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Abstract

The Drosophila larva executes a stereotypical exploratory routine that appears to
consist of stochastic alternation between straight peristaltic crawling and reorientation
events through lateral bending. We present a model of larval mechanics for axial and
transverse motion over a planar substrate, and use it to develop a simple, reflexive
neuromuscular model from physical principles. In the absence of damping and driving,
the mechanics of the body produces axial travelling waves, lateral oscillations, and
unpredictable, chaotic deformations. The neuromuscular system counteracts friction to
recover these motion patterns, giving rise to forward and backward peristalsis in
addition to turning. The model produces spontaneous exploration, even though the
model nervous system has no intrinsic pattern generating or decision making ability,
and neither senses nor drives bending motions. Ultimately, our model suggests a novel
view of larval exploration as a deterministic superdiffusion process which is
mechanistically grounded in the chaotic mechanics of the body.

Introduction 1

Exploratory search is a fundamental biological behaviour, observed in most phyla. It 2

has consequently become a focus of investigation in a number of model species, such as 3

larval Drosophila, in which neurogenetic methods can provide novel insights into the 4

underlying mechanisms. However, appropriate consideration of biomechanics is needed 5

to understand the control problem that the animal’s nervous system needs to solve. 6

When placed on a planar substrate (typically, an agar-coated petri dish), the 7

Drosophila larva executes a stereotypical exploratory routine [1] which appears to 8

consist of a series of straight runs punctuated by reorientation events [2]. Straight runs 9

are produced by laterally symmetric peristaltic compression waves, which propagate 10

along the larval body in the same direction as overall motion (i.e. posterior-anterior 11

waves carry the larva forwards relative to the substrate, anterior-posterior waves carry 12

the larva backwards) [3]. Reorientation is brought about by laterally asymmetric 13

compression and expansion of the most anterior body segments of the larva, which 14

causes the body axis of the larva to bend [2]. 15

Peristaltic crawling and reorientation are commonly thought to constitute discrete 16

behavioural states, driven by distinct motor programs [2]. In exploration, it is assumed, 17

alternation between these states occurs stochastically, allowing the larva to search its 18

environment through an unbiased random walk [1, 4–6]. The state transitions or 19

direction and magnitude of turns can be biased by sensory input to produce taxis 20
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behaviours [4, 5, 7–13]. The neural circuits involved in producing the larval exploratory 21

routine potentially lie within the ventral nerve cord (VNC), since silencing the synaptic 22

communication within the brain and subesophageal ganglia (SOG) does not prevent 23

substrate exploration [1]. Electrophysiological and optogenetic observations of fictive 24

locomotion patterns within the isolated VNC [14,15] support the prevailing hypothesis 25

that the exploratory routine is primarily a result of a centrally generated motor pattern. 26

As such, much recent work has focused on identifying and characterising the cells and 27

circuits within the larval VNC [16–32]. However, behaviour rarely arises entirely from 28

central mechanisms; sensory feedback and biomechanics often play a key role [33,34] 29

including the potential introduction of stochasticity. Indeed, thermogenetic silencing of 30

somatosensory feedback in the larva leads to severely retarded peristalsis [35] or 31

complete paralysis [36,37]. 32

In line with the ethological distinctions drawn between runs and turns, 33

computational modelling of the mechanisms underlying larval behaviour has so far 34

focused on either peristaltic crawling or turning. An initial model based on neural 35

populations described a possible circuit architecture and dynamics underlying the fictive 36

peristaltic waves observed in the isolated ventral nerve cord [38]. A subsequent model 37

described the production of peristaltic waves through interaction of sensory feedback 38

with biomechanics, in the absence of any centrally generated motor output [39]. This 39

model produced only forward locomotion as it incorporated strongly asymmetric 40

substrate interaction. Recently, a model combining biomechanics, sensory feedback, and 41

central pattern generation reproduced many features of real larval peristalsis [40]. 42

However, this model only aimed to explain forward locomotion, and accordingly 43

contained explicit symmetry-breaking elements in the form of posterior-anterior 44

excitatory couplings between adjacent segments of the VNC, and posterior-anterior 45

projections from proprioceptive sensory neurons in one segment into the next segment 46

of the VNC. No biomechanical models of turning in the larva have yet been published, 47

but the sensory control of reorientation behaviour has been explored in more abstract 48

models [4, 5, 8, 11–13,41]. No current model accounts for both peristalsis and 49

reorientation behaviours, and no current model of peristalsis can account for both 50

forward and backward locomotion without appealing to additional neural mechanisms. 51

Here we present a model of unbiased substrate exploration in the Drosophila larva 52

that captures forward and backward peristalsis as well as reorientation behaviours. We 53

provide a deterministic mathematical description of body mechanics coupled to a 54

simple, reflexive nervous system. In contrast to previous models, our nervous system 55

has no intrinsic pattern-generating ability [38,40,41], and does not explicitly encode 56

discrete behavioural states or include any stochasticity [4, 5, 8, 11–13]. Nevertheless, the 57

model is capable of producing apparently random “sequences” of crawling and 58

reorientation behaviours, and is able to effectively explore in a two-dimensional space. 59

We argue that the core of this behaviour lies in the chaotic mechanical dynamics of the 60

body, which result from an energetic coupling of axial (“peristaltic”) and transverse 61

(“turning”) motions. 62

In what follows, we first outline the key components and assumptions of our model 63

of body mechanics. We use simple physical arguments to guide the construction of a 64

neuromuscular model capable of producing power flow into the body, and motion of the 65

body’s centre of mass relative to the substrate. Crucially, the neuromuscular model 66

neither senses nor drives transverse motions. In analysing the behaviour of our model, 67

we begin by focusing on the small-amplitude, energy-conservative behaviour of the body 68

in the absence of frictive and driving forces. In this case, the motion of the body is 69

quasiperiodic and decomposes into a set of energetically isolated axial travelling waves 70

and transverse standing waves. Reintroducing friction and driving forces, we 71

demonstrate the emergence of a pair of limit cycles corresponding to forward and 72
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backward peristaltic locomotion, with no differentiation of the neural activity for the 73

two states. We then shift focus to the behaviour of the model at large amplitudes. In 74

this case the axial and transverse motions of the body are energetically coupled, and the 75

conservative motion becomes chaotic. The energetic coupling allows our neuromuscular 76

model to indirectly drive transverse motion, producing chaotic body deformations 77

capable of driving substrate exploration. Analysis of our model supports a view of larval 78

exploration as an (anomalous) diffusion process grounded in the deterministic chaotic 79

mechanics of the body. 80

Model specification and core assumptions 81

Mechanics 82

To explore larval crawling and turning behaviours, we choose to describe the motion of 83

the larval body axis (midline) in a plane parallel to the substrate (Fig 1, S1 Fig). The 84

larval body is capable of more diverse motions including lifting/rearing [21], rolling [42], 85

digging [43], self-righting / balancing, and denticle folding which we have recently 86

observed to occur during peristalsis (S1 Video). However, while exploring flat surfaces, 87

the larva displays fairly little out-of-plane motion (neither translation perpendicular to 88

the substrate nor torsion around the body axis) and only small radial deformations [44]. 89

Furthermore, the majority of ethological characterisations of larval exploration treat the 90

animal as if it were executing purely planar motion [4, 6, 8–13,45]. A planar model is 91

thus a reasonable abstraction for the issues addressed in this paper, i.e., the generation 92

of peristalsis and bending. 93

Fig 1. Our model of axial and transverse motion over a planar substrate.
The midline of the larva is modelled as a set of discrete point masses interacting with
each other via linear, damped translational and torsional springs, and with the
environment via Coulomb sliding friction. We model the larva’s incompressible coelomic
fluid by constraining the total length of the midline to remain constant (see main text).
Quantities used to describe deformations of the body, and interaction with the
substrate, are shown in S1 Fig.

