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Abstract

The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists

in many countries and has been circulating in poultry, wild birds. In addition,

the virus has emerged in other species and frequent zoonotic spillover events

indicate that there remains a significant risk to human health. It is crucial to

understand the dynamics of the disease in the poultry industry to develop a

more comprehensive knowledge of the risks of transmission and to establish a

better distribution of resources when implementing control. In this paper, we

develop a set of mathematical models that simulate the spread of HPAI H5N1

in the poultry industry in Thailand, utilising data from the 2004 epidemic. The

model that incorporates the intensity of duck farming when assessing trans-

mision risk provides the best fit to the spatiotemporal characteristics of the

observed outbreak, implying that intensive duck farming drives transmission of

HPAI in Thailand. We also extend our models using a sequential model fitting

approach to explore the ability of the models to be used in ”real time” during

novel disease outbreaks. We conclude that, whilst predictions of epidemic size
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are estimated poorly in the early stages of disease outbreaks, the model accu-

rately predicts the preferred control policy that should be deployed to minimise

the impact of the disease.
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1. Introduction

Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in

the late 1990s, the virus has had significant impact on poultry industries around

the world and posed a serious threat to public health. The majority of outbreaks

occur in East and South Asia, a region that contains half of the population of the5

world. Whilst the probability of a human AI pandemic may appear low based

on the poor ability of the virus to adapt to the upper human airway (Peiris

et al. 2007 ), the death toll of such an event may be catastrophic. As a result

of the HPAI H5N1 panzootic, there have been 860 confirmed human cases of

avian influenza A (H5N1) in 16 countries and 454 deaths (a human case fatality10

of 53%) as of 30th October, 2017, based on World Health Organization (WHO)

statistics. The majority of humans infected with the virus work in professions

that involve close contact with potentially infected poultry (de Bruin et al. 2017

) and therefore it is crucial to understand the dynamics of the disease in the

poultry industry to develop a more comprehensive knowledge of the risks of15

transmission to humans.

In Thailand, H5N1 was first detected in the poultry industry in January 2004

(Tiensin et al. 2005 ). The first wave of infection took place from January to

May and resulted in 193 reported AI outbreaks. A second infection wave started

in July 2004 and culminated in March 2005, with 1,492 outbreaks notified during20

this period. Approximately 62 million birds were killed either through infection

or through targeted culling as a control measure. In addition, during the 2004

H5N1 epidemic there were 17 human cases of infection and 12 deaths (Tiensin

et al. 2005 , Auewarakul 2008 ). In an attempt to improve case detection,

the Thai government implemented an X-ray survey (Gilbert et al. 2006 ) in25
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September 2004. Control policies such as localised movement restrictions and

1km ring culling were introduced to reduce the risk of further spread of the

disease; vaccination was not used.

The spatial distribution of HPAI H5N1 has been studied in several countries

and regions using spatial statistical models (Gilbert et al. 2007 , Truscott et al.30

2007 , Sharkey et al. 2008 , Gilbert et al. 2008 , Jewell et al. 2009 , Gilbert

et al. 2010 , Stegeman et al. 2011 , Ssematimba et al. 2012 , Paul et al. 2014

, Gilbert et al. 2014 , Artois et al. 2017 ) and mathematical models (Minh

et al. 2011 , Walker et al. 2012 , Hill et al. 2017 ) in East Asia. Evidence

from previous work suggests that different landscapes, production systems and35

water-related variables are risk factors that will promote disease transmission.

In addition, mathematical models such as the one that we present here can

improve understanding about the transmission dynamics of infectious diseases

and help with an assessment of the effectiveness of control strategies applied

during outbreaks (Stegeman et al. 2011 ). A key challenge when implementing40

control is the lack of clinical signs in many duck species - whilst chickens have a

very high mortality rate for H5N1 (Yu et al. 2007 , Jeong et al. 2009 ), ducks

are largely asymptomatic but can readily transmit the disease. In addition, in

Thailand, as in many other countries in South East Asia, the presence of free

grazing ducks, that feed year round on rice paddies, have been shown to be a45

strong predictor for the presence of the disease in the landscape (Gilbert et al.

