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Abstract

ΦCrAss001,  isolated  from  human  faecal  material,  is  the  first  member  of  the  extensive

crAssphage family to be grown in pure culture. The bacteriophage infects the human gut symbiont

Bacteroides  intestinalis,  confirming  in  silico predictions  of  the  likely  host.  Genome  analysis

demonstrated that the phage DNA is 102 kb in size, has an unusual genome organisation and does

not  possess  any  obvious  genes  for  lysogeny.  In  addition,  electron  microscopy  confirms  that

φcrAss001 has a podovirus-like morphology. Despite the absence of lysogeny genes, φcrAss001

replicates in a way that does not disrupt proliferation of the host bacterium and is able to maintain

itself in continuous host culture.
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The human gut virome contains a vast number of bacterial, mammalian, plant, fungal and

archaeal  viruses1–3.  There  is  a  growing  body  of  evidence  supporting  specific  and  consistent

alterations of the gut virome in a number of human diseases and conditions, including inflammatory

bowel disease (IBD), malnutrition, and AIDS4–6. Currently, our understanding of the physiological

significance of the human gut virome is limited by the fact that the vast majority of these viruses
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cannot be taxonomically classified or linked to any particular hosts (so-called “viral dark matter”7).

Several recent studies identified a highly abundant (representing up to 90% of gut viruses in some

individuals), unique uncultured group termed crAss-like phages or crAssphage8–11. Here we report

on the first successful isolation of a crAssphage on a single host and describe its key biological

properties. Based on electron microscopy of propagated crAssphage001 morphology we confirm

that crAss-like phages possess podovirus-like morphology. We also demonstrate the ability of the

phage  to  stably  co-replicate  with  its  Bacteroides  intestinalis host  in  equilibrium  for  many

generations in vitro, which mimics earlier observed ability of crAss-like phages to maintain stable

colonization of the mammalian gut11,12.

In 2014, a study by Dutilh  et al.8 demonstrated the presence in ~50% of human samples of

highly  abundant  sequences,  which  when  cross-assembled  from multiple  sources,  indicated  the

presence of a unique bacteriophage they named crAssphage (cross Assembly). The fully assembled

97 kb DNA genome showed no homology to any known virus, even though in some subjects it

completely dominated the gut virome (up to 90% of sequencing reads). Indirect evidence suggested

that  Bacteroides species is  a likely host8.  A later  study, based on detailed sequence analysis  of

proteins encoded by this phage, predicted Podoviridae-like morphology and placed it into the novel

diverse and expansive family-level phylogenetic group of loosely related bacteriophages termed

crAss-like phages9. Genomes of members of this group are highly abundant in the human gut and

are  also  present  in  other  diverse  habitats  including  termite  gut,  terrestrial/groundwater,  and

oceans9,13,14. However, in the absence of a known host, no member of this family has been isolated

and nothing is known of the biological properties of these crAss-like phages from the human gut.

In a recent analysis11,  we  de novo assembled 244 genomes of crAss-like phages from the

human gut and classified them into several genus- and subfamily-level taxonomic groups based on

percentage of shared orthologous genes. As a result of this study, we can state that 98-100% of
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healthy adults from Western cohorts carry at least one or more types of crAss-like phages, albeit

with widely varying relative abundance. Here, we report the first documented isolation in culture of

a crAss-like phage from the human gut virome and describe its key biological properties.

The replication  strategy of  crAss-like  bacteriophages  is  unknown and all  attempts  to  use

standard plaque assays on semi-solid agar have failed. We therefore attempted to detect crAss-like

phage replication using a broth enrichment strategy. Phage-enriched filtrates of faecal samples were

collected from 20 healthy adult  Irish volunteers,  pooled and used to  infect pure cultures of 53

bacterial strains representing the commensal human gut microbiota (Supplementary Table 1). After

three  successive  rounds  of  enrichment,  cell  free  supernatants  were  subjected  to  shotgun

metagenomic  sequencing.  Analysis  of  the  assembled  sequencing  reads  demonstrated  that  the

supernatant from strain Bacteroides intestinalis 919/174 was dominated by a single 102.7 kb contig

(~98% of reads) related to a known but previously uncultured crAss-like bacteriophage, IAS virus,

isolated  from  the  human  gut9,15.  All  other  species  of  Bacteroides tested  were  insensitive  to

φcrAss001.

The genome of bacteriophage φcrAss001 is 102,679 bp and is circular or circularly permuted.