The segmented anatomy of the Drosophila larva allows us to focus our description of 94

the midline to a set of N = 12 points in the cuticle, located at the boundaries between 95

body segments and at the head and tail extremities. We assign each point an identical 96

mass, and measure its position and velocity relative to a two dimensional cartesian 97

coordinate frame fixed in the substrate (the laboratory or lab frame). We therefore have 98

NDOF = 2N = 24 mechanical degrees of freedom. We note that our assumption of a 99

uniform mass distribution along the midline is somewhat inaccurate, since thoracic 100

segments are smaller than abdominal segments. However, simulations with non-uniform 101

mass distribution (not shown) give results which are qualitatively close to those 102

presented here. 103

We assume that the larval body stores elastic energy in both axial 104

compression/expansion and transverse bending, due to the presence of elastic proteins 105

in the soft cuticle. We assume that energy is lost during motion due to viscous friction 106

within the larva’s tissues and sliding friction between the body and the substrate. 107

Sliding friction also allows shape changes (deformations) of the body to cause motion of 108

the larva as a whole relative to the substrate (centre of mass motion). 109

Since the mechanical response of the larva’s tissues is yet to be experimentally 110

determined, we assume a linear viscoelastic model. This is equivalent to placing linear 111
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(Hookean) translational and torsional springs in parallel with linear (Newtonian) 112

dampers between the masses in the model, as shown in Fig 1, or to taking quadratic 113

approximations to the elastic potential energy and viscous power loss (as in S1 114

Appendix). We note that the accuracy of the approximation may decrease for large 115

deformations, in which nonlinear viscoelastic effects may become important. 116

As with larval tissue mechanics, there has been little experimental investigation of 117

the forces acting between the larva and its environment. We therefore assume a simple 118

anisotropic Coulomb sliding friction model, in which the magnitude of friction is 119

independent of the speed of motion, but may in principle depend upon the direction of 120

travel. This anisotropy could be thought of as representing the biased alignment of the 121

larva’s denticle bands, or directional differences in vertical lifting or denticle folding 122

motions which are not captured by our planar model. A mathematical formulation of 123

our sliding friction model is given in S1 Appendix. 124

In addition to power losses due to friction, we also allow power flow due to muscle 125

activation. For the sake of simplicity, we choose to allow only laterally symmetric 126

muscle tensions. In this case, the musculature cannot directly cause bending of the 127

midline, and can only explicitly drive axial motions. We will see later that even indirect 128

driving of bending motion can lead to surprisingly complex behaviour. 129

Finally, we model the internal coelomic fluid of the larva. Given the extremely small 130

speed of the fluid motion compared to any reasonable approximation to the speed of 131

sound in larval coelomic fluid, we can safely approximate the fluid flow as 132

incompressible [46]. This would ordinarily require that the volume contained within the 133

larval cuticle remain constant. However, since we are modelling only the motion of the 134

midline and neglecting radial deformations, we constrain the total length of the larva to 135

remain constant. We note that this constraint is not entirely accurate to the larva, as 136

the total length of the animal has been observed to vary during locomotion [44]. 137

Nevertheless, for the sake of simplicity we will continue with this constraint in place, 138

noting that this approximation has been used with success in previous work focused on 139

peristalsis [39,40], and that there is experimental support for kinematic coupling via the 140

internal fluid of the larva [3]. We note that we satisfy the incompressibility condition 141

only approximately in some sections (Model behaviour – Conservative chaos, Dissipative 142

chaotic deformations, and Deterministic exploration), by introducing an additional 143

potential energy associated with the constraint, which produces an energetic barrier 144

preventing large changes in the total length of the body (see S1 Appendix for details of 145

this approximation along with specifics of the mathematical formulation of our 146

mechanical model). 147

Neuromuscular System 148

Let us now consider how we should use muscle activity to produce locomotion. There 149

are two basic requirements. First, we must have power flow into the body from the 150

musculature, so that the effects of friction may be overcome and the larva will not tend 151

towards its equilibrium configuration. Second, we must be able to produce a net force 152

on the centre of mass of the larva, so that it can accelerate as a whole relative to the lab 153

frame. Note that in this section, we motivate the neural circuits in the model from this 154

purely functional point of view, but will present relevant biological evidence in the 155

discussion. 156

To satisfy the first criterion, let us examine the flow of power into the body due to 157

the action of the musculature 158

P = −
N−1∑
i=1

biMFiq̇i (1)
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Here, qi describes the change in length of the i’th body segment away from its 159

equilibrium length, q̇i is the rate of expansion of the i’th body segment, bi is a (positive) 160

gain parameter, MFi is a (positive) dimensionless control variable representing muscle 161

activation, and the product biMFi is the total axial tension across the i’th body segment. 162

From this expression, it is clear that if we produce muscle tensions (MFi > 0) only while 163

segments are shortening (q̇i < 0), we will always have positive power flow into the body 164

(P > 0). This is a mathematical statement of the requirement for the larva’s muscles to 165

function as motors during locomotion, rather than as springs, brakes, or struts [33]. 166

A simple way to fulfil this condition is to introduce a segmentally localised reflex 167

circuit (Fig 2, [39]). We place a single sensory neuron in each segment which activates 168

when that segment is compressing (q̇i < 0). Each sensory neuron then projects an 169

excitatory connection onto a local motor neuron, which in turn projects to a muscle 170

fibre within the same segment. Assuming for now that there are no other influences on 171

the motor neurons, so that sensory activation implies local motor neuron activation, 172

segmental shortening will produce an immediate muscle tension serving to amplify 173

compression of the segment and thus counteract frictive energy losses. 174

Fig 2. The neuromuscular model. A local reflex amplifies motion via positive
feedback : sensory neurons SN activate during segmental shortening, exciting motor
neurons MN, and causing muscle fibre activation MF which accelerates shortening.
Reflexes in distant segments i and i+ j (|j| > 1) mutually inhibit one another via
interneurons IN. This limits the number of moving segments to allow centre of mass
motion (see text).

Let us now consider the second criterion for peristaltic locomotion. Assuming all 175

segment boundaries are of equal mass, the force on the centre of mass of the larva is 176

proportional to the sum of the forces acting on each segment boundary, i.e. 177

FCOM ∝
N−1∑
i=1

Fsegment (2)

Newton’s third law tells us that any forces of interaction between segment 178

boundaries (i.e. viscoelastic and muscle forces) must be of equal magnitude and 179

opposite direction, so that they cancel in this summation and we are left only with 180

contributions arising from substrate interaction. If the motion of the body is such that 181

some number nf of segments move forward at a given time, against a frictional force 182

−µf , while nb segments remain anchored or move backward, experiencing a frictional 183

force µb, then the summation becomes 184

FCOM ∝ nbµb − nfµf (3)

In the limiting case of isotropic (direction-independent) substrate interaction we 185

have µb = µf , and this expression tells us that the centre of mass will accelerate in the 186

forward direction only when there are less segments moving forward than are moving 187

backward or anchored to the substrate. Similarly, moving a small number of segments 188

backward while the others remain anchored will result in backward acceleration of the 189

centre of mass. Therefore, if the animal is to move relative to its substrate, it must 190

ensure that only a limited number of its segments move in the overall direction of travel 191

at a given time (indeed, this matches observations of the real larva [3, 22]). A more 192

lengthy exposition of this requirement on limbless crawling behaviours can be found 193

in [47]. 194

We fulfil the requirement for a small number of moving segments by introducing 195

mutually inhibitory interactions between the segmentally localised reflex circuits (Fig 2). 196
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We add a single inhibitory interneuron within each segment. When the sensory neuron 197

within the local reflex activates, it excites this interneuron, which then strongly inhibits 198

the motor neurons and inhibitory interneurons in non-adjacent segments, effectively 199

turning off the local reflexes in distant neighbours. Adjacent segments do not inhibit 200

each other in our model, allowing reflex activity to track mechanical disturbances as 201

they propagate from one segment to the next. We comment on the plausibility of this 202

feature of our model, given the experimental observation of nearest-neighbour inhibitory 203

connections in the larval ventral nerve cord [28], in the discussion. Similarly, the head 204

and tail segments do not inhibit each other, which permits peristaltic waves to be 205

(mechanically) reinitiated at one extremity as they terminate at the other. This 206

effectively introduces a ring-like topology into the neural model, matching our model of 207

axial mechanics which couples head and tail motion through the total length 208

constraint [39]. 209

We now have a neuromuscular model consisting of four cell types repeated in each 210

segment – sensory neurons, inhibitory interneurons, motor neurons, and muscle fibres. 211

For the sake of simplicity we model all neurons as having a binary activation state 212

governed by the algebraic relation 213

Vi =

{
1
∑
j wjVj > θi

0 otherwise
(4)

where Vi is the activation of the i’th cell, θi is its activation threshold, Vj is the 214

activation of the j’th presynaptic cell, and wj is the associated synaptic weight. 215

Numerical values for the weights and thresholds used in our model are given in S1 Table, 216

supplemental. Note that the muscle tension over a segment either vanishes (when the 217

muscle fibre is in the inactive state) or has fixed magnitude bi (when the muscle fibre is 218

activated by local sensory feedback). For this reason we refer to bi as the reflex gain. 219