2007, 2008 ). It is therefore crucial to develop a more detailed understanding of

the factors leading to persistence of AI in poultry, the conditions that are most

suitable to disease transmission, and intervention strategies that will minimize

the future impact of the disease.50

In this paper, we develop a set of mathematical models to simulate the

spread of HPAI H5N1 in the poultry industry in Thailand. We use detailed de-

mographic and epidemiological data from the 2004 epidemic and fit our models

to epidemiological surveillance (X-Ray) data. Our framework will allow us to

establish the risk factors that result in transmission of the disease that will in55

turn enable us to effectively target intervention strategies. We will also consider

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355024doi: bioRxiv preprint 

https://doi.org/10.1101/355024


the ability of the models to be used in ”real time”, whereby model parameters

are obtained by only using data that are observable at a given stage of the epi-

demic. This enables us to determine the predictive capacity of HPAI models

both in terms of establishing transmission risk and in determining the most60

appropriate intervention policy. It also allows us to quantify how progressive

accumulation of information shapes the knowledge of outbreak dynamics and

the robustness of control strategies.

2. Materials and methods

2.1. Data65

In this paper, we use demographic data compiled by the Department of

Livestock Development (DLD, Bangkok) that was constructed through the X-

Ray surveys that were implemented in response to the H5N1 outbreak in 2004.

Demographic data was recorded at the farm/owner level and consists of the

number of chicken and ducks in each flock, and a unique identifier of the sub-70

district where each farm is located.

Owing to imperfect reporting at the onset of the epidemic, data for the first

wave of infection in Thailand are largely incomplete. Therefore, for parameter

estimation and analysis, we use the outbreak data from the second wave of the

epidemic that took place from July 2004. In this second wave, more than 140075

outbreaks were reported and over 62 million birds died or were culled as part of

the control policy (Tiensin et al. 2005 ). The outbreak data set includes the

unique identifier of the subdistrict as well as the total number of sick, dead and

destroyed animals.

In order to implement our mathematical model, we use geographical data for80

each subdistrict including the locations of subdistrict boundaries and the area

of each subdistrict. We infer indices of neighbouring subdistricts by analysing

intersection sets of subdistrict boundaries. We then calculate the length of all

shared boundaries by fitting a linear spline through shared points on bound-

aries of neighbour subdistricts. The proportion of area used by rice paddy fields85
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within each subdistrict was derived from the moderate resolution imaging spec-

troradiometer (MODIS) sensor onboard the NASA Terra satellite (Xiao et al.

2006 ).

2.2. Mathematical models

We develop a meta-population framework for our model, following the ap-90

proach of Buhnerkempe et al. 2014 . In our model, the basic unit of infection

is the flock, and we assume that all birds (chicken and ducks) within a flock

become infected such that an entire flock is classified as Susceptible, Exposed,

Infectious or Removed.

In our modelling framework, we consider transmission via one of five mecha-95

nisms: (i) spatially independent transmission to any subdistrict in Thailand, (ii)

transmission within an subdistrict, (iii) transmission across borders to neigh-

bouring subdistricts, (iv) transmission driven by presence of rice paddies and

(v) transmission driven by duck farm intensity. By varying the combination

of these factors, we have formulated four mathematical models with increasing100

complexity: a random process model (Model A), a spatial model (Model B),

a spatial model incorporating rice density (Model C), and a spatial model in-

corporating duck intensity (Model D). Details of the equations governing each

model are given in the Supplementary Information.