We identified 105 protein coding genes (ORFs of length 90-7,239 bp) and 25 tRNA genes specific

for 17 different amino acids. Cumulative G+C content of the phage genome is 34.7%, which is

significantly  lower  than  that  of  published  B.  intestinalis genomes  (42.8-43.5%).  An  interesting

structural feature of the genome is its apparent division into two parts of roughly equal size with

strictly  opposite  gene  orientation  and  inverted  GC  skew,  possibly  reflecting  the  direction  of

transcription  and/or  replication  (Figure  1).  Functional  gene  annotation  was  performed  using  a

comprehensive approach, which included BLASTp amino acid sequence homology searches against

NCBI nt database, hidden Markov model (HMM) searches against UniProtKB/TrEMBL database16

and profile-profile HMM searches with HHpred against PDB, PFAM, NCBI-CDD and TIGRFAM

databases17,18. This allowed for the functional annotation of 57 genes and assignment of further 11
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genes  to  conserved protein families  with unknown functions.  Ten identifiable  structural  protein

genes (phage head, tail, appendages) as well as three genes responsible for lytic functions were

clustered on the right-hand side of the genome, suggesting that the remaining un-annotated genes in

this part of the genome may also be responsible for structure and assembly of phage particles, as

well  as  cell  lysis.  By  contrast,  the  left-hand  side  predominantly  harboured  genes  involved  in

replication,  recombination,  transcription  and nucleotide  metabolism.  Putative  DNA-binding  and

transcriptional  regulation  proteins  were  located  in  the  proximal  portions  of  the  two oppositely

oriented  genome  halves,  suggesting  their  role  in  governing  the  transcription  of  gene  modules

located downstream on both sides of the genome (Fig. 1). Two genes (3,  β-fructosidase and 5,

ferredoxin-thioredoxin reductase) were predicted to be involved in auxiliary metabolic processes, in

that  they  are  unrelated  with  phage  replication  and  virion  assembly.  No  identifiable  lysogeny

module, or integrase or recombinase genes were identified. MALDI-TOF analysis of virion proteins

separated  by  SDS-PAGE  identified  presence  of  most  of  the  predicted  structural  proteins.

Unexpectedly, three high molecular weight subunits of phage RNA polymerase9 (gene products 47,

49 and 50) were also detected as part of virion structure (Fig. 2a).

TEM  (transmission  electron  microscopy)  of  φcrAss001  virions  revealed  a  podoviral

morphology (Fig. 2b). Phage heads are isometric with a diameter of 77.2±3.3 nm (mean±SD). Tails

are 36.1±3.6 nm long with elaborate structural features and several side appendages of variable

length.  This  is  in  agreement  with  our  previous  TEM  observations  of  podoviruses of  similar

dimensions  (~76.5  nm in  diameter)  from a  faecal  sample  rich  in  a  mixture  of  several  highly

prevalent crAss-like bacteriophages11.

According to the recently proposed classification scheme based on functional gene repertoire

and  protein  sequence  homology9,  φcrAss001  fits  into  the  IAS  virus  subgroup15 of  crAss-like

bacteriophages (Fig. 2c). Our recent analysis identified a common presence of similar uncultured

bacteriophages in the gut microbiotas of healthy Irish and US adults, Irish elderly people, as well as
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in  healthy  Irish  infants  and  healthy  and  malnourished  Malawian  infants11,  where  they  were

detectable  in  62%,  44%,  50%,  10%,  14% and  16%  of  cases,  respectively,  and  in  some  case

represented up to 61% of virome reads (Fig. S1).

When genomes of φcrAss001, IAS virus and other related putative phages were compared,

most  of  the  sequence  variability  (including  variation  in  the  number  and  size  of  ORFs)  was

concentrated in a region putatively coding for tail spike/tail fiber subunits (gene products 22, 23, 25,

26, Fig. 2c). This suggests high level of variability of receptor-binding proteins and potentially high

level of host specialization of crAss-like phages.

ΦcrAss001 could be effectively propagated in vitro using standard techniques using an EPS-

producing B. intestinalis 919/174 as its host. It was able to form readily visible plaques in agar

overlays (Fig. 2d) and reached 1010 pfu/mL when propagated in broth culture. In a one-step growth

experiment with multiplicity of infection (MOI) of ~1 the phage demonstrated a long latent period

of 120 min that was followed with a very small burst of progeny (2.5 pfu per infected cell). A

second burst of roughly the same size occurred 90 min later (Fig. S2a). An adsorption curve shows

that ~74% of phage bound to cells in first 5 min, and >90% were bound by 20 min (Fig. S2b).

Efficiency of lysogeny/mutation rate tests demonstrated 2±1% of cells of the strain 919/174 are

resistant to φcrAss001 on initial contact. These clones (potentially lysogens) were initially PCR

positive for presence of φcrAss001 (using gene 20 as a target) and were resistant to the phage in

plaque/spot  assays.  Successive  rounds  of  propagation  resulted  in  loss  of  the  φcrAss001  PCR

positive outcome, but the phage-resistance phenotype was retained in all clones. 

