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Abstract 36 

Land use regression (LUR) has been widely applied in epidemiologic research for exposure assessment. 37 

In this study, for the first time, we aimed to develop a spatiotemporal LUR model using Distributed 38 

Space Time Expectation Maximization (D-STEM). This spatiotemporal LUR model examined with daily 39 

particulate matter ≤ 2.5 µm (PM2.5) within the megacity of Tehran, capital of Iran. Moreover, D-STEM 40 

missing data imputation was compared with mean substitution in each monitoring station, as it is 41 

equivalent to ignoring of missing data, which is common in LUR studies that employ regulatory 42 

monitoring stations’ data. The amount of missing data was 28% of the total number of observations, in 43 

Tehran in 2015. The annual mean of PM2.5 concentrations was 33 µg/m3. Spatiotemporal R-squared of 44 

the D-STEM final daily LUR model was 78%, and leave-one-out cross-validation (LOOCV) R-squared was 45 

66%. Spatial R-squared and LOOCV R-squared were 89% and 72%, respectively. Temporal R-squared and 46 

LOOCV R-squared were 99.5% and 99.3%, respectively. Mean absolute error decreased 26% in 47 

imputation of missing data by using the D-STEM final LUR model instead of mean substitution. This 48 

study reveals competence of the D-STEM software in spatiotemporal missing data imputation, 49 

estimation of temporal trend, and mapping of small scale (20 x 20 meters) within-city spatial variations, 50 

in the LUR context. The estimated PM2.5 concentrations maps could be used in future studies on short- 51 

and/or long-term health effects. Overall, we suggest using D-STEM capabilities in increasing LUR studies 52 

that employ data of regulatory network monitoring stations.  53 

 54 
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 1. Introduction 59 

Air pollution caused 6.5 million deaths and 167 million disability-adjusted life-years (DALYs) in 2015 60 

worldwide. In particular, ambient particulate matter with an aerodynamic diameter smaller than 2.5 µm 61 

(PM2.5), caused 4.2 million of deaths and 103 million DALYs worldwide in the same year (Forouzanfar et 62 

al., 2016). 63 

Air pollution epidemiological studies need accurate exposure assessment and one frequently used 64 

method for individual exposure assessment is land use regression (LUR) modeling. LUR uses geographic 65 

independent variables (typically extracted using geographic information system (GIS)) as Potentially 66 

Predictive Variables (PPVs) to predict spatial variation of air pollution at unmonitored locations (Amini et 67 

al., 2017c; Hoek et al., 2008; Ryan and LeMasters, 2007).  68 

Many LUR studies that based on data of regulatory network monitoring stations, use annual or seasonal 69 

mean of air pollutants with a subset of GIS generated PPVs in a multiple regression for spatial modeling 70 

and mapping (Huang et al., 2017; Kashima et al., 2018; Zou et al., 2015) that ignore temporal trend of air 71 

pollution. However, some other studies use relatively advanced models, such as linear mixed effect 72 

models, with satellite, meteorological, and land use predictors for spatiotemporal estimation of  air 73 

pollution concentrations (Just et al., 2015; Kloog et al., 2011; Meng et al., 2016). However, the common 74 

issue is treating of air pollution missing data, and perhaps limited capability in accounting for temporal 75 

and spatial autocorrelations.  76 

D-STEM (Distributed Space Time Expectation Maximization) is a comprehensive statistical software for 77 

analyzing and mapping of environmental data that was introduced in 2013, which is programmed and 78 

run in Matlab environment (The MathWorks). The underlying D-STEM general model accounts for 79 

spatial and temporal autocorrelations and measurement errors, spatial and temporal and 80 

spatiotemporal predictors, fixed and random effect coefficients, concurrent missing imputation and 81 
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model fitting using Expectation Maximization (EM) algorithm. In addition, D-STEM supports multivariate 82 

modeling even in heterogonous stations (for example, simultaneous modeling of meteorological 83 

variables and air pollutants measured in the same or different stations), and data fusion capability for 84 

joint modeling (and calibration) of remote sensing data measured by a satellite along with air pollution 85 

concentrations measured in the ground stations (Finazzi, 2013; Finazzi and Fasso, 2014).  86 

