of HIV-1 integrated as proviruses within host DNA9 indicate

that the in vivo error rate may be higher than estimates from cell culture, though these

findings may be influenced by selection pressure that should disfavor functional proviruses

that would kill the parental cell unless silenced. Because of the large number of virions in an

infected individual, even conservative estimates of the error rate lead to tremendous genetic

diversity. In a widely cited review11, modeling of HIV-1 infection kinetics indicated that,

“mutations will occur in every position in the genome multiple times each day and that a

sizable fraction of all possible double mutations will also occur.”

While mutations in HIV-1 occur at the nucleic acid level, many of the functional impacts

are caused by changes in the encoded protein sequence12. The amino acid changes that

are efficiently sampled by HIV-1 depend on multiple factors including the probabilities of

different types of nucleic acid mutations and the genetic code. Single nucleotide substitutions

are the most frequent errors generated when HIV-1 replicates10,13. Amino acids that are

accessible by a one nucleotide mutation from the parental sequence should be more frequently

sampled during HIV-1 infection and evolution. Within the genetic code, amino acids with
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FIG. 1. Amino acid frequencies of patient derived HIV-1 protease suggest that mutational sampling

and/or selection shapes amino acid preference. (A) Pie graphs illustrating the fraction of amino acid

changes that require 1-, 2-, or 3-nucleotide conversions for all changes (top), commonly observed

amino acids, and changes that were unobserved in patient isolates. (B) Depiction of a simple

fitness landscape where all mutations exhibit similar fitness effects and mutational probabilities

will strongly influence frequency. (C) A landscape where fitness effects provide a strong preference

for amino acid changes accessible by single nucleotide conversions.

similar physical and chemical properties are encoded by similar codons making it likely that

single nucleotide mutations will cause conservative amino acid changes14. Detailed analyses

indicate that strong selection acts on the genetic code15 and that only one in a million

random genetic codes is as effective at minimizing disruptive amino acid changes from single

base mutations16. Thus, amino acids changes that require multiple-base mutations could be

infrequent due in part to disruptive amino acids causing fitness defects.

Here, we sought to understand how the genetic code impacts protein evolution in HIV-1

where most if not all single nucleotide mutations are sampled within an infected individual.

We chose to focus on protease because of a wealth of available sequence data and the
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relatively small size of the 99 amino acid gene that facilitated experimental analyses. Many

amino acids requiring multiple-base mutations were infrequently observed in clinical isolates

yet were compatible with efficient viral replication. Despite the extensive genetic diversity of

HIV-1 within an infected individual, our results indicate that inefficient sampling of amino

acids requiring multiple nucleotide changes creates a mutational barrier such that many

amino acids capable of supporting efficient viral replication are not readily available to the

evolution of HIV-1 proteins.

RESULTS AND DISCUSSION

Analyses of protease sequences from clinical isolates

To explore mutation and selection acting on circulating HIV-1 in the absence of drug pres-

sure, we analyzed the amino acid sequence of protease17,18 from 38,781 protease-inhibitor-

näıve people infected with subtype B HIV-1 (Fig. 1). The vast majority of commonly

observed amino acids in protease (frequency > 0.003) from these sequences were accessible

by single nucleotide changes from the consensus amino acid (Fig. 1A). In contrast, the pre-

ponderance of amino acids that were not observed required multiple nucleotide changes from

the consensus amino acid. There are two main reasons that an amino acid may be at low

frequency in a population: mutation and selection. If an amino acid causes a fitness defect,

selection will drive it to low frequency. For neutral amino acids without any fitness effects,

the probability of the amino acid will be proportional to the rate at which mutations cause

the amino acid19. The infrequent observation of amino acids requiring multiple nucleotide

changes in the compiled database could be due to fitness defects and/or mutational barriers

(Fig. 1B).