2.2.1. Model A: Random process model105

The simplest model for a HPAI outbreak is that of complete spatial random-

ness, whereby transmission events are distributed independently according to a

uniform probability distribution over all susceptible flocks. Under this scenario,

the infection pressure at time t in any susceptible flock is equal to the back-

ground term, δ, multiplied by the number of infectious flocks at time t, nI(t),110

plus one. The biological meaning of the model is that the outbreak dynamics

does not depend on any environmental factors or the structure of the poultry

sector in Thailand. This naive model, whilst unlikely to be representative of

5
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heterogenous transmission routes, provides a baseline for epidemic spread for

comparison with the spatially explicit models.115

2.2.2. Model B: Spatial model

The Spatial model utilises a classical metapopulation approach, based upon

the model first used by Buhnerkempe et al. 2014 . This model is an extension of

the random process model, with the addition of within and between subdistrict

transmission. The model therefore incorporates local density-dependent spread120

and contains three additive terms representing the different transmission scenar-

ios - the background term, δ, within-subdistrict transmission with transmission

rate βW and local cross-border transmission with transmission rate βB . The

framework assumes that transmission is dependent upon the poultry industry

features within a given subdistrict and within neighbouring subdistricts and125

ignores the presence of other landscape features that may results in increased

transmission risk. Within and between subdistrict transmission depends on the

structure of poultry industry, and is parametrised by pC and pD(power laws for

a number of chicken and ducks) and ξ (multiplier for relative infectiousness and

transmisability of ducks to chicken).130

2.2.3. Model C: Spatial (rice) model

Given that previous work suggests that the presence of free grazing ducks

can result in increased transmission risk in Thailand (Gilbert et al. 2007 ),

here we use data on rice fields in the country (Xiao et al. 2006 ) and extend

the meta-population model described in the spatial model above to consider the135

likelihood of increased transmission risk in subdistricts with a high density of

rice paddies. In order to account for the role of rice paddies in the infection

dynamics, we use a sigmoidal function that operates as a scaling factor for the

infection pressure. Here a higher infection pressure is presumed to be present

for subdistricts with a higher proportion of rice paddy fields. This dependence140

is described by the scaling, αR, threshold, εR and power, nR. Details of the

equation are given in the Supplementary Information.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355024doi: bioRxiv preprint 

https://doi.org/10.1101/355024


2.2.4. Model D: Spatial (duck) model

Our final model builds upon the spatial model but additionally considers the

intensity of duck farming within a subdistrict as an additional factor influencing145

transmission. We therefore categorise subdistricts based upon the intensity of

their duck farming industry defined as a log10 of the size of largest duck flock

within a subdistrict plus one. Furthermore, in a similar way as for the spatial

(rice) model, we use a sigmoidal function such that a higher infection pressure

is assumed for subdistricts with more intense duck farming. This dependence is150

described by the scaling, αD, threshold, εD and power, nD.

2.3. Fitting the models to outbreak data

Having defined the full modelling framework, we will consider this suite of

nested mathematical models (A-D) to determine the factors that contribute to

transmission of HPAI H5N1 within Thailand. Each model is fitted to outbreak155

data using a Bayesian likelihood approach that determines the parameters that

best captures the observations (for details see Supplementary Material section

below).

For a sequential analysis, we re-estimated model parameters by inclemently

increasing the length of the outbreak data, evaluating how increasing amounts160

of outbreak data altered and influenced the parameter estimation and model

projections.

2.4. Control options

Once fully parameterised, we will use the models to investigate the effec-

tiveness of a range of interventions that could be implemented to control the165

outbreak. We will analyse outbreak projections under three competing strate-

gies: (i) culling of identified infected premises (IP) only, (ii) culling of IPs and

farms within a given radius of IPs (ring culling) and (iii) IP culling and reactive

vaccination with a given capacity within infected subdistricts.

The spatially aggregate nature of the meta-population model that we have170

developed prevents us from applying a culling radius directly to each IP to
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determine which flocks will be culled. In order to mimic ring culling in our

metapopulation framework we therefore reduce the number of susceptible flocks

within an infected subdistrict as a fraction of the subdistrict area to the area of

a circle with a particular culling radius. We analyse projections based on the175

following culling radius values: 0.25km, 0.5km, 1km, 2km and 5km.

As an alternative to ring culling, we explore the impact of reactive vaccina-

tion within any subdistrict reporting infection. For this control policy, following

the removal of infected flocks, we assume that a given percentage of the poultry

within an infected subdistrict are vaccinated and become immune to infection.180

We make the assumption that any poultry that are targeted for vaccination

will acquire immunity 7 days after the relevant infected premises is reported.