Our choice to neglect neural dynamics is based on the large difference in timescales 220

between the neural and mechanical dynamics. Any rapid changes in the muscle tension 221

across a segment (due to motor neuron spiking) will be averaged out by the body’s 222

mechanics. Note that the lack of neural dynamics in our model immediately rules out 223

central pattern generation. 224

To summarise, the neural model we have constructed can be seen as consisting of 225

two parts, a segmentally repeating local reflex and a mutual inhibition circuit acting 226

between non-adjacent reflexes. The local reflex is constructed so that muscles will act as 227

motors, amplifying segmental compressions and counteracting friction. The mutual 228

inhibition circuit couples distant reflexes to allow only localised amplification. By 229

limiting the number of moving segments, this should ensure that the model larva can 230

produce a net force on its centre of mass. 231

Model behaviour 232

Larva-like axial compression waves and lateral oscillations result 233

from conservative mechanics 234

One of the advantages of grounding our model of larval exploration in the body’s physics 235

is that we are now able to apply powerful analytical results from classical mechanics in 236

order to understand the model’s behaviour. In this section we attempt to elucidate the 237

naturally preferred motions of the larva by focusing our attention on the conservative 238

mechanics of the body while neglecting friction forces, which would cause all motion to 239

stop, and driving forces, which might impose a particular pattern of motion. 240
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In this case, the general character of motion is specified by the Liouville-Arnold 241

integrability theorem. This theorem asks us to look for a set of conserved quantities 242

associated with a mechanical system, which remain unchanged as the system moves 243

(energy, momentum, and angular momentum are examples of some commonly conserved 244

quantities). If we can find a number of these quantities equal to the number of 245

mechanical degrees of freedom in our model, then the theorem tells us that the motion 246

of the body is integrable – it can be expressed analytically, and must be either periodic 247

or quasiperiodic. If there are not enough conserved quantities, then the system is said 248

to be nonintegrable. In this case the motion is much more complicated and will be 249

chaotic for some initial conditions. These chaotic motions do not permit analytical 250

expression and must be approximated through simulation. 251

In this section, we explicitly seek a case for which there is a “full set” of conserved 252

quantities (we provide only major results here, for detailed derivations see S2 253

Appendix). We begin by restricting ourselves to considering only small deformations of 254

the larval midline, in the case where all segments are of identical axial stiffness ka, 255

transverse stiffness kt, mass m, and length l. Under these assumptions, the total 256

mechanical energy of the body may be written 257

H(x,y,px,py) =
1

2

[
pTxpx + ω2

ax
TD2x

]
+

1

2

[
pTy py + ω2

t y
TD4y

]
(5)

where x and y are vectors giving the displacement of each segment boundary along 258

the body axis and perpendicular to the body axis, respectively, px and py give the 259

translational momentum associated with each direction, D2 and D4 are difference 260

matrices arising from a Taylor series expansion of our model’s potential energy (see S2 261

Appendix), and ωa =
√
ka/m and ωt =

√
kt/ml2 are characteristic axial and transverse 262

frequency scales. By making a linear change of coordinates 263

{x,y,px,py} → {X,Y,pX ,pY } to the eigenbasis of D2 and D4 (see S2 Appendix) this 264

simplifies to 265

H(X,Y,pX ,pY ) =
N−1∑
i=1

1

2

[
p2X,i + ω2

aλa,iX
2
i

]
+

N∑
i=1

1

2

[
p2Y,i + ω2

t λt,iY
2
i

]
(6)

where λa,i and λt,i are eigenvalues associated with the coordinate transformation. 266

This expression is a sum of component energies, each of which is independently 267

conserved. The Liouville-Arnold theorem immediately tells us that the motion of the 268

body must be (quasi)periodic in the case of conservative small deformations. Indeed, 269

the energy associated with each of the new coordinates Xi, Yi is in the form of a 270

harmonic oscillator, and each coordinate executes pure sinusoidal oscillations. By 271

transforming back to the original coordinates x,y we obtain a set of collective motions 272

(modes) of the body which are energetically isolated and have a sinusoidal time 273

dependence, corresponding to axial and transverse standing waves. We will refer to the 274

Xi, Yi as modal coordinates since they describe the time dependence of each of the 275

collective motions. 276

Each transverse standing wave corresponds to a periodic lateral oscillation of the 277

body, with a unique frequency given by ωt,i = ωt
√
λt,i. We determined these 278

frequencies numerically, along with the spatial components of the lowest frequency 279

standing waves (Fig 3A). These can be seen to match the eigenmaggot shapes extracted 280

from observations of unbiased larval behaviour [48]. 281

The axial standing waves correspond to oscillating patterns of segmental 282

compression and expansion. Unlike the transverse waves, the axial waves come in pairs 283

with identical frequencies of oscillation. We were able to analytically determine the 284

frequency of oscillation of the i’th pair of standing waves to be 285
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Fig 3. Conservative, small-amplitude motions of the body decompose into
a set of axial and transverse standing waves. A: spatial component of first four
transverse standing waves (top, black) compared to first four experimentally determined
eigenmaggots [48] (top, blue), with natural frequencies of oscillation (bottom). B:
spatial component of first four axial standing waves (top), with natural frequencies of
oscillation (bottom). Note that axial standing waves come in pairs with identical
frequency. C: Pairs of axial standing waves can be combined to produce
forward-propagating (top, solid black line) and backward-propagating (bottom, solid
black line) travelling waves. Head and tail extremities move in phase (dashed black line)
due to our total length constraint (see text), reminiscent of the “visceral pistoning”
observed in the real animal [3].

ωa,i = ωa
√
λa,i = 2ωa

∣∣∣∣sin( πi

N − 1

)∣∣∣∣ , i ∈ [0, N/2− 1] (7)

The spatial components of the axial standing waves could also be determined 286

analytically 287

xk,i =
1√
N − 1

cos

(
2πi

k

N − 1

)
, or xk,i =

1√
N − 1

sin

(
2πi

k

N − 1

)
, i ∈ [0, N/2− 1]

(8)
Where xk,i is the displacement of the k’th segment boundary for the i’th pair of 288

standing waves. We plot the axial frequencies ωa,i and spatial components xk,i in 289

Fig 3B. The degeneracy in the axial oscillation frequencies allows us to combine the 290

axial standing waves with a ±90◦ relative phase shift to form pairs of forward and 291

backward travelling wave solutions, given by 292

xk,i(t) = cos

(
ωa,it± 2πi

k

N − 1

)
, i ∈ [0, N/2− 1] (9)

where xk,i(t) gives the displacement of the k’th segment boundary as a function of 293

time for the i’th pair of travelling waves. The choice of a plus or minus sign corresponds 294

to the choice between forward or backward wave propagation. We plot the lowest 295

frequency pair of axial travelling wave solutions in Fig 3C, and directly visualise the 296

synthesis of travelling wave solutions from standing wave solutions in S2 Video. 297

To summarise, in this section we have shown that for the case of conservative, small 298

oscillations, the motion of the body may be decomposed into a combination of 299

transverse standing waves and axial travelling waves. This is of clear relevance to 300

understanding the behaviour of the larva, which moves across its substrate by means of 301

axial peristaltic waves while reorienting using lateral oscillations. Indeed, the transverse 302

modes of oscillation that we have derived here match principal components of bending 303

computed from actual larval behaviour [48]. We will now focus on the small-amplitude 304

motion of the body in the presence of energy dissipation due to friction and driving 305

forces. 306

Forward and backward peristaltic locomotion can be obtained 307

from simple reflexes 308

Reintroducing friction will clearly lead the motions described above to eventually 309

terminate due to energy dissipation, unless opposed by transfer of power. In a previous 310

section (Model specification and core assumptions – Neuromuscular system), we 311

introduced a neuromuscular system to produce power flow into the body, but as 312
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described, it can only directly transfer power into the axial degrees of freedom. In the 313

small deformation model we have just analysed, the axial and transverse degrees of 314

freedom are energetically decoupled. It follows that transverse friction is unopposed and 315

any transverse motion must eventually terminate in the case of small deformations. In 316

this section we will therefore focus only on the axial degrees of freedom, which 317

correspond to the peristaltic locomotion of the larva. 318

In Fig 4, we show the effect of coupling our neuromuscular model to the axial 319

mechanics. For small reflex gains, the power flow into the body from the musculature is 320

too low to effectively counteract frictive losses and the larva tends towards its passive 321

equilibrium state, in which there is complete absence of motion. However, increasing 322

reflex gain past a certain critical value leads to the emergence of long-term behaviours 323

in which the larva remains in motion, away from its passive equilibrium. These motions 324

correspond to forward and backward locomotion, driven by forward and backward 325

propagating compression waves (see below), as predicted from our earlier description of 326

the conservative motions of the body, and as observed in the real larva [3]. The 327

qualitative changes in behaviour that occur as reflex gain is varied are depicted in 328

Fig 4A, where we have measured the long-term centre of mass momentum of the larva, 329

along with the long-term relative phase of the lowest frequency modal coordinates. 330

Fig 4. Emergence of limit cycles for forward and backward locomotion in
the dissipative, small-amplitude model. A: as reflex gain is increased past a
critical point, the model larva attains a positive or negative long-term average centre of
mass momentum (top, red and blue lines), signifying continuous forward or backward
motion relative to the substrate, and a ±π/2 relative phase difference between the two
lowest frequency axial standing wave modes (bottom, red and blue lines), signifying the
presence of forward- or backward-propagating axial travelling waves. B: trajectories of
individual point masses in the model for forward (top) or backward (bottom)
locomotion (see S2 Fig for corresponding neural state). C: projection of model
trajectories onto the lowest frequency axial modes and the centre of mass momentum
reveals a pair of (putative) stable limit cycles for forward (blue) and backward (red)
locomotion. Parameters used to generate this figure are given in S2 Table.