D-STEM software has been previously used in several air pollution studies in Europe (Calculli et al., 2015; 87 

Fassò, 2013; Fassò et al., 2016; Finazzi, 2013; Finazzi et al., 2013), but primary focus of those studies 88 

have been on statistical theory. Moreover, the resolution of their output maps has been about 1 km, 89 

which might be course for epidemiological studies that need individual-level exposure estimates. In 90 

addition, none of those studies used a pool of GIS generated PPVs for extensive independent variables 91 

selection. Overall, D-STEM has not been used so far for LUR modeling and for exposure estimation with 92 

very fine spatial resolution. 93 

To date, several LUR studies have been published in Tehran to predict air pollution. These have been for 94 

particulate matter with an aerodynamic diameter smaller than 10 µm (PM10) and sulfur dioxide (SO2) 95 

(Amini et al., 2014), nitrogen oxides (NO, NO2, and NOx) (Amini et al., 2016), PM2.5, carbon monoxide 96 

(CO), and nitrogen dioxide (NO2) (Hassanpour Matikolaei et al., 2017), and alkylbenzenes (benzene, 97 

toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene (BTEX), and total BTEX) (Amini et al., 2017b). In 98 

fact, multiple regression has been used in majority of these studies for modeling of annual or seasonal 99 

averages of air pollutants. However, the study of PM2.5, CO, and NO2 (Hassanpour Matikolaei et al., 100 

2017), used panel regression to predict hourly concentrations with limited capability in accounting for 101 

spatial and temporal autocorrelations, and not supporting spatiotemporal missing imputation 102 

(Hassanpour Matikolaei et al., 2017).  103 
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In the present study, we aimed to utilize D-STEM with a relatively large pool of GIS generated PPVs for 104 

producing high resolution daily estimations of airborne PM2.5 in the Middle Eastern megacity of Tehran, 105 

Iran. We further aimed to assess some characteristics of the recently introduced D-STEM software. In 106 

addition, we aimed to compare performance of air pollution missing data imputation under two 107 

scenarios: (1) using mean substitution in each monitoring station, and (2) using D-STEM concurrent 108 

spatiotemporal missing imputation and LUR modeling. 109 

 110 

2. Materials and Methods 111 

2.1 Study area and data 112 

The study area of this research is the megacity of Tehran, Iran which has 9 million urban residents and, 113 

due to diurnal migration, a daytime population of more than 10 million. Alborz Mountains are located in 114 

north of the city and there is a desert in the south. The populated area covers approximately 613 km2 115 

and its elevation ranges from 1,000 to 1800 meters above sea level from south to north. The prevailing 116 

winds blow from west and north. The mean daily temperature ranges from about −15 °C in January to 117 

43 °C in July with an annual average of 18.5 °C. The precipitation ranges from 0 millimeters (mm) in 118 

September to 40 mm in January, with an annual average of 150 mm. The weather of most days is sunny, 119 

and the mean cloud cover is about 30%. Geographic location of Tehran is in zone 39N of Universal 120 

Transverse Mercator (UTM) (Amini et al., 2016; Amini et al., 2014). Figure S1 of Supporting information 121 

shows the study area and location of monitoring stations.  122 

Hourly data of fine particulate matter (PM2.5), which have been measured using fixed beta-gauge 123 

monitors, were obtained from Tehran Air Quality Control Company (AQCC) and Iranian Department of 124 

Environment (DOE) for year 2015. Daily PM2.5 was calculated by 24-hours averaging of hourly measured 125 
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PM2.5 concentrations when days had complete records in all hours. Daily mean of PM2.5 for a set of 19 126 

fixed measuring sites and for 365 days of year 2015 was used as response variable in this study.  127 