We then explore the impact of vaccination upon the outbreak size and duration,

given vaccine capacities of 50%, 70% and 90% of all poultry within each infected

subdistrict. See Supplementary Information for more details. As optimal con-185

trol actions for control of disease outbreaks may depend on objectives (Probert

et al. 2016 ), we evaluated the effectiveness of local control by analysing

projected number of infected flocks, number of culled flocks and duration of

outbreak.

3. Results190

3.1. Model Parameterisation

We used a Bayesian framework to parameterise each model to the 2004

epidemics of H5N1 in Thailand. In order to compare the four modelling frame-

works and establish a goodness of fit to the observational data, we calculate

the deviance information criterion (DIC). Model with a lower DIC value implies195

a closer fit to the observational data compared to the alternative models and

therefore this model is preferred. For DIC calculations we use the parameter

values generated from our MCMC runs for parameter estimation (Spiegelhal-

ter et al. 2002 ). We calculated the following values for the four models:

DICA = 37478.2, DICB = 33763.5, DICC = 33596.7 and DICD = 33164.3.200
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The DIC values for each model indicate that Model D, incorporating the in-

tensity of the duck industry, is preferred over all other modelling frameworks,

indicating that it is the intensive duck farming industry that is predominantly

driving transmission in Thailand.

For all models, the fitted posterior mean and 95% credible intervals for205

estimated parameters are summarised in Table 1. As the complexity of the

modelling framework increases, the value of the background term δ decreases,

as local scale characteristics drive transmission for the more complex models.

When considering rice paddy density as a risk factor (Model C) similar pa-

rameter estimates are found for the background term and within-subdistrict210

transmission rate when compared with the purely spatial Model B. Interest-

ingly Model D, that includes intensive duck farms as a risk factor, produces

lower parameter value estimates for δ, βW and βB , suggesting that the presence

of intensive duck farms may have a strong influence on transmission.

To establish the ability of each model to capture the spatiotemporal char-215

acteristics of the observed outbreak, we now simulate our models using the

posterior distribution for parameters summarised in Table 1. We use these sim-

ulations to determine the ability of each model at capturing both the temporal

and the spatial epidemic profiles from the 2004 outbreak. This will provide an

indication of whether the our modelling frameworks are able to mimic the fine-220

scale transmission dynamics between poultry farms in the country. The results

are summarised in Fig 1.

Model D appears to most accurately predict the spatiotemporal dynamics of

the HPAI outbreak in Thialand (Fig 1, second column). For this model, spatial

predictions of spread are much more representative of the true 2004 outbreak,225

with infected subdistricts predominantly in the centre and west of Thailand, in

the region north of Bangkok. In addition, the temporal profile captures both

the epidemic peak and the epidemic tail, providing supporting evidence of the

significant role of the intensive duck farming industry in transmission of HPAI

H5N1 in Thailand.230

The spatial model, Model B, proved to be a poor predictor of geographical
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spread of the outbreak, with significant overestimates of infected farms in the

east of the country and underestimates in the main epidemic hotspots. The

model is also unable to accurately capture the temporal profile of the epidemic

tail (Fig 1, third column). We see remarkably similar predictions for Model235

C (Fig 1, fourth column), though in this case overpredictions of spread in the

east of Thailand are even greater, owing to the high densities of rice paddies

in that part of the country. In addition, south eastern subdistricts of Thailand

tend to have a higher average flock density, which will result in Models B and

C overpredicting spread in these regions.240

Random process model is unable to capture the spatial profile of the true

outbreak, given that the model assumes random transmission characteristics.

The model performs marginally better at predicting temporal behaviour, though

slightly overestimates the epidemic peak and underestimates the number of

farms infected in the epidemic tail (Fig 1, last column).245

3.2. Sequential analysis

The model parameterisation that we have described in the section above

determines parameter values by fitting the set of models to the entire observed

spatiotemporal outbreak in Thailand. This gives us an understanding of the

level of complexity required to capture HPAI epidemic dynamics. However, this250

approach only enables us to use our models retrospectively, to understand the

model parameters and predictions of risk factors with the benefit of hindsight.