For low reflex gains the centre of mass momentum tends to 0 as the body comes to a 331

stop and enters a passive equilibrium state. The relative phase of the low frequency 332

modal coordinates tends to either 0 or 180 degrees, which also corresponds to a loss of 333

momentum. For larger values of reflex gain, the total momentum is either positive, zero, 334

or negative. Positive and negative total momentum represent forward and backward 335

locomotion, respectively, while zero momentum corresponds to two unstable cases which 336

we discuss below. The relative phase of the lowest frequency modal coordinates tends to 337

±90◦ at high reflex gains, corresponding to the presence of forward- or 338

backward-propagating compression waves (see previous section). As in the larva [1, 3], 339

forward-propagating waves drive forward locomotion while backward-propagating waves 340

drive backward locomotion (Fig 4B). 341

We believe that these behaviours arise from the production of a pair of limit cycle 342

attractors in the system’s phase space, which we visualise in figure Fig 4C by projecting 343

the system state onto the lowest frequency pair of axial modes, and plotting the 344

associated modal coordinates along with the centre of mass momentum. Since wave 345

motion implies that pairs of modal coordinates should perform pure sinusoidal 346

oscillations with equal amplitude and frequency, and a ±90◦ relative phase shift (see 347

previous section and S2 Appendix), the travelling wave trajectories of the system 348

become circles in this coordinate system (see discussion of Lissajous figures, [49]). 349

Forward and backward locomotion can then be distinguished by the momentum of the 350

centre of mass. 351
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In S2 Fig we show the neural state of the model larva during forwards and 352

backwards locomotion. As expected given our previous exposition, we observe waves of 353

activity in the nervous system which track the mechanical waves propagating through 354

the body. Our sensory neurons also show a second, brief period of activation following 355

propagation of the mechanical wave caused by a slight compression that occurs as 356

segments return to equilibrium. This activity is “cancelled out” by the mutual 357

inhibition circuit, so that motor neurons do not exhibit a secondary burst of activity. 358

The larva has zero long-term total momentum in the presence of large reflex gain in 359

only two cases, both of which are highly unstable. First, if we start the larva so that it is 360

already in its passive equilibrium state, so that no relative motion of segment boundaries 361

occurs, it is obvious that there will be no activation of local reflexes and the larva will 362

not spontaneously move out of equilibrium. The second case corresponds to a pure axial 363

standing wave. In this case the larva is divided into two regions by nodal points where 364

the axial displacement is zero. During the first half-cycle of the standing wave, one 365

region will experience compression while the other experiences expansion, and in the 366

second half-cycle these roles will reverse. The neural circuit we have constructed can 367

amplify compression during both half-cycles since they are separated by a configuration 368

in which no compression or expansion occurs, and this allows the entire nervous system 369

to become inactive and “reset”. Since these behaviours are extremely unstable and 370

require very specific initial conditions to be observed, we have not visualised them here. 371

While the mutually inhibitory connections in our model are not required for the 372

propagation of locomotor waves, which can be maintained entirely by local reflexes [39], 373

these connections do greatly enhance stability. In the absence of the mutual inhibition 374

circuit, small mechanical disturbances in any stationary body segments can be 375

amplified, giving rise to multiple compression waves which travel through the body 376

simultaneously (not shown). If this instability produces an equal number of forward and 377

backward moving segments then overall motion of the larva relative to the substrate will 378

stop, in line with the argument presented earlier. We have also observed that roughly 379

symmetrical substrate interaction is required to produce both forward and backward 380

locomotion in our model. If friction is too strongly anisotropic, then locomotion can 381

only occur in one direction regardless of the direction of wave propagation (not shown). 382

It is worth noting that the axial model presented in this section does display discrete 383

behavioural states. However, there are no explicit decisions regarding which behavioural 384

states to enter, since the particular neural states occupied during forwards and 385

backwards locomotion are indistinguishable. Rather, both the apparent decision and the 386

eventual direction of travel can only be understood by examining the dynamics and 387

mechanical state of the body. 388

Conservative chaos from mechanical coupling 389

Having successfully produced peristaltic locomotion using our model, we will now turn 390

our attention to the larva’s turning behaviours. As before, we will start from physical 391

principles. In a previous section (Model behaviour – Conservative axial compression 392

waves and transverse oscillations) we showed that, for the case of conservative small 393

oscillations, transverse motions of the body were energetically decoupled from axial 394

motions, and could be decomposed into a set of periodic standing waves. We will first 395

extend our previous analysis to the case of energy-conservative, large amplitude motions 396

in the absence of damping and driving; and then in the following section consider the 397

impact of energy dissipation and the neuromuscular system on transverse motion, 398

To keep our presentation simple and allow visualisation of model trajectories, we will 399

focus on a reduced number of the mechanical degrees of freedom. Namely, we will 400

examine the bending angle φ and axial stretch q of the head segment (Fig 5A). We 401

introduce an amplitude parameter ε by making the substitutions q → εq and φ→ εφ, so 402
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that the total mechanical energy of the head may be written in nondimensional form as 403

(see S4 Appendix) 404

H =
1

2

[
p2q +

1

(1 + εq)2
p2φ + q2 + λ2φ2

]
(10)

where pq, pφ are the radial and angular momentum of the head mass, and we have 405

scaled the time axis of the model so that the natural frequency of axial oscillation is 406

unity. The parameter λ = ωt/ωa = kt/kal
2 is the ratio of transverse and axial 407

frequencies. 408

Fig 5. A reduced model of large amplitude motion. A: we focus on the
conservative dynamics of the head’s strain q and bend φ coordinates as amplitude ε is
varied. B: head trajectories are visualised by Poincare section, in which the head’s
configuration q, φ is plotted at successive turning points of the transverse bending
motion (at which angular velocity vanishes, dφ/dt = 0).

In the case of small oscillations, i.e. ε→ 0, the mechanical energy reduces to the 409

simpler expression 410

H =
1

2

[
p2q + q2

]
+

1

2

[
p2φ + λ2φ2

]
(11)

which is clearly a sum of independent axial and transverse energies. These energies 411

are individually conserved, so that the Liouville-Arnold theorem applies, and the motion 412

of the head is integrable and (quasi)periodic. This is in clear agreement with our earlier 413

results. For the more general case of large amplitude motion (ε > 0), we may have in 414

principle only a single conserved quantity – the total energy of the system. Indeed, it 415

should be clear from the presence of a “mixed” term in the mechanical energy (Eq 10) 416

that the axial and transverse motions are energetically coupled at large amplitudes, so 417

that the individual energies associated with each motion are no longer independently 418

conserved. Given that we have only one conserved quantity for a two degree of freedom 419

system, we can no longer rely on the Liouville-Arnold theorem to prove 420

(quasi)periodicity of the motion, and must accept that the system’s behaviour may be 421

chaotic. 422

To investigate this possibility further, we first note that conservation of energy 423

implies that flow within the four dimensional phase space must be constrained to lie on 424

the energy surface given implicitly by the relation H(q, φ, pq, pφ) = E. Therefore, given 425

a particular value E for the total energy, the system dynamics becomes three 426

dimensional. This allows us to visualise the behaviour of the system by plotting the 427

points at which trajectories intersect a two-dimensional Poincare section [50,51]. We 428

define our Poincare section by the condition that the angular momentum vanishes 429

pφ = 0 (equivalently, angular velocity vanishes dφ/dt = 0), and plot successive crossings 430

of the section as points in the q, φ plane. This allows us to intuitively interpret points 431

in the Poincare section as configurations of the head at successive turning points 432

(extrema) in the transverse motion (Fig 5B). 433

In what follows, we set the total energy to be E = 1
2 so that when ε = 1 we can in 434

principle obtain complete compression of the head (q = −1). We choose to set 435

λ = e
6 ≈ 0.45, giving an irrational frequency ratio. This loosely matches observations of 436

the real larva in which the frequency of transverse oscillations is approximately half that 437

of axial oscillations but does not satisfy an exact (rational) resonance relationship [41]. 438

The results we obtain with these parameters do not differ much from results for other 439

energies or other frequency ratios, including resonant relationships (not shown). 440

Poincare plots for the cases ε→ 0 and ε ∈
{

1
3 ,

2
3 , 1
}

are shown in Fig 6. When ε→ 0 441

(Fig 6A), conservation of transverse energy implies that the turning points of the 442
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transverse motion must remain constant. The fact that the frequency ratio λ is 443

irrational implies that the overall motion is quasiperiodic, and the values of q obtained 444

at successive transverse turning points should not repeat. In accordance with these 445

observations, the Poincare section for ε→ 0 consists of a series of verticle lines 446