Quantification of experimental fitness effects

To distinguish the influence of selection from mutation, we performed an EMPIRIC20

mutational scan of the HIV-1 protease gene (Fig. 2). We individually randomized each

amino acid position of protease in the NL4-3 strain of HIV-1 (which represents the con-

sensus sequence from our sequence database) and quantified the experimental fitness of

each possible mutation during infection of a T-cell line using a deep sequencing readout21.
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FIG. 2. EMPIRIC measurement of fitness effects. (A) Point mutations were generated in pNL4-

3 and transfected into 293T cells to generate viral libraries that were expanded in Jurkat cells.

Next-generation sequencing was used to quantify the change in frequency of mutations in the viral

library before, during and after passage in Jurkat cells. (B) Comparison of fitness effects for amino

acid changes from experimental replicates for three regions of protease (amino acids 20-29, 50-59,

80-89).

Fitness effects were scaled as selection coefficients where 0 corresponds to wildtype and -1

corresponds to a null allele (see Methods). Across the sequence of protease, synonymous

mutations tended to exhibit fitness effects centered on 0 (Fig. S1), suggesting that fitness

impacts were primarily determined by amino acid changes. Of note, windows of synonymous

mutations showed modest yet statistically significant deviations from neutral expectations

in three regions: at the beginning of protease and centered at amino acid positions 34 and

54 (Fig. S1). The fitness effects of synonymous mutations at the beginning of protease are

consistent with selection on the amino acid sequence of the p6 reading frame that overlaps

with this region of protease (Fig. S2). We do not have explanations for the observed fitness
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effects of synonymous mutations at other regions of protease. As the observed fitness effects

of synonymous mutations were modest, we chose to estimate the fitness effects of each amino

acid change in protease by summing sequencing counts over all synonyms (Supplementary

Table 1).

To assess the reliability of our fitness estimates, we repeated the viral competitions for

three regions encompassing 30 of the 99 amino acid positions in protease (Fig. 2B). The

fitness effects between repeated viral competitions show a strong linear correlation (R2 =

0.82) indicating that the bulk competitions provide a reasonably precise estimation of fitness

effects of each amino acid change under the conditions of the viral expansion. The fitness

effects of amino acid changes tend to cluster around neutral and null, as has been almost

universally observed for systematic or random mutation experimental evolution studies22,23.

The neutral cluster and the null cluster are well distinguished in both experimental replicates.

Fitness effects compared to frequency in circulating variants

We compared experimental fitness effects with the frequency of amino acids in our

inhibitor-näıve HIV-1 sequence database (Fig. 3A). We were cautious about the poten-

tial influence of epistasis on the interpretation of mutant effects measured in one genetic

background compared to naturally occurring mutations that can appear in a wide array of

genetic backgrounds. If the effect of most amino acid changes in protease were strongly

dependent on other mutations, then we would not observe a clear relationship between fit-

ness effects in NL4-3 and frequency in circulating variants. However, the amino acids most

frequently observed in circulating variants (green dots in Fig. 3A) tend to exhibit small to

no experimental fitness effect in NL4-3. Because strongly deleterious alleles are extremely

unlikely to rise to high frequency24, our results suggest that for commonly observed amino

acids, experiments with NL4-3 provide a reasonable estimate of fitness effects in circulating

HIV-1. Of note, this does not necessarily mean that epistasis is uncommon or unimportant

in HIV-1 protease as epistasis is a general feature of protein evolution25. NL4-3 protease

is the consensus of clinical sequences, and the common clinical amino acid changes in pro-

tease may frequently occur on a genetic background that is similar enough to NL4-3 to have

closely related fitness effects.

Amino acids rarely observed in clinical isolates (grey dots in Fig. 3A) displayed a wide
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FIG. 3. Relationships between experimental fitness effects and the frequency of mutations in

circulating viruses. (A) The frequency of mutations in sequenced viruses from drug-näıve patients

compared to fitness effects. Mutations that occurred at a frequency greater than 0.003 are shown

in green, unobserved mutations are shown in red, and all other frequencies are shown in grey.