A pool of 212 potentially predictive variables (PPVs) in six classes and 73 sub-classes were used for 128 

selecting model independent variables. These variables were in raster format for whole study area with 129 

resolution of 5×5 meters. The six GIS generated classes were Distance (60 variables), Product terms (52 130 

variables), Land Use (50 variables), Traffic Surrogates (26 variables), Population Density (22 variables), 131 

and Geographic Location (2 variables). The full list of our PPVs could be found elsewhere (Amini et al., 132 

2016; Amini et al., 2014).  133 

2.2 Model Specification 134 

D-STEM spatiotemporal LUR model for PM2.5 is given by the following equation where Y is response 135 

variable, which is spatiotemporally indexed at location s and time t, provided X’s the GIS generated 136 

spatial predictors that are assumed temporally constant over time and spatially indexed at location s: 137 

              
2.5

1 1

, , ,
p q

PM i i j j j

i j

Y s t X s s t X s z t s t   
 

          138 

While the left-hand side of the above equation defines the response variable, the right-hand side of this 139 

equation consists of four parts. First, sum of p summand: i  multiplied by  iX s  , which are a fixed 140 

effect coefficient and the corresponding GIS generated spatial predictor. Second, sum of q summand: 141 

j  multiplied by  ,j s t  and multiplied by  jX s  , which are a scale changing coefficient and the 142 

corresponding spatiotemporal random effect coefficient, and the corresponding GIS generated spatial 143 

predictor, respectively. Third part is  z t  which is a latent temporal state variable that concurrently 144 

estimated using a sub-model. Forth part is  ,s t  which denotes measurement error that assumed 145 

normally distributed with zero mean and uncorrelated over space and time.  146 
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Latent spatiotemporal random effect coefficients  ,j s t assumed to be independent of each other 147 

and normally distributed with zero mean and unit variance that uncorrelated over time but correlated 148 

over space with exponential spatial auto-covariance function   exp( )
j j

dC d 
   where d is the 149 

distance between two generic spatial points and j  is auto-covariance parameter. 150 

Since the latent spatiotemporal random effect coefficients  ,j s t assumed to have zero means, we 151 

are not allowed to incorporate any GIS generated spatial predictor in random effect part, except if we 152 

already used it in fixed effect part. In the current representation,   could be interpreted as global 153 

effect of GIS generated predictor, and   could be used for testing spatiotemporal variation in the effect 154 

of corresponding predictor. 155 

Finally, latent temporal state variable (third part of model) estimated concurrently using following sub-156 

model: 157 

      1z t G z t t      158 

Where G is coefficient of temporal state transition and   is temporal state innovation that assumed 159 

normally distributed with zero mean.  160 

The estimated parameters of the D-STEM spatiotemporal LUR model are as follows: fixed effect 161 

coefficients, scaling changing coefficients of the corresponding spatiotemporal random effect 162 

coefficients, parameters of the underlying auto-covariance functions of the corresponding 163 

spatiotemporal random effect coefficients, temporal state transition coefficient, variance of the 164 

temporal state innovation, and variance of the measurement error. 165 
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2.3 Model fitting, assessing, and mapping 166 

A forward algorithm, based on maximization of spatial Leave-One-Out Cross-Validation (LOOCV) R-167 

squared and consistency with prior knowledge, was used to select suitable predictors from pool of PPVs. 168 

This algorithm considers sign consistency of fixed effect coefficients with a priori assumed direction of 169 

effects. Effect directions defined as positive, negative, or arbitrary (unknown) based on knowledge 170 

about emission of air pollutions.  171 

The final daily LUR model was assessed in three forms: a) spatiotemporal, b) spatial (temporally 172 

averaged to assess spatial variations), and c) temporal (spatially averaged to assess temporal variations). 173 