(Fig 6Ai). For ε = 1
3 the Poincare plot becomes distorted, but the majority of 447

trajectories still trace out one-dimensional curves in the section (Fig 6Bi), which is 448

indicative of persistent quasiperiodic behaviour. At ε = 2
3 the Poincare plot appears 449

qualitatively different. There is now a large region of what appears to be “noise”, 450

indicating that the configuration of the head at successive transverse turning points has 451

become unpredictable. This is a clear signature of deterministic chaos. There are, 452

however, several regions of the section indicative of (quasi)periodic behaviour. These 453

appear as one-dimensional curves or discrete points in the Poincare section (Fig 6Ci). 454

At ε = 1, the region of the Poincare plot occupied by chaos has expanded, although 455

there still appear to be some regions corresponding to (quasi)periodic behaviour 456

(Fig 6Di). These results qualitatively agree with the Kolmogorov-Arnold-Moser 457

theorem [49], which tells us that quasiperiodic behaviour should persist under small 458

nonintegrable (chaotic) perturbations of an integrable Hamiltonian, and that the region 459

of phase space corresponding to chaotic behaviour should grow with the perturbation 460

size (in our case, the perturbation size corresponds to the amplitude of motion ε). 461

However, our model as presented here does not formally meet the requirements of this 462

theorem (see S4 Appendix). 463

Fig 6. Emergence of deterministic chaos in the conservative head dynamics
as amplitude of motion is increased. A, B: for small amplitudes (ε→ 0, ε = 1/3),
Poincare section shows quasiperiodic head oscillations (i), while the maximum
Lyapunov characteristic exponent (MLCE), which quantifies the dominant rate of
separation of nearby phase trajectories, converges to ∼ 0bits s−1 (ii), the power spectra
of head stretch q and bend φ coordinates show clear peaks with little “noise”
component (iii), and autocorrelations of these variables decay linearly (iv). These
results betray non-chaotic, quasiperiodic oscillations for small amplitudes. C, D: for
large amplitudes (ε = 2/3, ε = 1), the Poincare section contains a large chaotic sea (i),
while the MLCE converges to a positive value (ii), power spectra become “noisy” (iii),
and autocorrelations decay rapidly (iv). These results strongly suggest the existence of
deterministic chaotic head dynamics for large amplitudes. MLCE, power spectra, and
autocorrelations were computed for initial conditions shown by black dot in panel i.
Parameters used to generate this figure are detailed in the main text, and reported in
S3 Table.

Analysis by Poincare section provides an invaluable method to determine the 464

character of overall system behaviour by direct visualisation of trajectories, but cannot 465

be applied to higher dimensional systems. This is problematic, since we would like to 466

assess the existence of chaos beyond our reduced model of the larva’s head. We 467

therefore deployed a series of other methods which are possibly less reliable than the 468

method of Poincare section but can be applied equally well to higher dimensional 469

systems. These included estimation of the maximal Lyapunov characteristic exponent 470

(MLCE) for the dynamics along with calculation of the power spectrum and 471

autocorrelation of internal variables [50–52]. The MLCE can be thought of as 472

quantifying the rate of separation of nearby trajectories, or, equivalently, the rate at 473

which information is generated by the system being analysed [53]. A positive MLCE is 474

generally considered a good indicator of chaotic behaviour. The power spectrum of a 475

periodic or quasiperiodic process should consist of a “clean” set of discriminable peaks, 476

whereas that of a chaotic process should appear “noisy” and contain power across a 477

wide range of frequencies. Meanwhile, the autocorrelation of a periodic or quasiperiodic 478
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process should show a strong oscillatory component with an envelope that decays 479

linearly with time, while that of a chaotic process should show a much quicker decay, 480

similar to a coloured noise process. In Fig 6 we plot these measures at each value of ε, 481

for a trajectory starting with initial conditions indicated on the corresponding Poincare 482

plot by a filled black circle. These measures confirm increasingly chaotic behaviour as 483

the amplitude ε increases, in agreement with our Poincare analysis. In Fig 7 we show a 484

solution including all degrees of freedom in our conservative mechanical model (i.e. not 485

just those of the head). The trajectory of individual segments relative to the substrate 486

appears qualitatively irregular, while the indirect measures we introduced above (MLCE, 487

power spectrum, autocorrelation) are all indicative of deterministic chaotic behaviour. 488

Fig 7. Conservative planar motion of the body is chaotic at large
amplitudes. A: trajectories of individual segment boundaries appear qualitatively
irregular, B: our estimate of the maximum Lyapunov characteristic exponent converges
to a positive value, C: power spectra of head stretch q and bend φ show a strong “noise”
component, and D: their autocorrelations decay rapidly. All are indicators of
deterministic chaos. Parameters used to generate this figure are given in S4 Table.

Spontaneous turning and reversals require no additional control 489

We will now reintroduce dissipative effects into our model of larval motion in the plane. 490

We previously saw that conservative mechanics predicted axial travelling waves and 491

transverse oscillations. These were lost in the presence of friction, but the axial 492

travelling waves could be recovered with the addition of a neuromuscular system 493

designed to selectively counteract frictive effects. We have now seen that conservative 494

mechanics predicts chaotic planar motion. Although our neuromuscular model transfers 495

power only into the axial degrees of freedom, we recall from the previous section that 496

axial and transverse motions are energetically coupled at large amplitudes. We therefore 497

tentatively expect that we may be able to recover the complete chaotic planar motion 498

without requiring any additional mechanism for direct neuromuscular power transfer 499

into tranverse motion. 500

To investigate whether our dissipative planar model shows chaotic behaviour, we ran 501

n = 1000 simulations starting from almost identical initial conditions (euclidean 502

distance between initial mechanical state vectors < 10−7, with no initial neural activity) 503

and identical parameters (see S5 Table). We can indeed observe that the simulated 504

larva perform peristalsis with interspersed bending of the body (turns), and that the 505

fully deterministic system produces apparently random turning such that the 506

simulations rapidly diverge (S3 Video). Since most working definitions of chaos require 507

strictly bounded dynamics, we here restrict our analysis to the coordinates describing 508

deformation of the body (segmental stretches and bending angles), ignoring motions of, 509

or overall rotations about, the centre of mass (i.e., the trajectory through space of the 510

body, which we will analyse in the following section). 511

Qualitatively, the deformations of the large amplitude dissipative model appear 512

irregular (Fig 8A). However, there are persistent features reminiscent of the ordered 513

small-amplitude behaviour described in previous sections. In particular, there are clear 514

axial travelling waves and lateral oscillations. However, whereas forward- and 515

backward-propagating axial waves previously corresponded to stable limit behaviours, 516

the large amplitude system appears to go through occasional “transitions” between 517

these behaviours . In addition, apparently spontaneous large bends appear occasionally, 518

suggesting that the neuromuscular system is effectively driving transverse motion. 519

The irregularity of the axial motion is reflected in the pattern of sensory neuron 520

activation (S3 Fig). However, the mutual inhibitory interactions in our model act to 521
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Fig 8. Dissipative planar motion is chaotic. A: representative segmental stretch
(left) and bend (right) time series (see S3 Fig for corresponding neural state). Note the
occurence of a large bend starting at ∼ 1–2 seconds at the larva’s head, which appears
to propagate backwards along the body while triggering a “transition” from forward to
backward wave propagation at ∼ 3.5 seconds. Forward wave propagation resumes at
∼ 6 seconds. B: power spectra of the head stretch q (top) and bend φ (bottom) showing
significant “noise” component. C: Autocorrelations of q and φ rapidly decay. D:
probability density of correlation dimension estimates for 1000 mechanical trajectories.
The dimension of the system’s limit set is estimated as ∼ 3.5 (median, vertical blue
line). E: maximum Lyapunov characteristic exponent estimates converge to a positive
value. All measures suggest the presence of deterministic chaotic dynamics. Parameters
used to generate this figure are given in S5 Table.

filter this input, allowing only a small window of excitability within the central nervous 522

system. As a result, interneuron and motor neuron activity appears fairly ordered, 523

tracking and reinforcing axial compression waves. 524

We used four measures to assess whether our qualitative observation of irregular 525

motion betrays the existence of deterministic chaos. First, we analysed the power 526

spectrum of individual cooordinates (Fig 8B). The power spectra of all degrees of 527

freedom showed consistent harmonic peaks along with a strong “noisy” non-harmonic 528

component, a pattern consistent with chaos and incommensurate with (quasi)periodicity 529

(Fig 8B shows data for head bending angle and stretch; similar data were obtained for 530

other degrees of freedom, not shown). Next, we computed the autocorrelation of the 531

same degrees of freedom. The autocorrelations of all degrees of freedom showed a 532

periodic pattern with a peak at 0 seconds time lag followed by a rapid decay (Fig 8C). 533