However, it is also important to explore the predictive capacity of our models,

so that we can assess whether the frameworks can be used to provide policy

advice for ongoing epidemics.255

In order to investigate the utility of our model predictions and control op-

tions in real time during outbreaks, we re-fit Model D only using outbreak data

that would be available at particular points during the epidemic. The model is

therefore parameterised using reported data up to day 10 and then sequentially

on days 15, 20, 25, 30, 35, 50, 75, 100, 125, 150, 175 and 200 (the entire out-260

break). We are interested in exploring how the prediction of the epidemiological
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parameters change through time. Our results are summarised in figure 2. As

the observation time, T , increases, the estimated value of the background term δ

decreases. Meanwhile, within subdistrict and between subdistrict transmission

rates are both observed to initially increase as T increases, before decreasing265

again after the epidemic peak.

When the model is only fitted to the first 10 days on the outbreak, we

predict significant spread of the virus over large areas of the country (figure

3, second column). The model also dramatically overestimates outbreak size.

This overestimate appears to be due to the parameterisation of the model on270

day 10 - the background term δ dominates (figure 2, fourth row) and the model

predicts much lower within-subdistrict and cross border transmission (figure

2, fourth row). However, as the outbreak progresses, the model predicts that

transmission is becoming more local, as seen by a reduction in the predictions

of the value of δ. As the epidemic progresses, we see that the model performs275

much better at predicting the spatiotemporal profile of the outbreak. Indeed

by day 30 (figure 3, third column), predictions of epidemic spread begin to be

confined to regions where the true outbreak was observed. By day 50, the model

is capable of producing accurate predictions of both the spatial and temporal

profile (figure 3, fourth column), indicating that from this stage the ability of280

our modelling framework to generate robust predictions that could be used to

inform policy in real time.

3.3. Evaluating the effectiveness of local control

We now investigate the effectiveness of interventions at reducing the impact

of H5N1 in Thailand. We use the four models and explore the impact of ring285

culling at radii from 0.25km to 5km around each infected premises and vacci-

nation within infected subdistricts with capacities of 50%, 70% and 90% of all

birds within the subdistrict. The results are summarised in (Fig 4 A). We see a

significant difference in predicted outbreak sizes and durations for the different

control policies when we compare the predictions between the models. This290

suggests that, if we are interested in predicting the quantitative impact of a
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given intervention, it is crucial to select the most appropriate model. However,

regardless of the differences in the predictions of epidemic size, all four models

predict that large radius ring culling (5km) is the most effective strategy at min-

imising the total number of infected flocks (Fig 4 A, top panel). This strategy295

results in a significant number of culled flocks and in fact if we are interested in

minimising the total number of culled poultry flocks, high capacity vaccination

proves to be the most effective policy (Fig 4 A, middle panel). Models B, C and

D predict that 5km ring culling results in the lowest outbreak duration across

all the control strategies investigated. However, we see somewhat different re-300

sults for our preferred spatial (duck) model – in this case there is no significant

difference between a 5km ring culling policy and a vaccination strategy with a

90% capacity (Fig 4 A, lower panel, Mann-Whitney test p = 0.14).

Finally, we investigate the predictive ability of control policies for the pre-

ferred Model D. We therefore simulate our model from the start of the outbreak,305

using parameters that we have obtained on days 10, 15, 20, 25, 30, 35, 50, 100

and 200. We then explore the model predictions of the effectiveness of all com-

peting ring culling and vaccination policies using model parameters obtained

at each of these intervals. We observe that, even on day 10 when there is sig-

nificant uncertainty in spatial spread parameters, Model D accurately predicts310

that 5km ring culling is the policy that minimises the total number of infected

flocks (Fig 4 B, top panel). Whilst the predicted epidemic sizes change for

each control policy during the outbreak, the relative ordering of control policies