(B-D) Dot plot representations of the distribution of fitness effects for amino acid substitutions

that were either observed at frequency greater than 0.003 or that were unobserved. (E) Bar graphs

showing the number of observed (frequency > 0.003, in green) and unobserved (red) 1-, 2- and

3-base mutations.

range of fitness effects in NL4-3. We considered different potential reasons for this range

of fitness effect in NL4-3 that included many apparently null amino acid changes. We

considered the possibility that viruses may expand more readily during infections of human

hosts than in cell culture. However this seems unlikely as cell culture is generally a more

permissive environment compared to hosts because there is no immune pressure4. Epistasis
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may provide an explanation for the infrequently observed clinical amino acids that have a

strong fitness defect in NL4-3, as the genomes where these amino acids occur could have

accumulated secondary permissive mutations.

We also considered that null alleles may appear from sequencing errors in the database

and/or from sequencing of non-infectious viral particles that could be generated from acti-

vated proviruses with genetic defects26. We cannot distinguish between these mechanisms

because they can both cause null alleles to appear in the database. Consistent with these

mechanisms, stop codons were present in the protease sequence database. To estimate the

likelihood of observing a null protease allele in the database we compared the number of

observed stop codons (197) to the number of single-base mutations from the consensus se-

quence that could lead to a stop codon (98). Based on this ratio we explored how many null

amino acids we may expect to find in the clinical data. We defined amino acid changes as

null if they had fitness effects within two standard deviations of the average stop codon in

our experimental fitness scan (Supplementary Table 1). There were 1001 single nucleotide

mutations that could lead to a null amino acid. Based on the 2 to 1 ratio of stop codons

to single-base mutational pathways to stop codons, we expected roughly 2000 null amino

acids accessible by single nucleotide mutations in the clinical database. We observed 2051,

which closely matches the number expected based on the number of stop codons from the

database. These findings indicate that termination codons and most experimentally null al-

leles seen in the database are likely generated by similar mechanisms, which could be errors

in sequencing or non-viable viral lineages.

The appearance of null alleles in the database complicates estimates of fitness based on

mutant frequency. Of note, experimentally null alleles were rare in the database and none

were observed at a frequency greater than 0.003. By focusing on mutants with frequencies

greater than 0.003 we excluded likely null alleles, providing a more reliable set of frequency-

based estimates of fitness. We focused on the frequency of these mutants in all further

analyses of sequenced variants from the database.

For understanding how HIV-1 samples amino acid changes requiring multiple-base mu-

tations, we focused on amino acids commonly observed (frequency greater than 0.003) in

circulating variants.
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FIG. 4. Frequently observed amino acid changes requiring two nucleotide changes are accessible

by fit intermediates compared to highly fit amino acid changes that were unobserved. (A) Dark

green circles show fitness effects for amino acid changes requiring two nucleotide changes that were

observed with a frequency greater than 0.003 in clinical samples. Light green circles show the

most fit amino acid intermediate and white circles show on-pathway synonymous codons of the

consensus amino acid. (B) Dark red circles represent a randomly selected set of highly fit amino

acid changes requiring two nucleotide mutations that were not observed in the clinical database.

Pink circles represent the most fit amino acid intermediate and white circles show on-pathway

synonymous codons of the consensus amino acid. The intermediates for the frequently observed

amino acid changes exhibit a higher average fitness (p < 0.003) than the intermediates for the

unobserved amino acid changes.

Distinctions between single and multiple nucleotide mutations

We analyzed the number of nucleotide mutations required for each possible amino acid

change from the consensus sequence. For amino acid changes accessible by changing a single

base, the most common type of mutation made during HIV-1 replication10, most experimen-

tally fit amino acids were observed in circulating variants (Fig. 3B). From this observation,
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we deduce the following: HIV-1 thoroughly samples single nucleotide mutations, consistent

with previous modeling11; selection is a primary determinant of unobserved single base mu-

tations in the clinical database; and experimental fitness effects in NL4-3 are predictive of

common and unobserved amino acid changes in the absence of strong mutational barriers.