This is characteristic of oscillatory chaotic behaviour, and the exponential loss of 534

information regarding initial conditions that chaotic systems display. We then estimated 535

the correlation dimension (Dc) of the limit set of our model’s dynamics. Note that we 536

did not apply this measure to the conservative models in the previous section since the 537

Liouville theorem rules out attracting limit sets for these systems. The distribution of 538

correlation dimension estimates for our dissipative system across all 1000 trials is shown 539

in Fig 8D. Estimates were clustered around ∼ 3.5 (median dimension 3.46), with 93% of 540

estimates lying in the range [3–4]. These results are suggestive of a limit set with fractal 541

dimension, which is a signature of “strange” chaotic attractors. Finally, we computed 542

an estimate of the maximal Lyapunov characteristic exponent (MLCE). As in the 543

previous section, we estimated the MLCE for our system to be positive (∼ 13bits s−1, 544

Fig 8D), a very strong indicator of chaotic behaviour. All of these results point to the 545

presence of a chaotic dynamical regime in our dissipative large amplitude model. 546

Exploration emerges without decisions or stochasticity 547

As the coupled biomechanical and neuromuscular system produces both forward and 548

backward peristalsis and lateral oscillations, each simulated larva will trace out a 2D 549

trajectory over time. As shown in Fig 9A, the chaotic deformations characterised in the 550

previous section caused the larvae to disperse across their two-dimensional substrate, 551

following paths reminiscent of the real animal’s exploratory behaviour. 552

To characterise the trajectories of our model, we first investigated them at a global 553

level, based on the centre of mass (COM) trajectory of each simulated larva, computing 554

the tortuosity and fractal dimension of the paths (Fig 9B) [54]. We defined our 555

tortuosity measure as 556
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Fig 9. Deterministic exploration. A: dispersion of the centres of mass of 1000
simulated larvae, starting from almost identical mechanical initial conditions (overlayed
in inset). B: tortuosity and fractal (box-counting) dimension for all 1000 paths indicate
plane-filling behaviour (blue line = mean tortuosity, red line = mean dimension, see
text; see S4 Fig for power law analysis of trajectory curvature and angular speed). C:
mean-squared displacement (black line) shows transient quadratic growth (blue line)
followed by asymptotic linear growth (red line, asymptotic diffusion constant
≈ 144segs2s−1; see also log-log plot, S5 Fig). D: distribution of body bends (black) with
maximum likelihood von Mises (red) and wrapped Cauchy (blue) fits. E: distribution of
run lengths with maximum likelihood exponential fit (red). Run lengths were calculated
as duration between successive crossings of a threshold body bend (20◦), indicated by
blue lines in panel D. See S6 Fig for analysis of tail speed and head angular velocity.
Parameters used to generate this figure are given in S5 Table.

T = 1− D

L
(12)

where D is the net displacement of the COM between initial and final times, and L 557

is the total distance travelled by the COM along its path. Note that if the COM travels 558

in a straight line between initial and final times we will have D = L so that T = 0. In 559

the limit L→∞, corresponding to the COM taking an extremely long path between its 560

initial and final states, we have D
L → 0 so that T → 1. We calculated the mean 561

tortuosity of our COM trajectories to be 〈T 〉 = 0.43, with a variance of 562

〈(T − 〈T 〉〉)2 = 0.05. The lowest (highest) tortuosity observed was T = 0.05 (T = 0.95). 563

We estimated the fractal dimension Db of the COM trajectories using a 564

box-counting algorithm. The minimum expected dimension Db = 1 would correspond to 565

curvilinear paths (e.g. straight line or circular paths), while the maximum expected 566

dimension of Db = 2 corresponds to plane-filling paths (e.g. brownian motion). We 567

calculated the mean dimension of the COM trajectories to be 〈Db〉 = 1.37, with 568

variance 〈(Db − 〈Db〉)2〉 = 0.01. The lowest (highest) path dimension observed was 569

Db = 1.17 (Db = 1.95). We have plotted the tortuosity and fractal dimension of every 570

path in Fig 9B. These results show that the trajectories of the model differed markedly 571

from straight lines (tortuosity T > 0 and box-counting dimension Db > 1), and 572

displayed a good ability to cover the planar substrate (box-counting dimension 573

1 < Db < 2). We also note that our COM trajectories display the power-law 574

relationship between angular speed and curvature reported by [55], with a scaling 575

exponent (β ≈ 0.8) falling within the range reported for freely exploring larvae (S4 Fig). 576

We next investigated the rate at which the simulated larvae explored their 577

environment. To do this, we calculated the mean-squared displacement (MSD) of the 578

COM over time (Fig 9C). This is a standard measure used to characterise diffusion 579

processes, and is defined as 580

〈d2〉(t) =
1

n

n∑
i=1

(Ri(t)−Ri(0))2 (13)

where Ri(t) is the position of the i’th larva’s COM at time t and n = 1000 is the 581

number of trials being averaged over. We observed an initial transient, lasting on the 582

order of 10 seconds, during which the MSD grew as ∼ t2 (blue line, S5 Fig), after which 583

growth slowed and tended to ∼ t (linear fit for t > 80 seconds shown by red line, Fig 9C 584

and S5 Fig, r2 = 0.99, diffusion constant D = 144segs2s−1). The initial transient was 585

not due to our particular initial conditions, since it remained even after discarding 586

> 60s of initial data (not shown). These results therefore tell us that, although on long 587

PLOS 15/27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/354795doi: bioRxiv preprint 

https://doi.org/10.1101/354795


timescales our model appears to execute standard Fick diffusion or a Brownian random 588

walk (linear growth of MSD), on short timescales the model’s behaviour is 589

superdiffusive (approximately quadratic growth of MSD) [56,57]. This is in good 590

agreement with observations of the real larva [6,45]. The superdiffusive behaviour of the 591

larva was previously explained in terms of a persistent random walk [6], in which the 592

larva’s current and previous headings are highly correlated during straight runs so that 593

the animal follows an approximately ballistic trajectory on short timescales. We believe 594

that persistence effects arise in our model due to the finite time required for the 595

deterministic chaotic dynamics to destroy information regarding initial conditions. 596

Larvae of different genetic backgrounds can show altered MSD growth rates relative 597

to the wildtype animal [6, 45]. We were able to increase or decrease the rate of 598

exploration in our model by increasing or decreasing the transverse (bending) stiffness 599

of the simulated larvae (not shown), a parameter which may in principle include both 600

mechanical and neural components (see S5 Appendix). 601

We next calculated some other standard measures found in the larva literature. To 602

do so, we built a two-segment representation of each simulated larva by drawing vectors 603

from the tail extremity to the A2-A3 segment boundary (the tail vector, T), and from 604

the A2-A3 boundary to the head extremity (the head vector, H). We then defined the 605

body bend, θ, to be the angle between tail and head vectors, 606

θ = atan(Hy/Hx)− atan(Ty/Tx). The head angular velocity ν was computed as the 607

cross-product of the head vector and the head extremity’s translational velocity ṙhead 608

measured relative to the lab frame, ν = H× ṙhead, while the tail speed v was taken to 609

be the magnitude of the tail extremity’s translational velocity ṙtail measured relative to 610

the lab frame, v =
√
ṙtail · ṙtail. The tail speed and head angular velocity both show a 611

strong oscillatory component, which can be seen in the time and frequency domains (S6 612

Fig). The power spectra of these variables contains considerable “noise” over a wide 613

spread of frequencies, in accordance with the results of the previous section. The 614

distribution of tail speeds for our model is bimodal, similar to that of the real larva [41]. 615

The body bend angle was observed to be symmetrically distributed (Fig 9D), with 616

roughly zero mean (〈θ〉 = 0.005), small variance (〈(θ − 〈θ〉)2〉 = 0.13), slight positive 617

skew (SK(θ) = 0.23), and high excess kurtosis KU(θ) = 7.9. The kurtosis of our data 618

precludes a good fit by the von Mises distribution (maximum likelihood estimate shown 619

by red line in Fig 9D). Our data appears to be better fitted by a wrapped Cauchy 620

distribution, though this overestimates the central tendency of our data (maximum 621

likelihood estimate shown by blue line in Fig 9D). This analysis gives a quantitative 622

measure of the rare large bending events mentioned at the beginning of the previous 623

section (high excess kurtosis of the body bend distribution). 624

Finally, we computed a run-length distribution by setting a threshold body bend 625

angle θturn = 20◦ (as in [13]) and calculating the length of time between successive 626

crossings of this threshold. The distribution we obtained appears approximately linear 627

on a log-linear plot (Fig 9E, linear fit r2 = 0.99 with slope λ = −0.075), and is better fit 628

by an exponential than a power law distribution (maximum likelihood estimates, log 629

likelihood ratio = 5281, p < 0.01). Together with our observation of asymptotic linear 630

growth of MSD, the exponential distribution of run lengths suggests that the model can 631

be considered to be effectively memoryless on long timescales [57]. This again agrees 632

with the observed rapid loss of information from the system due to its chaotic dynamics, 633

as quantified by the Lyapunov exponent and autocorrelation analysis of the previous 634

section. 635

Ultimately, the analysis of our model supports a view of the larval exploratory 636

routine as an (anomalous) diffusion process arising from the deterministic chaotic 637

dynamics of the body. The model nervous system functions purely to recover these 638

dynamics from the effects of frictive energy dissipation, and to ensure centre of mass 639
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motion, rather than explicitly directing exploration. 640