remains consistent throughout. The same is true for total culled flocks, in that

high capacity ring culling is always preferred (Fig 4 B, middle panel).315

However, if we are interested in minimising outbreak duration we see a some-

what different result. When the model uses only early outbreak data, predictions

of epidemic duration are dramatically overestimated for IP only culling and all

vaccination policies (Fig 4 B, lower panel). The dynamics of the simulated out-

break is mostly dominated by the background δ, so even under a vaccination320

capacity of 90%, this gives a high enough infection pressure to sustain the out-

break for a long period of time. This overprediction is largely resolved by day 25
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when vaccination is used, possibly owing to the more accurate predictions of the

spatial extent of the disease at this point in the epidemic. We therefore conclude

that it is important to determine the objective of control when deciding upon325

an intervention policy and that model predictions of the spread of the disease

and the impact of interventions should be considered with caution during the

early stages of any influenza epidemic.

4. Discussion

We have developed a set of mathematical models to investigate the level330

of complexity required to make accurate predictions regarding the spread of

HPAI H5N1 in Thailand. When developing models, there is always a trade off

between including enough model complexity to be able to capture the, often

very complex, epidemiological and demographic characteristics that can lead to

virus transmission, whilst at the same time keeping the model simple enough335

such that it is possible to parameterise. Here we explored that premise by

considering four nested models of increasing complexity, where we accounted

for random (non-distance based) spread, local spread of the disease, increased

transmission owing to rice paddy density and increased transmission owing to

presence of intensive duck farming.340

Our results indicate that regions with a highly intensive duck farming indus-

try are most likely to be infected during the H5N1 outbreak - our model that

includes this factor provides the closest fit to the observational data from the

2004 outbreak. Our analysis reveals locations where the probability of finding

infected animals is substantially higher, which can be used to identify specific345

areas where surveillance would be more beneficial than others in terms of in-

creasing the probability of detecting the infection at early stages.

In addition, we have explored the ability of models of this nature to be

used in real time during ongoing outbreaks. Many infectious disease models

are used retrospectively to determine the risks associated with spread and the350

impact of control for previous outbreaks. Whilst this has value, it is also crucial
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to determine whether these models can be used in real time to advise policy

makers during the course of an epidemic. Our results suggest that, during

the early stages of HPAI outbreaks, there is significant uncertainty, owing to

partial reporting of cases and potential for undetected infections over large areas.355

Models such as the one we describe here therefore only have limited predictive

power in the very early stages of HPAI epidemics. However, as more data are

accrued, the uncertainty in predictions decreases, such that after the first few

weeks, we are able to accurately predict both the size and the spatial extent of

the outbreak. This is highly beneficial in terms of being able to inform targeted360

surveillance policies to improve detection.

Despite this uncertainty, the models perform significantly better in deter-

mining the optimal control policies that should be deployed, even in the very

early stages of the outbreak. This is promising, in that, despite over predictions

of spread at epidemic onset, models are able to inform how to target inter-365

ventions to reduce the risk of spread in the future. The caveat to this is the

uncertainty in the impact of some control policies in the early stages of out-

breaks - whilst the model accurately predicts that high radius ring culling is

the preferred policy even when only using the first 10 days of the outbreak to

parameterise the model, the duration of outbreaks is significantly overpredicted370

for IP only culling and vaccination policies.

For the future, it is important to explore mechanisms to improve the pre-

dictive power of infectious disease models during the early stages of disease

outbreaks. It is simply not possible for policy makers to wait for uncertainty to

resolve after the first few weeks before employing an intervention and therefore375

seeking methods to reduce uncertainty in model predictions at epidemic onset

is vital. One area for future research would be to use data from previous out-

breaks to provide more informed priors for epidemiological parameters. This

would enable us to explore whether this can better establish the likelihood of

spread in the first few days of a new epidemic when the outputs of models could380

potentially have the most significant impact upon reducing the spread of the

disease.
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5. Supplementary Material

5.1. Data

The demographic data describing poultry industry in Thailand during the385

2004 outbreak has the following characteristics: number of subdistricts: 7,416;

number of flocks: 3,303,160; number of chicken: 180,725,929; number of ducks:

19,745,049. This gives that the national poultry density during the outbreak

was 395 birds/km2.