Two and three nucleotide codon changes (Figs. 3C and 3D) show a distinct pattern

compared to the single base mutations (Fig. 3B). We used the fitness effects of amino acids

that were common in circulating variants to define a range of naturally fit mutations. For

multiple nucleotide mutations, there were many amino acid changes that supported efficient

viral replication in culture but that were not observed in circulating variants (Fig. 3E).

Mutational barriers that limit access to two and three base mutations provide a compelling

rationale for these observations. According to well established population genetic theory19,

the probability of a neutral amino acid should be proportional to the rate of mutations

leading to the amino acid. As single nucleotide changes are the most common mutation

in HIV-110, amino acid changes requiring multiple base changes should often arise by the

serial accumulation of individual independent mutations. The likelihood of this mechanism

of multiple-base change is the product of the probabilities of each individual mutation and is

less likely than the single-base mutations. The lower likelihood of multiple-base mutations

compared to single-base mutations is a form of mutational barrier that should limit their

frequency in populations of HIV-1.

Mutational walks

Because simultaneous replacement of two or more nucleotides in a codon is rare10, mu-

tational walks of separately occurring single base mutations may provide relevant access to

these types of amino acid changes. The likelihood of a mutational walk depends on the

fitness effects of intermediate steps27,28. If an intermediate step is strongly deleterious, then

the pathway will be unlikely to occur even if the final state is neutral. We examined the in-

termediates for two nucleotide mutations (Fig. 4) where we identified a set of both common

and unobserved clinical amino acids with similar high fitness. Among the two base mutations

common in circulating variants (Fig. 4A), fitness effects for intermediate one base mutations

exhibited a narrow and highly fit distribution. Intermediates for the unobserved two-base

mutations (Fig. 4B) exhibited a broader range of effects with some fitness measurements
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FIG. 5. Frequently observed mutations preferentially occur at positions in protease that are rel-

atively tolerant to mutations. (A) Heatmap representation of the fitness effects of amino acid

changes in protease from NL4-3 HIV. The average effect of all amino acid changes is shown on the

bottom line and these values were used as a measure of the tolerance of a position to mutation

in panel B. (B) The overall distribution of mutational tolerance (top panel) is bi-modal with a

cluster of positions where the average fitness effect exhibited mild to no fitness effect and a cluster

of positions where the average fitness effect is close to null (-1). Positions where mutations were

observed in circulating viruses at frequencies above 0.003 were skewed towards higher tolerance

(lower two panels). Statistical significance was assessed using one-tailed bootstrap procedure.
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close to null. The average fitness effect of intermediates for unobserved mutations was lower

than that for intermediates for common circulating mutations indicating that mutational

walks contribute to multiple nucleotide codon changes in circulating viruses.

Multiple base mutations occurred predominantly at highly tolerant positions compared to

both the overall distribution of sensitivity and the distribution of single base mutations (Fig.

5). Because selection is weaker at tolerant positions, they should more freely accumulate

mutations during HIV-1 evolution. Such broad peaks in local fitness landscapes provide a

greater opportunity for mutational walks to amino acids that involve multiple-base changes.

Quasispecies model

Quasispecies models29,30 provide a framework for considering the likelihood of a genotype

based on its fitness and those of its neighbors. We reasoned that the frequency of an amino

acid might depend on the flatness of the fitness landscape as described by a quasispecies

model. To examine this idea, we calculated amino acid probabilities using an additive qua-

sispecies model, and experimental fitness measurements, and compared these to circulating

frequency as a metric of evolution in vivo (Fig. 6).