Also, Normalized Mean Bias Factor (NMBF) was used for checking whether models underestimate or 174 

overestimate observed data (Yu et al., 2006). 175 

The power of missing data imputation was compared between mean substitution in each monitoring 176 

station, and final spatiotemporal LUR model by 10 independent simulations. In each simulation 10% of 177 

spatiotemporal observed data was randomly selected and was replaced by missing data. Afterwards, 178 

both models were independently employed for missing imputation. The predicted values of the 179 

randomly missed data and original observed values (that randomly missed), was used to compute Mean 180 

Absolute Error (MAE) in missing imputation of each model. Finally, MAEs that computed in these 181 

independent simulations and percent of MAEs change between two models, was averaged and 182 

reported.  183 

Mapping was done using D-STEM for each day, by providing GIS generated maps that correspond to 184 

predictors of the final daily LUR model. Seasonal maps were generated by averaging of daily output 185 

maps in the corresponding time periods. Finally, we applied a quantification limit (QL) that its lower 186 

bound was the minimum of within monitoring station averages of observed concentration in the 187 

corresponding time period divided by square root of two, and its upper bounds was 120% of the 188 
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maximum of within monitoring station averages of observed concentration in the same time period. 189 

Grid cells in the final output maps that had values outside QL interval were set to nearest QL bound and 190 

frequency of these corrections was calculated and reported (Amini et al., 2016; Amini et al., 2014; 191 

Henderson et al., 2007) 192 

 193 

3. Results and Discussion 194 

3.1 Description of data 195 

Number of PM2.5 daily observations at 19 monitoring stations was 5016. Frequency of missing data 196 

varies from 12% to 47% in monitoring stations with an average of 28% over all stations. Frequency of 197 

available data for each day varied from 2 stations to 19 stations with an average of 14 stations. Data 198 

availability pattern of daily PM2.5 in monitoring stations of Tehran in 2015 is presented in Figure S2 of 199 

Supporting information. 200 

Annual mean of observed PM2.5 concentrations (spatially and temporally average of monitoring stations) 201 

was 33 µg/m3 that is more than three times of World Health Organization (WHO) guideline (10 µg/m3) 202 

and about three times of US Environmental Protection Agency (EPA) guideline (12 µg/m3) (US EPA, 2013; 203 

WHO, 2006), with a range of 21 µg/m3 to 48 µg/m3 in different monitoring stations. This is in line with 204 

the findings of Brauer et al. (2016) and Shaddick et al. (2018) where they reported very high population-205 

weighted exposure estimates for PM2.5 in the Middle East (Brauer et al., 2016; Shaddick et al., 2018). 206 

Faridi et al. (2018) also reported very similar annual mean for PM2.5 in Tehran (Faridi et al., 2018). Daily 207 

mean of Tehran PM2.5 concentrations in 2015 (spatially average of monitoring stations) was greater than 208 

WHO daily standard (25 µg/m3) in 246 days (67% of year), and was greater than US EPA daily standard 209 

(35 µg/m3) in 121 days (33% of year), and eventually was greater than 55 µg/m3 in 31 days. As a result, 210 

the air quality index (AQI) in Tehran in 2015 was unhealthy for at least sensitive groups in one third of 211 
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year, and was unhealthy for all groups in about one month (8.6% of year that exceeded 55 µg/m3), 212 

based on US EPA breakpoints (US EPA, 2013; WHO, 2006). The very high values of air pollution have 213 

been confirmed in large Tehran Study of Exposure Prediction for Environmental Health Research 214 

(SEPEHR) measurement campaigns (Amini et al., 2017a). 215 

3.2 Description of the LUR model 216 

Natural logarithm of PM2.5 was standardized (using mean and standard deviation of its all 217 

spatiotemporal values) and utilized in spatiotemporal LUR model as response variable. Also, 218 

standardized version of GIS generated PPVs was employed in the model. Summary statistics for these 219 

variables are presented in Table S1 of Supporting information. 220 

Table 1 presents estimated parameters of spatiotemporal daily LUR model. This model accounts for both 221 

temporal and spatial autocorrelations, and moreover supports inclusion of predictors for concurrent 222 

missing imputation and LUR model fitting. Among 212 GIS generated predictors that produced a huge 223 

possible combination of predictors, eventually 8 predictors were selected by our described algorithm to 224 

include in the spatiotemporal final daily LUR model. 225 

Table 1. Estimated parameters of spatiotemporal final daily LUR model for PM2.5 in Tehran 2015. 226 