5.2. Mathematical models390

We formulate four mathematical models with increasing complexity: a ran-

dom process model (Model A), a spatial model (Model B), a spatial model

incorporating rice (Model C), and a spatial model incorporating duck intensity

(Model D).

Any district k is described by a number of flocks, Fk, number of susceptible395

flocks at time t, Sk(t), and number of in infectious flocks at time t, Ik(t). Then

any flock i in a subdistrict k is described by a number of chicken, NCk,i and

number of ducks, NDk,i. For further calculations, we normalise number of

chicken and ducks as follows:

nck,i =
(NCk,i
NC

)pC
,

ndk,i =
(NDk,i

ND

)pD
,

where power laws pC and pD account for virus transmission differences in the400

two species.

We can write a general expression for the force of infection to a susceptible

flock, k:

λk(t) = (1 + αRH(rck, εrc, nrc) + αDH(dck, εdc, ndc))

×

(
δ(1 + nI(t)) + Sk(t)

(
βWWkIk(t) + βB

∑
i∈NBk

Bk,iIi(t)

))
,(1)

H(x, ε, n) =
1

(x/ε)n + 1
, (2)
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Here rck is the fraction of the area of the subdistrict occupied by rice paddies;

the intensity of duck industry is formalised as dck = log10 (maxi=1..Fk
(NDk,i) + 1);405

nI(t) is the number of infected flocks at time t, whilst βW and βB are the rates

of spatial transmission within and between subdistricts, whilst Wk and Bk,i are

the rates of within-subdistrict transmission and local cross-border transmission.

The term δ is spatially independent and allows transmission between any pair

of subdistricts. We refer to δ from here onwards as the ”background” term.410

The rate of within-subdistrict transmission for subdistricts with a number

of flocks Fk > 1 is given by

Wk =
dk

F 2
k (Fk − 1)

Fk∑
i=1

Fk∑
j=1,j 6=i

((
nck,i + ξndk,i

)(
nck,i + ξndk,i

))
, (3)

where dk is the density of flocks (i.e. number of flocks divided per subdistrict

area) and Fk is a number of flocks in a subdistrict k.

The rate of local cross-border transmission between subdistricts with a num-415

ber of flocks Fk > 0 and neighbouring subdistricts {i‖i ∈ NBk, Fi > 0} is given

by

Bk,i =
diLk,iΩk,i
AkF 2

kFi

Fk∑
kk=1

Fi∑
ii=1

((
nck,kk + ξndk,kk

)(
nci,ii + ξndi,ii

))
, (4)

where Lk,i is the length of a shared boundary between neighbour districts k and

i and Ak is the area of subdistrict k.

The term Ωk,i is a scaling factor for between-subdistrict transmission in-420

formed by the mean distance between neighbouring subdistricts taking into

account the size of each subdistrict, following the approach of Buhnerkempe

et al. 2014 such that:

Ωki,i =

∫ ∞
−∞

∫ ∞
0

∫ ∞
0

κ
(√

x2 + (yi + yk)2
)
dykdyidx,

κ(r) =
ζ

1 +
(
r
θ

)α ,
where α and θ are the shape and scale parameters of the distance-dependent

local spread kernel respectively (Buhnerkempe et al. 2014 ). The normalisation425

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355024doi: bioRxiv preprint 

https://doi.org/10.1101/355024


constant ζ is defined such that∫ ∞
0

2πκ(r)dr = 1.

5.3. Bayesian approach for parameter estimation

We use a Bayesian approach to fit the meta-population model to the outbreak

data (Jewell et al. 2009 ). The likelihood function has the following expression:

L =
∏
k∈IT

nk∏
i=1,tki 6=t0

(1− exp (−λk(tki)))
Îk(tki)

(
exp

(
−
tki−1∑
t0+1

λk(t)

))Îk(tki)

×
∏
k∈IT

(
exp

(
−

T∑
t0+1

λk(t)

))Sk(T ) ∏
k∈ST

(
exp

(
−

T∑
t0+1

λk(t)

))Fk

where nk is the total number of infection events in a subdistrict k and tki430

is the time of the ith infection event in a subdistrict k. We introduce Îk(t)

to be the number of flocks that have been infected at time t, and note that

this is different from Ik(t) (i.e. the number of infectious flocks at time t). For

each of the parameters, we update the parameter value using a random walk

Metropolis algorithm with a Gaussian proposal: θ∗ ∼ N(θ, σ), where θ and θ∗435

are parameter vectors, and σ is a covariance matrix.