The quasispecies model provides a stronger correlation with amino acid frequency in cir-

culating variants than fitness measurements alone indicating that the model provides a useful

way to consider both mutation and selection for codon evolution in HIV-1. Using a reported

mutation rate for HIV-1 (3 × 10−5)10, we observed an improved correlation coefficient com-

pared to fitness effects alone. As expected, the equilibrium population from the quasispecies

model is stratified by frequency into single-, double- and triple-base mutations separated by

powers of the mutation rate (see Methods). This stratification, however, does not accurately

recapitulate the distribution of amino acid frequencies in circulating variants. To account

for the potential impact of multiple rounds of replication and mutation that can occur prior

to host-to-host transmission, we varied the mutation rate in the quasispecies model and

found that an apparent mutation rate ∼ 1000-fold higher than the per-generation rate pro-

vided the best fit with frequencies in circulating variants. The resulting modeled equilibrium

population showed overlap in the frequencies for single-, double-, and triple-base mutations

and showed a closer correspondence with the clinical frequencies of mutations compared to

a model using the per generation mutation rate. These observations suggest that the qua-
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FIG. 6. Fitness effects and a quasispecies model provide improved correlation with mutant fre-

quencies in clinical isolates. Comparison of the frequency of amino acids in clinical samples (fDB)

with the following: fitness effects without a mutational model (sEMPIRIC); projected frequencies

based on an additive quasispecies model (fQS) with either the experimentally measured mutation

rate of HIV-1 (3 × 10−5) or the mutation rate (5 × 10−2) that provided the strongest correlation

with clinical frequencies; and projected frequencies based on previously reported31 structural simu-

lations with a specialized mutational model (fRosetta). Small offsets (γ = 1/38, 781 and δ = 10−25)

were included where necessary to facilitate logarithmic transformations. Spearman rank correlation

coefficients are indicated in the upper right portion of the figure.

sispecies model captured key features of the population structure of HIV-1 among different

infected hosts.

We compared the measured fitness effects and the quasispecies model with a previously
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published biophysical model31 of protease function (Fig. 6). Kortemme and co-workers used

Rosetta32 to simulate the effects of all possible amino acid changes on critical features of

protease function including the folding and dimerization of protease and binding to peptide

substrates31. Of note, this biophysical study focused exclusively on amino acid substitutions

resulting from single-base mutations. The Rosetta predictions more closely correlate with

clinical frequency than our experimental fitness measurements without a mutational model,

but not as well as the quasispecies model that uses both fitness measurements and a mu-

tational model. These comparisons indicate the importance of both mutation and selection

to the sequence evolution of HIV-1. These comparisons also highlight the predictive poten-

tial of biophysical models33,34 when structures of most of the biologically relevant states are

available, and the additional value of experimental fitness landscapes.

While the quasispecies model improves the fit with frequencies in circulating variants, it is

important to note that roughly half of the variation in frequency remains unexplained. This

unexplained variation likely has many contributing factors, including noise in the experi-

mental fitness measurements, and epistasis. The variation between replicate competitions

was on the order of 20%, which would have about a four-fold impact on predicted frequency

based on our best-fit quasispecies model35. While experimental noise is clearly meaningful,

it does not fully explain discrepancies with the frequencies in circulating variants. As noted

earlier, the sequence database of circulating variants contains null alleles of protease, which

makes this frequency an imperfect proxy for in vivo fitness. In addition, epistasis should also

contribute to discrepancies between fitness measurements made in one genetic background

with estimates of clinical samples with diverse genetic backgrounds. Despite these caveats,

the fit of the quasispecies model indicates that the fitness effects of mutational neighbors

contributes to HIV-1 evolution in circulating viruses.

CONCLUSIONS

Combined analyses of the sequence of circulating variants and an experimental protein

fitness landscape of HIV-1 protease indicate that sampling of multiple base substitutions in

the same codon is limited during HIV-1 evolution. Likely for this reason, the distribution of

amino acid changes in circulating variants is skewed towards amino acid changes accessible

by single nucleotide mutations. The errors that HIV-1 makes during genome copying are
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predominantly single nucleotide mutations that are unlikely to simultaneously occur in the

same codon. Therefore, multiple nucleotide changes to codons are likely to depend on

the fitness of single-base-change intermediates. Because the majority of amino acid changes

require multiple mutations, this mechanism of mutational sampling can have a large influence

on protein sequence evolution, even for viruses with high genetic diversity such as HIV-1.