Category Term Estimate Std. Error p-value 

Fixed effect 

Coefficients 

LNDIST to AMB -0.170 0.009 < 0.001 

PD.1000 +0.177 0.012 < 0.001 

LNDIST to HZRFAC +0.219 0.011 < 0.001 

ELEV -0.282 0.012 < 0.001 

SEN.400 -0.119 0.008 < 0.001 

DIST to SCSC +0.218 0.012 < 0.001 
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GRS.500 -0.151 0.013 < 0.001 

BGD.500 +0.082 0.009 < 0.001 

Scale changing 

Coefficients of 

Random effect 

LNDIST to AMB 0.089 0.018 < 0.001 

SEN.400 0.037 0.019 0.05 

GRS.500 0.145 0.025 < 0.001 

Spatial covariance 

Parameters 

LNDIST to AMB 101.30 284.15 - 

SEN.400 50.78 476.57 - 

GRS.500 25.43 22.35 - 

Temporal state Transition coefficient +0.73 0.04 < 0.001 

Variance of Temporal state innovation 0.29 0.02 < 0.001 

Variance of Measurement Error 0.224 0.005 < 0.001 

The model response was standardized natural logarithm of PM2.5 concentrations 

Also, Predictors were standardized (see Table S1 of Supporting information). 

Abbreviations:  

LN PM2.5: natural logarithm of particulate matter with diameter<=2.5 micrometer 

LNDIST to AMB: natural logarithm of distance to nearest ambulance service 

PD.1000: total population density in buffer 1000 

LNDIST to HZRFAC: natural logarithm of distance to nearest hazardous facility 

ELEV: elevation 

SEN.400: sensitive areas in buffer 400 

DIST to SCSC: distance to nearest secondary or high school 

GRS.500: green space area in buffer 500 

BGD.500: bridge length in buffer 500 divided by distance to the bridge 

 227 
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GIS generated predictors that had a positive coefficient in the final spatiotemporal daily LUR model 228 

were: total population density in buffer of 1000 m, natural logarithm of distance to nearest hazardous 229 

facility (with an arbitrary assumed direction of the effect), distance to the nearest secondary or high 230 

school, and bridge length in buffer of 500 m divided by distance to the bridges.  231 

On the other hand, the predictors that had a negative coefficient in the final spatiotemporal daily LUR 232 

model were: natural logarithm of distance to nearest ambulance service (assumed sign was arbitrary), 233 

elevation (assumed sign was arbitrary), sensitive areas in buffer of 400 m (assumed sign was arbitrary), 234 

and green space areas in buffer of 500 m. 235 

Random effect predictors in the final spatiotemporal daily LUR model were as follow: natural logarithm 236 

of distance to nearest ambulance service, sensitive areas in buffer of 400 m, and green space areas in 237 

buffer of 500 m. The corresponding scale changing coefficients were significant or borderline significant. 238 

That means coefficient of these three predictors vary in time and space, and observed data are spatially 239 

auto-correlated.  240 

Temporal state transition coefficient was significant (p< 0.001) and positive that indicates a positive 241 

temporal autocorrelation existed between successive observations. Moreover, variance of the temporal 242 

state innovation was significant (p< 0.001) that means variations existed in temporal trend of air 243 

pollution.  244 

3.3 Assessing fit of the LUR model 245 

Figure 1 shows temporal pattern (spatially averaged) of daily PM2.5 for observed and predicted data of 246 

the final daily LUR model. Figure 1 confirms that D-STEM succeeds in capturing natural turbulence of 247 

PM2.5 time series, even without employing any temporal predictors.  248 
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 249 

Figure 1. Temporal pattern (spatially averaged) of daily PM2.5 in Tehran 2015 (observed and predicted).  250 