Discussion 641

The intrinsic capabilities of an organism’s body determine the field of possibilities that 642

neural circuits for behaviour can exploit. Here, by focusing first on the biomechanics of 643

Drosophila larva, we find that its body already contains an inherent exploratory routine. 644

This is demonstrated through a combined biomechanical and neuromuscular model that 645

is the first to be able to generate both forward and backward peristalsis and turning, 646

allowing 2D motion in the plane to be simulated. We show that, in the absence of 647

friction, the body’s conservative mechanics alone supports both axial travelling waves 648

and transverse standing waves. These are energetically coupled at larger amplitudes, 649

such that no driving, sensing, or control of body bend is required for the system to start 650

producing spontaneous coordinated bending motions. Frictional losses can be recovered, 651

to maintain axial waves, by a neuromuscular system consisting of only simple local 652

sensorimotor reflexes and long-range inhibitory interactions. This is sufficient to produce 653

emergent crawling, reversal and turning that resembles larval exploratory behaviour, 654

and which is chaotic in nature. At a population level, we observe a deterministic 655

anomalous diffusion process in which an initial superdiffusive transient evolves towards 656

asymptotic Fickian/Brownian diffusion, matching observations of real larvae [6, 45]. We 657

therefore propose that the role of biomechanical feedback in Drosophila larvae goes 658

beyond the periphery of basic neuromuscular rhythms [39,40], to provide the essential 659

“higher order” dynamics on which exploratory behaviour is grounded. 660

Most existing models of larval exploration abstract away from the mechanics 661

underlying the production of runs and reorientations [4–6,8, 11–13]. The larva is often 662

described as executing a stochastic decision-making process which determines which 663

state (running or turning) should be occupied, and when to initiate a change of 664

behavioural state. In contrast, our model produces the entire exploratory routine 665

without making any decisions (the transverse motion is neither sensed nor driven by the 666

nervous system) nor introducing any stochastic process (neural or otherwise). Similarly, 667

transient “switching” is seen to occur between forward and backward peristalsis even 668

though there is no neural encoding or control of the direction of wave propagation. In 669

other words, the body dynamics generate the basis of a chaotic exploratory routine 670

which only needs to be amplified by the neural circuitry, making the search for 671

underlying stochastic or state switching circuitry superfluous for this behaviour. 672

The work presented here also stands in contrast to previous models of larval 673

peristalsis [38, 40] and the prevailing hypotheses regarding this phenomenon [15,58] by 674

eschewing any role for intrinsic neural dynamics. Such stereotyped and rhythmic 675

locomotion is widely assumed to be the signature of a central pattern generator (CPG), 676

that is, a neural circuit that intrinsically generates a rhythmic output, and thus 677

determines a particular mechanical trajectory to be followed by the body [59–61]. 678

However it is recognised that systems vary in the degree to which coordinated behaviour 679

is independent of biomechanical and sensory feedback [61]. Indeed, evidence from 680

studies employing genetic manipulations to disrupt sensory neuron input suggest that 681

proprioceptive feedback is necessary for correct larval locomotive patterns [16,35–37,62]; 682

although in some cases coordinated waves of forward and backward peristalsis can be 683

produced, in both intact [16,35,62] and isolated VNC preparations [14,15], these are 684

reported as abnormal with the most evident defects being time-dilation [15,35,62] and 685

abnormal frequency in polarity changes [62]. 686

In fact, our intent is not to adjudicate between the roles of intrinsically generated 687

activation sequences vs. biomechanical feedback in this system, but rather to note that 688

we should expect neural circuits of locomotion to adhere to the dynamical modes of the 689
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associated body, instead of working against them. Thus it should be unsurprising if 690

these dynamics also exist (potentially in a latent form) in the neural circuitry. For 691

example, a simple modification of the neural circuit presented here could produce 692

instrinsic ‘peristaltic’ waves. Recall that the long-range global inhibition pattern in our 693

model treats head and tail segments as ‘neighbouring’ nodes (see Model specification 694

and core assumptions – Neuromuscular system). If local constant input or recurrent 695

feedback were added to each segment, the circuit would then resemble a ring 696

attractor [63–65] and a stable activity bump would be formed. Breaking the 697

forward/backward symmetry of the circuit, e.g., by introducing asymmetric 698

nearest-neighbour excitatory connections [66], would cause the activity bump to move 699

along the network, giving rise to intrinsic travelling waves. This would complement any 700

mechanical compression waves travelling through the body, i.e., remain consistent with 701

the principles set out in this paper. Would such a network be a CPG? The answer is 702

unclear. On the one hand, it would show spontaneous rhythmic activity in the absence 703

of sensory input. On the other, sensory feedback would do much more than simply 704

correct deviations from the CPG output or provide a “mission accomplished” signal [35]. 705

Rather, feedback would play a crucial role in orchestrating motor output to ensure 706

power flow into the body, consistently with its dynamical modes. 707

It is important to note that the emergence of rhythmic peristalsis and spontaneous 708

turns in our model is not strongly dependent on the specific assumptions made in our 709

mechanical abstraction. For example, the observation for small amplitude motions of 710

sinusoidal axial travelling waves, along with transverse standing waves whose shapes 711

match the experimentally observed “eigenmaggots” [48], is a direct result of the 712

second-order Taylor series approximation of the model Hamiltonian (S2 Appendix). The 713

small-amplitude model is thus non-unique, since many different mechanical models 714

could have identical second-order approximations. Similarly, we expect that the 715

deterministic chaotic behaviour derived from our conservative model for large amplitude 716

motions will hold for other models of the larval body, given that it is conjectured that 717

the majority of Hamiltonian systems are nonintegrable. 718

As a consequence of exploiting these mechanics, our model explains a wider range of 719

behaviour than previous models, using a simpler nervous system. The properties 720

included in the neuromuscular circuitry were derived from basic physical considerations, 721

i.e., what was necessary and sufficient to produce exploration, rather than from known 722

neuroanatomy or neurophysiology. However, it is useful to now examine what insights 723

and predictions regarding this circuitry can be derived from our model. 724

Firstly, we consider the connections between segments. Unlike the model from [40], 725

we did not require assymmetric connections to obtain forward (or backward) waves as 726

these (and spontaneous switching between them) arise inherently in the mechanics. 727

Rather, obtaining centre of mass motion of the entire body required the “ring attractor” 728

layout of mutual inhibition between distant segments described above. The model thus 729

predicts that motor output should be strongly inhibited (by signalling from other 730

segments) the majority of the time, so that motor neurons only activate as the 731

(mechanical) peristaltic wave passes through the corresponding body segment. This is in 732

contrast to previous models which appealed only to local, nearest-neighbour inhibitory 733

connections [38,40]. 734

What might be the neural substrate for the proposed inhibition? There are two 735

currently known intersegmental inhibitory pathways in the larva. GVLI premotor 736

inhibitory neurons synapse onto motor neurons within the same segment but extend 737

their dendritic fields several segments further anterior along the VNC. Accordingly, the 738

GVLIs inhibit motor neurons at a late phase during the local motor cycle [22]. Our 739

model predicts that there should be a larger set of GVLI-like neurons within each 740

segment, with dendritic fields tiling distant segments. Although in our model the 741
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mutual inhibition is (for simplicity) arranged to act on all non-adjacent segments, we 742

would in practice expect that active compression is actually spread across more 743

segments [3, 22] to transfer power to the body more efficiently (S3 Appendix), and this 744

should be reflected in the inhibitory connection pattern. The second inhibitory pathway 745

involves GDL inhibitory interneurons, which receive input from the excitatory premotor 746

neuron A27h in the nearest posterior segment, and synapse onto A27h within the same 747

segment while simultaneously disinhibiting premotor inhibitory neurons in distant 748

segments [28]. Thus, GDL effectively produces both local and long-range inhibition of 749

motor output. However, GDL receives axo-axonic connections from vdaA and vdaC 750

mechanosensory cells within the same segment, so local inhibition is likely gated by 751

sensory input. This would match our model, in which sensory activation within a 752

segment should be sufficient to produce motor output when one of the neighbouring 753

segments is active. We thus predict that simultaneous experimental suppression of GDL, 754

GVLI, and all other long-range inhibition in the VNC should allow the propagation of 755

several, concurrent locomotor waves in response to mechanical input. 756

Secondly, within a segment, our model highlights the importance of the timing of 757

neuromuscular forces relative to body motion. Specifically, during locomotion, the 758

larva’s muscles should act primarily as motors rather than as springs, brakes, or struts 759