The proposed set of updated parameters θ∗ is then accepted with probability

min

{
1,
L(θ∗)

L(θ)

q(θ∗, θ, σ)

q(θ, θ∗, σ)

}
, (5)

where q(x, y, s) is a normal PDF value at x with mean y and covariance matrix

s.

As a pre-emptive culling policy within a 1km radius of flocks reporting in-440

fection was introduced during the outbreak, we simulate this by reducing the

number of susceptible flocks as a fraction given by the ratio of the area of a cir-

cle with 1km radius to the total area of the subdistrict in question. We assume

that there was no re-population of any flocks after culling prior to the end of

the epidemic.445
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5.4. Model simulation

Posterior samples of parameters are used to generate predicted outbreaks.

At every time t of the simulation (time step ∆t = 1 day), every susceptible flock

k has a probability of becoming infected:

pk(t) = 1− exp (−λk(t)) , (6)

where the infection pressure depends on a particular model. We start the out-450

break by seeding infection in the six subdistricts in Thailand that had reported

infection during the first three days of the outbreak. The seed cases were the

same for all simulations. The outbreak was assumed to end after seven days

without new infected cases (or alternatively the simulation was terminated after

2000 days).455

Modeling Intervention strategies

With vaccine capacity γ, the demographic factors on the infection pressure

then are reduced so that:

ncvk,i =
((

1− γ

100

) NCk,i
NC

)pC
,

ndvk,i =
((

1− γ

100

) NDk,i

ND

)pC
.
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Table 1: Estimated parameters with posterior mean and 95% CI for random process model

(A), spatial model (B), spatial rice model (C), and spatial duck model (D).

Parameter Model (A) Model (B) Model (C) Model (D)

δ × 10−8 2.55 (2.43, 2.68) 1.23 (1.14, 1.30) 1.23 (1.16, 1.30) 0.77 (0.69, 0.84)

βW × 10−6 3.6 (2.85, 4.52) 3.45 (3.22, 3.65) 0.99 (0.76,1.12)

βB × 10−5 1.71 (1.38, 2.22) 1.08 (1.03, 1.13) 0.41 (0.34, 0.52)

pC 0.38 (0.29, 0.47) 0.34 (0.30, 0.38) 0.41(0.32, 0.48)

pD 0.26 (0.22, 0.31) 0.21 (0.18, 0.24) 0.03 (0.01,0.08)

ξ 3.17 (2.28, 3.92) 3.63 (3.43, 3.92) 2.78 (2.31,3.19)

αD 0.71 (0.65, 0.74)

εD 0.61 (0.58, 0.63)

nD 3.25 (3.14, 3.34)

αR 13.5 (11.2, 16.7)

εR 3.45 (3.23, 3.71)

nR 5.92 (5.03, 6.86)
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Figure 1: Predicted and observed outbreak distributions. Maps show the mean number of

infected flocks in each subdistrict.
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(A)
(B)

(C)

Figure 2: Distribution of fitted parameters for the spatial (ducks) model D: δ (A), βW (B),

and βB (C). Sequential parameter estimation performed for outbreak data censored at time

T days shown on x-axis.
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Figure 3: Predicted and observed spatial and temporal outbreak distributions. Each map

show the mean number of infected flocks in each subdistrict as predicted by the model fitted

at the given time in the outbreak. For each temporal profile, the observed 2004 outbreak is

given by the red line, whilst the solid black line gives the mean model prediction.
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Figure 4: Effect of local controls. Projected number of infected flocks, number of

culled flocks and duration of outbreak for (A) the four models, (B) for sequential parameter

estimation using Model D with outbreak data censored at time T days.
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