 251 

Spatiotemporal R-squared and spatiotemporal LOOCV R-squared were 78% and 66%, respectively. 252 

Spatial R-squared (temporally averaged) and spatial LOOCV R-squared were 89% and 72%, respectively. 253 

Temporal R-squared (spatially averaged) and temporal LOOCV R-squared were 99.5% and 99.3%, 254 

respectively. Root Mean Square Error (RMSE) criteria are shown in Table S2 of Supporting information 255 

for further assessment.  256 

NMBF of the spatiotemporal final daily LUR model was -0.03 that means on average this model slightly 257 

underestimated observed data (with a factor of less than 3 percent). This slight underestimation also 258 

confirmed in Figure 1 and may be due to some large positive outliers that were not handled 259 

appropriately. Unfortunately, this criterion has not been reported in other studies that applied D-STEM 260 

(Calculli et al., 2015; Fassò, 2013; Fassò et al., 2016; Finazzi, 2013; Finazzi et al., 2013), so it is not clear 261 
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that this slight deficiency is belonging to D-STEM software or it is an accidental observation that 262 

happened in our study.  263 

However, the temporal prediction of D-STEM LUR model was very well. In fact, temporal R-squared and 264 

temporal LOOCV R-squared were greater than 99%. In a study by Kloog et al. (Kloog et al., 2011) where 265 

they employed land use and satellite-derived Aerosol Optical Depth (AOD) and multiple stations 266 

(spatiotemporal) meteorological predictors in a mixed model, the temporal cross-validated R-squared 267 

was 84%. Note that we did not use any spatiotemporal or pure temporal predictors in the D-STEM 268 

software. A similar study in Tehran that modelled PM2.5 with a panel regression used pure temporal 269 

predictors, i.e., one station meteorological variables, just in order to partly capture temporal innovations 270 

of air pollution data (Hassanpour Matikolaei et al., 2017). Hence, the use of pure temporal predictors in 271 

D-STEM for spatiotemporal modeling of air pollution is completely unnecessary.  272 

The spatial R-squared of our D-STEM final LUR model (and even spatial LOOCV R-squared) was greater 273 

than 65% that reported in a recently published study on LUR modelling of PM2.5 in Tehran. That study, 274 

that used a panel regression for spatiotemporal modeling of fixed monitoring air pollution data, 275 

provided GIS generated spatial data, meteorological data of one station, and real time google traffic 276 

data as predictors (Hassanpour Matikolaei et al., 2017). Therefore, despite of the fact that predictors of 277 

our D-STEM spatiotemporal LUR model were limited to GIS generated spatial data, D-STEM performed 278 

better.  279 

3.4 Assessing missing data imputation 280 

Mean Absolute error (MAE) in 10 independent simulations for spatiotemporal missing imputation, was 281 

5.7 µg/m3 with a range of 5.3 µg/m3 to 6.2 µg/m3 in the D-STEM final spatiotemporal daily LUR model, 282 

and was 7.7 µg/m3 with a range of 7.1 µg/m3 to 8.8 µg/m3 in Mean substitution in each monitoring 283 

station.  284 
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Changes between MAEs showed a decreased range from 24.3% to 29.9% with an average of 25.9% in 285 

using D-STEM final spatiotemporal daily LUR model instead of Mean substitution in each monitoring 286 

station. Details of MAEs and changes between MAEs are presented in Table S3 of Supporting 287 

information.  288 

This result is important because missing data exists in almost any air pollution study of fixed air 289 

monitoring stations, such as our two previous LUR studies of PM10, SO2, and nitrogen oxides in Tehran. 290 

In those studies we imputed air pollution missing data using EM algorithm in a multivariate way but 291 

without considering spatial and temporal autocorrelations (Amini et al., 2016; Amini et al., 2014). 292 

Although, some other LUR studies such as one earlier mentioned LUR study of PM2.5 in Tehran that 293 

modeled using a panel regression, did not describe the missing data issue (Hassanpour Matikolaei et al., 294 