METHODS

Library construction

To facilitate the initial introduction of mutations, protease plus 50 bases of upstream

and downstream flanking sequence bracketed by KpnI sites was cloned from pNL4-3 into

pRNDM36. Each codon of protease in the pRNDM plasmid was individually subjected

to site saturation mutagenesis using a cassette ligation strategy36. A pNL4-3∆protease

plasmid was generated to efficiently accept protease mutants from the pRNDM construct.

The pNL4-3∆protease plasmid was constructed with a unique AatII restriction site. The

pNL4-3∆protease plasmid was treated with AatII enzyme followed by T4 DNA polymerase

without nucleotides to remove the 3′ overhang. Protease mutant libraries in pRNDM were

excised with KpnI and treated with T4 DNA polymerase without nucleotides in order to

remove 3′ overhangs. The protease mutant libraries and treated pNL4-3∆protease samples

contained 25 bases of complementarity at either end and this facilitated efficient assembly

using Gibson Assembly R©. All enzymes were from New England Biolabs. Mutants at 9-10

consecutive positions in protease were pooled to generate 10 library samples that together

include mutations at each of the 99 positions in protease.

Growth competition

Viral recovery and competitions were performed similar to previous descriptions21.

Briefly, 2.5 µg of plasmid DNA encoding full length HIV-1 NL4-3 was transfected into

293T cells using calcium phosphate. Supernatant of recovered P0 viral libraries was har-

vested after 48 hours, clarified by filtration through 0.45 µm filters and stored at -20 C.

We used an RT assay, which quantifies reverse transcriptase activity by real-time PCR, to

normalize virion production37. Viral infections were performed using 5 × 108 RT units of
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virus (P0) and 3 × 106 Jurkat T cells in 500 µL RPMI complete media for 2 hours. Cells

were washed twice with sterile PBS and seeded in 1.5 mL RPMI complete media in a 24-well

plate. P1 viral supernatant was collected and cells were split on days 2, 4, 8, 11, 14, and

16. Fresh media was replaced after each collection time-point. Viral RNA was isolated from

P1 viral supernatant collected on days 4 and 8 using Qiagen’s QIAamp MinElute Virus

Spin kit. Ultracentrifugation of 300 µL of viral supernatant was performed to pellet virions

using a Beckman Optima Max XP ultracentrifuge with a TLA-55 rotor at 25,000 rpm for 1

hour at 4 C. Supernatant was removed and virion-associated RNA in the pellet was isolated

according to the kit protocol, and eluted in 20 µL.

DNA preparation and sequencing

Samples were prepared for sequencing essentially as previously described21. HIV genomic

RNA was extracted from supernatants containing virions using High Pure Viral RNA kit

(Roche Inc.). SuperScript III and a primer downstream of the randomized regions were used

to reverse transcribe viral RNA to cDNA. The cDNA samples were processed as previously

described36 to add barcodes to distinguish pre- and post-selection samples as well as to add

base sequences needed for Illumina sequencing.

Sequence analysis

Viral RNA samples drawn from transfected cells at days 0 (initial transfection from 293T

cells to Jurkat T-cells), 4 and 8 were processed using Illumina 36-bp single read sequencing

on a Genome Analyzer II. Reads with a Phred score of 20 or above (>99% confidence) were

used for time-dependent analysis. Using these counts, for each species, i, the selection-rate

constant38, relative to the mean Malthusian fitness of stop codons can be defined as the

slope of a normalized logarithmic abundance versus time

m̃i =
d

dt
ln(Ni(t)/λ(t)) = mi −mλ,

where Ni(t) is counts at time t and mi is the standard (i.e. un-normalized) Malthusian

fitness. Defining the normalization factor

mλ =
d

dt
lnλ(t) =

1

nstop

d

dt
ln

(
nstop∏
k=1

Nk(t)