Infection of exponentially growing cells of B. intestinalis 919/174 with φcrAss001 at different

multiplicity  of  infections  (MOI) did not  result  in  complete  culture lysis,  but  caused a  delay in

stationary phase onset time and final density at stationary phase (Fig. S2c). A brief lysis period

occurred in the first few hours after infection, with timing dependent on the MOI, followed by

recovery of bacterial growth. In order to investigate the fate of phage in co-culture, bacterial cells
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infected with phage at high MOI were allowed to reach stationary phase and then passaged daily or

bi-daily for a period of 23 days (Fig. 2e). Phage titre, which on the first two passages reached ~10 10,

was reduced and remained steady between 106-108 for the duration of the experiment.

Collectively, this suggests that φcrAss001 uses an unusual infection strategy to replicate  in

vitro on its B. intestinalis host very efficiently on semi-solid agar (giving rise to large clear plaques)

and yet propagate in liquid culture without causing lysis of the host bacterium. Despite not being

able to form true lysogens or pseudolysogens, the phage seem to be able to co-exist with its host in

an equilibrium which is likely to confer an ecological advantage to both partners (similar to the

recently described carrier state life cycle19). Taken together, these results are puzzling. Given that in

liquid culture we used an MOI of 1 and there is a high adsorption rate, we cannot explain why two

bursts seemed to occur and why the broth culture did not clear. We can conclude that the phage

probably causes a successful lytic infection in a subset of infected cells (giving rise to a ‘false’

overall burst size of 2.5), but must enter into an alternative interaction with some or all  of the

remaining cells. Overall, this allows both phage and host to co-exist in a stable interaction over

prolonged passages. This may explain why the Bacteroides host and crAssphage can both remain in

high  numbers  for  pronged  period  in  the  gut.  The  nature  of  this  interaction  warrants  further

investigation.

Published studies of gut viromes in humans and germ-free mice with transplanted human

viromes12,20, as well as our own unpublished longitudinal observations of the human gut virome

support the hypothesis  that  crAssphage use an unusual  strategy to establish themselves at  high

levels in the gut and to then persist stably within the microbial communities for several weeks to as

long as several months or even years. The absence of any detectable integrase gene and our inability

to isolate stable lysogens, together with the lack of any evidence that this or any other crAss-like

bacteriophages  can  occur  in  the  form  of  prophages,  suggest  that  pseudolysogeny  and  other

mechanisms, such as physical binding of phage to the intestinal mucous gel21 might be responsible
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for long term persistence of crAss-like phages  in vivo.  Further studies will  be required to fully

understand the replication cycle of crAss-like bacteriophages, their peculiar ability to persist at high

titres in the human gut microbiota, as well as their significance for human intestinal physiology and

disease. The first report of a phage-host pair should accelerate our understanding of these highly

abundant and unusual phages.

Figure legends

Figure 1. Circular map of φcrAss001 genome. Inner circle (green and blue),  GC skew;

Middle  circle  (black),  G+C  content;  Outer  circle  (Pink  and  purple  fill),  protein-coding  genes

(ORFs); Outermost circle (orange fill), tRNA genes. Stroke colour on ORFs and fill colour on gene

numbers  corresponds  with  the  general  predicted  function  (see  colour  legend for  details);  black

stroke,  introns;  genes  with  no functional  annotations  (coding for  hypothetical  proteins)  are  left

unlabelled.

Figure 2. Morphology, growth and adsorption of φcrAss001. A, SDS-PAGE analysis of

protein content in φcrAss001 virions and identification of selected polypeptides using MALDI-TOF

(see methods for details); B, TEM image of uranyl acetate negatively contrasted φcrAss001 virions

(62,000x magnification,  accelerating  voltage  of  120kV);  C, BLASTn comparisons  between the

genome  of  the  uncultured  human  faecal  IAS  virus,  φcrAss001,  and  uncultured  human  phage

genomic contigs ERR843986_ms_1, ERR844058_ms_2, SRR4295175_s_4 (for contigs description

see  Guerin  et  al.,  20181),  highly  variable  region  is  marked  with  a  red  asterisk; D,  plaque

morphology of φcrAss001 after 48 h incubation in a 0.3% FAA agar overlay with  B. intestinalis

919/174 as host  strain;  E,  persistence of  φcrAss001 in a  periodic culture of phage infected  B.
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intestinalis 919/174 with daily (or bi-daily) transfers for 23 days (see supplementary methods for

details). 
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