2017).  295 

This study proved that D-STEM missing imputation is better than ignoring of missing data, which is 296 

common at least when the amount of missing data is small (Meng et al., 2016). We believe D-STEM is 297 

worthy to be applied in missing imputation of (fixed monitoring stations) air pollution data, because it 298 

imputes missing data concurrently with modeling, and we see that the underlying temporal model of D-299 

STEM perform very well. Moreover, D-STEM can capture spatial variation of air pollution data by 300 

incorporating suitable land use and GIS generated predictors. Furthermore, D-STEM spatiotemporal 301 

model that concurrently impute missing data has ability to employ spatiotemporal meteorological 302 

predictors, and even remote sensing data.  303 

3.5 Generating output maps 304 

We produced daily PM2.5 concentrations maps with resolution of 20×20 meters for whole study area that 305 

cover 613 km2. Cooler and warmer season maps of PM2.5 were produced by averaging of D-STEM 306 

generated daily maps in the corresponding periods.  307 
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Quantification limits (QL) that calculated based on averaged observed values of air quality monitoring 308 

stations in the corresponding periods, had a lower bound of 13.6 µg/m3 in cooler season, and 15.2 309 

µg/m3 in warmer season; and had upper bound of 68.1 µg/m3 in cooler season, and 50.1 µg/m3 in 310 

warmer season. 311 

Values beyond these quantification limits were corrected by setting to the nearest upper or lower limits. 312 

Percent of these corrections for lower and upper bounds of the corresponding QL limits were 0.03% and 313 

1.9% in the cooler season map, and were 0.1% and 3.4% in warmer season map, respectively. Hence, 314 

the under- or over-estimation of PM2.5 in the D-STEM LUR generated maps were relatively small when 315 

compared to other LUR studies (Amini et al., 2016; Amini et al., 2014). 316 

The seasonal estimation maps of PM2.5 concentrations in Tehran in 2015, with resolution of 20×20 317 

meters, are presented in Figure 2. The scatter plot of predicted versus observed values are presented in 318 

Figure S3 of Supporting information for cooler and warmer seasons maps of PM2.5 concentrations.  319 
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 320 

Figure 2. Estimated cooler and warmer seasons maps of PM2.5 in Tehran 2015 with resolution of 20×20 321 

meters that produced by averaging of daily LUR maps over corresponding periods.  322 
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 323 

4. Conclusions 324 

This was first LUR study that used recently introduced comprehensive statistical software of D-STEM. 325 

We used D-STEM in spatiotemporal missing imputation, modeling and mapping of airborne PM2.5 in 326 

Middle Eastern megacity of Tehran, where concentrations of PM2.5 was more than three times of WHO 327 

guideline. The estimated maps using D-STEM daily PM2.5 LUR model have resolution of 20×20 meters 328 

(for whole study area that covers 613 km2), while previous studies that employed D-STEM (in Europe), 329 

produced estimation maps with resolution of about 1 km (and all of them were in non-LUR context). 330 

Our study demonstrated that D-STEM performed very well in temporal modeling of PM2.5 during year 331 

2015 in Tehran, even without using any temporal or spatiotemporal predictors. Moreover, D-STEM daily 332 

spatiotemporal and spatial prediction and cross-validated prediction were quite good. This could benefit 333 

future epidemiological studies with both short-term and long-term exposure estimates. Furthermore, D-334 

STEM build-in missing imputation capability compared with mean substitution in each monitoring 335 

station, which is equivalent to ignoring of missing data, proves usefulness of D-STEM LUR model in 336 

missing imputation of air pollution data.  337 

Nonetheless, further research is needed to explore more advance features of D-STEM software, such as 338 

joint modeling of several air pollutants, joint modeling of one or several air pollutants with 339 

meteorological variables, and incorporation of remotely sensed data. Overall, we suggest using D-STEM 340 

capabilities in increasing LUR studies that employ data of regulatory network monitoring stations.  341 

 342 
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