)
,
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where nstop is the number of stop codons in the library, ensures that the mean fitness of stop

codons is zero. Defining the relative (i.e. Wrightian) fitness with respect to the wild-type

(NL4-3 here) sequence

wi =
m̃i

m̃WT

,

ensures that wWT = 1. The selection coefficient is si = wi − 1. In order to collect measure-

ments across the entire protease sequence, a set of 10 non-overlapping EMPIRIC libraries

was prepared, each one spanning 9 or 10 contiguous amino acid positions. Each library was

normalized separately, as described above, to generate the fitness landscape depicted in Fig.

5A. For several of these libraries, biological replicate experiments were performed (see Figs.

2B and S1), yielding R2 = 0.72 at the codon level or R2 = 0.82 at the amino acid level, after

averaging among synonymous codons.

Analysis of sequences from circulating isolates

Sequence information for HIV-1 protease from clinical isolates was collected from the

Stanford University HIV drug resistance database17,18 in April, 2017 using the Genotype-Rx

protease data-set. The protease sequences were restricted to include only subtype B strains

that were annotated “None” for treatment with protease inhibitors and had a complete

nucleotide sequence (i.e. “NASeq”). These requirements resulted in 38,781 sequences, of

which 13,958 contained at least one position with an annotated mixture of amino acids

(e.g. “KR” represents a mixture of lysine and arginine). At positions annotated with

mixtures, each amino acid in the reported mixture was counted in our analyses. We did

not count stop codons because they represent known null alleles, of which there were 197 in

the database. We examined the impacts of excluding mixtures on the relationship between

amino acid frequency and fitness (Fig. S3). Excluding sequences that contained mixtures

did not dramatically alter the correspondence between frequency and experimental fitness.

We examined the location of amino acid mixtures (Fig. S4) and note that they tend to

occur at positions that exhibit the most amino acid divergence between different isolates.

This observation is consistent with many of the mixtures representing intra-host variation

and was a motivation for including reported amino acid mixtures in our analyses.
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Modeled populations

While data collected via EMPIRIC provide a direct readout of relative fitness for the

various species in the library, under certain population dynamics assumptions these fitness

measurements can also be used to extrapolate initial (constructed) populations to those at

later times.

The quasispecies model29,39 has previously been used to describe the evolutionary dy-

namics of HIV40. Since our measurements were done on libraries of single codon substitu-

tions, we consider an additive discrete-time quasispecies model where at time t, the codon

(1 ≤ j ≤ 64) frequencies, f
(i)
j (t), at each position, i, in the protease are related to those at

later times by

f
(i)
j (t+ 1) =

∑
kW

(i)
jk f

(i)
k (t)

F (i)(t)
, (1)

where W
(i)
jk = w

(i)
j Qjk is the mutation-selection matrix at position i. This matrix is the

product of a site-specific fitness landscape, w
(i)
j (characterized by fitting the EMPIRIC data)

and a single-site mutational landscape41,

Qjk =

(
µ

(l − 1)(1 − µ)

)djk
(1 − µ)N ,

where each residue position implies a (single codon) sequence length N = 3, there are l = 4

possible nucleotides at any position in this sequence, µ is the probability of a mutation

occurring during an iteration of Eq. 1 and djk is the Hamming distance between states (i.e.

codons) j and k. The average fitness of the population at time t is

F (i)(t) =
∑
j

∑
k

W
(i)
jk f

(i)
k (t).

The steady state solution to Eq. 1 is given by the dominant eigenvector of W
(i)
jk . In order

to predict steady state frequency distributions under this model, the mutation rate was

fitted by minimizing the mean per-residue Kullback-Leibler divergence between f
(i)
j and the

corresponding distribution found in multiple sequence alignment of patient-derived protease

sequences.
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