(see [33] for a discussion of these differences), and thus should activate in phase with the 760

segmental stretch rate. This hypothesis could be tested by performing work-loop 761

experiments, for which we predict the existence of a counterclockwise cycle in a plot of 762

muscle force (potentially measurable by calcium imaging) over segment length during 763

locomotion. 764

Can our model’s requirement that neurons sensing stretch-rate provide a direct 765

excitatory connection to motor neurons, within the same segment, be mapped to 766

identified pathways in the larva? One possible monosynaptic implementation of such a 767

link are the dda mechanosensory cells which have been observed to make synapses onto 768

aCC and RP2 motor neurons [23]. However, synapse counts show high variability both 769

within and across individuals, so it seems unlikely to be a core component of the 770

locomotor circuitry. A more promising candidate is the excitatory premotor interneuron 771

A27h, which receives input from vpda and vdaC and sends bilaterally symmetric 772

outputs to aCC and RP5 [28]. It is known that A27h activation is sufficient to activate 773

downstream motor neurons, but it remains unknown whether proprioceptive sensory 774

input is sufficient to activate A27h. Additionally, we hypothesise that AO2 (PMSI) 775

interneurons [20], which have been recently shown to form an inhibitory sensory-motor 776

feedback pathway between dbd mechanosensory cells and motor neurons [27], could play 777

a role in filtering this signal to obtain the necessary stretch-rate activation 778

independently of stretch. General models of mechanotransduction suggest that larval 779

mechanosensory cells may be sensitive to both rate of stretch as well as absolute stretch, 780

depending upon the mechanical properties of the sensory dendrites and the biophysics 781

of the relevant mechanosensitive ion channels [67]. If PMSIs have a slow-activating, 782

integrator dynamics that encodes stretch, while A27h activate quickly in response to 783

proprioceptive sensory input to encode stretch and stretch-rate, the combined input to 784

motor neurons would be only stretch-rate dependent excitation, as our model requires. 785

This could explain the observation that optogenetic disturbance of PMSIs [20] slows the 786

timescale of peristaltic waves, as the inclusion of absolute stretch in this feedback loop 787

would produce muscle forces that not only counteract friction but also decrease the 788

effective stiffness of the cuticle, slowing peristalsis (see S5 Appendix). 789

It is clear the real larval nervous system exhibits many complexities not reflected in 790

our model, and likewise that the real larva performs many more behaviours than 791

exploration. These include appropriate (directed) reactions to sensory stimuli such as 792

stopping, withdrawal and reverse in response to touch stimuli [37]; and modulation of 793
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the frequency and direction of (large) turns in response to sensory gradients such as 794

odour, heat or light [4, 8–10,12,13,68–73] to produce positive or negative taxis. In a 795

previous model of taxis [41] we have shown that by a continuous coupling of the 796

amplitude of a regular lateral oscillation to the experienced change in stimulus strength 797

in a gradient, a larva-like response to gradients can emerge, again without requiring 798

active switching between states. In the current model, this could be effected by 799

incorporating direct neuromuscular driving of bending degrees of freedom, since the real 800

larva can likely use asymmetric activation of its lateralised muscles to produce active 801

bending torques to influence the transverse motion. Alternatively, the degree of bend 802

could be influenced indirectly by altering the stiffness and viscosity of segments, or their 803

frictional interaction with the substrate. We note that the effective viscoelasticity of 804

body segments can be neurally controlled by local reflex arcs (see S4 Appendix 805

and [39]). Indeed, this could partially explain the experimental observation of increased 806

bending on perturbation of a contralateral segmental reflex mediated by Eve+ 807

interneurons [24]. The muscle activation caused by this reflex should produce bending 808

torques which are proportional to current bend or bending rate, thus effectively 809

modulating transverse stiffness or viscosity, respectively. Notably, in the taxis model 810

of [41], it is not required that the descending signal that alters turn amplitude is 811

lateralised, but rather that it has the right temporal coordination, which itself is 812

naturally created by the interaction of body and environment. 813

The model presented in this paper does occasionally produce stops (cessation of 814

peristalsis) during exploration, but this only occurs in concert with a large body bend 815

(this stored transverse energy can subsequently and spontaneously restart the 816

peristalsis); whereas in larva slowing, stopping and resumption of peristalsis (or 817

transition from a stop to a large bend) can occur while the body is relatively 818

straight [2, 10]. As for ‘directed’ turning, this suggests that additional neural control 819

might be needed to terminate or initiate movement in response to sensory stimuli. It is 820

worth noting that our model predicts that peristalsis can be restarted by almost any 821

small disturbance of the physical equilibrium provided the local feedback gain is high 822

enough; similarly, lowering the gain means that energy losses due to friction are not 823

compensated and the animal will stop. In general, we have found that altering 824

assumptions about the sliding friction forces by which the model interacts with the 825

substrate can often have unexpected and subtle effects on the motion produced, thus it 826

would be interesting to further explore the functions provided by segmental lifting [3,74], 827

folding of the denticle bands (S1 Video), and extrusion of the mouth-hooks [3,75] during 828

locomotion. In the more extreme case, larva are capable of burrowing through a soft 829

substrate, and it is clear that a complex interaction of forces, mechanics, sensing and 830

neural control must be involved that go well beyond the scope considered here. 831

Supporting information 832

S1 Fig. Coordinate system and substrate interaction schematics. Internal 833

coordinate system used to describe deformations of the larval body (left), and quantities 834

used to describe substrate interaction (right). The friction force Ffriction acting on the 835

i’th segment boundary is directed opposite to that boundary’s velocity vector vi, and 836

has a magnitude which depends only upon the direction θi of the velocity vector relative 837

to a unit vector n̂i aligned with the local body axis (see text). Note that v̂i = vi/‖vi‖ 838

denotes a unit vector aligned with the boundary’s velocity vector. 839

S2 Fig. Neural activation during peristalsis. (from top to bottom) stretch rate, 840

sensory neuron, interneuron, and motor neuron activation during forwards (left) and 841

backwards (right) peristalsis. 842
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S3 Fig. Neural activation during planar locomotion. (from top to bottom) 843

stretch, stretch rate, sensory neuron, interneuron, and motor neuron activation during 844

planar motion. 845

S4 Fig. Relationship between path curvature and angular velocity. Model 846

data (grey points) compared to fit by a power law with scaling exponent β ≈ 0.8 (blue 847

line, r2 ≈ 0.94). 848

S5 Fig. log-log plot of mean-squared displacement. Initial quadratic growth 849

(blue line, slope=2) leads to asymptotic linear growth (red line, slope=1). 850

S6 Fig. tail speed v and head angular velocity ν during planar motion. A: 851

representative time series for v and ν. B: probability density of v and ν across all 1000 852

trials. C: individual (faint) and mean (bold) power spectra of v and ν 853

S1 Video. Denticle bands fold into the larval cuticle during peristalsis. 854

S2 Video. Synthesis of travelling wave solutions from standing wave 855

solutions. 856

S3 Video. Simulated larval exploratory behaviour. 857

S1 Appendix. Detailed model specification. 858

S2 Appendix. Detailed small-amplitude analysis. 859

S3 Appendix. A trade-off between power flow into the body and force on 860

the centre of mass. 861

S4 Appendix. Modelling and analysis of head motion. 862

S5 Appendix. Effective body physics arising due to relationship of 863

neuromuscular action to body motion. 864

S6 Appendix. Computer algebra and numerical methods. 865

S1 Table. Neural parameter values. All segments are identical. Values given in 866

larval units (seg = resting segment length, segmass = mass of a single segment 867

boundary, nondim = dimensionless/nondimensional). 868

S2 Table. Mechanical parameters for Fig 4 – emergence of limit cycles for 869

forward and backward locomotion in the dissipative, small-amplitude 870

model . All segments are identical. Values given in larval units (seg = resting segment 871

length, segmass = mass of a single segment boundary, nondim = 872

dimensionless/nondimensional). 873

S3 Table. Mechanical parameters for Fig 6 – changes in conservative head 874

dynamics as amplitude of motion is increased . Values given in larval units (seg 875

= resting segment length, segmass = mass of a single segment boundary, nondim = 876

dimensionless/nondimensional). 877
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S4 Table. Mechanical parameters for Fig 7 – conservative planar motion 878

of the body is chaotic at large amplitudes. All segments are identical. Values 879

given in larval units (seg = resting segment length, segmass = mass of a single segment 880

boundary, nondim = dimensionless/nondimensional). 881

S5 Table. Mechanical parameters for Fig 8 – dissipative planar motion is 882

chaotic and Fig 9 – deterministic exploration . Values given in larval units (seg 883

= resting segment length, segmass = mass of a single segment boundary, nondim = 884

dimensionless/nondimensional). 885
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