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Abstract 20 

Prior personal information is highly relevant during social interactions. Such knowledge 21 

aids in the prediction of others, and it affects choices even when it is unrelated to actual 22 

behaviour. In this investigation, we aimed to study the neural representation of positive 23 

and negative personal expectations, how these impact subsequent choices, and the effect 24 

of mismatches between expectations and encountered behaviour. We employed 25 

functional Magnetic Resonance Imaging in combination with a version of the 26 

Ultimatum Game (UG) where participants were provided with information about their 27 

partners' moral traits previous to their fair or unfair offers. Univariate and multivariate 28 

analyses revealed the implication of the supplementary motor area (SMA) and inferior 29 

frontal gyrus (IFG) in the representation of expectations about the partners in the game. 30 

Further, these regions also represented the valence of expectations, together with the 31 

ventromedial prefrontal cortex (vmPFC). Importantly, the performance of multivariate 32 

classifiers in these clusters correlated with a behavioural choice bias to accept more 33 

offers following positive descriptions, highlighting the impact of the valence on the 34 

expectations on participants' economic decisions. Altogether, our results suggest that 35 

expectations based on social information guide future interpersonal decisions and that 36 

the neural representation of such expectations in the vmPFC is related to their influence 37 

on behaviour. 38 

  39 
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1.  Introduction 40 

Decision-making is a crucial constituent of our daily life. To make choices that best fit 41 

our goals, we must rapidly weight different sources of information in an efficient 42 

manner. An elegant approach to understand how we perform such weighting comes 43 

from the framework of predictive coding (Friston, 2005), where optimal decision-44 

making combines sensory input (evidence) with predictions (priors; Schwarz et al., 45 

2016; Summerfield and De Lange, 2014). The role of these predictions has been 46 

thoroughly examined in non-social decisions, where several studies have shown pre-47 

activation of target-related brain areas during the expectation period, prior to target 48 

onset (e.g., Esterman and Yantis, 2010; González-García et al., 2016; Puri et al., 2009). 49 

However, a large part of decisions involve social contexts, where we constantly engage 50 

in interactions with others. Still, the role of expectations in such scenarios remains 51 

unclear. 52 

 53 

When making decisions in complex scenarios, people tend to choose more often and 54 

faster the options that match their personal preferences (with higher personal value) 55 

even when the objective task value of the different alternatives is similar (Lopez-Persem 56 

et al., 2016). This leads to suboptimal decisions that do not properly consider potential 57 

future outcomes (Fleming, Thomas, & Dolan, 2010). This is also the case for 58 

interpersonal decisions, which can be biased by several sources of information at 59 

different stages of processing (Díaz-Gutiérrez, Alguacil, & Ruz, 2017). For instance, in 60 

the Ultimatum Game (UG; Güth, Schmittberger, & Schwarze, 1982; Moser, Gaertig, & 61 

Ruz, 2014), participants receive monetary offers from game partners and decide 62 

whether to accept them or not. Acceptance leads to both parts earning their split; 63 

whereas no gains are earned after a rejection. Here, “rational” decisions from an 64 

economic point of view should be of acceptance, since you can only earn money. 65 

However, choices are strongly influenced by the fairness of the offer (how balanced 66 

both halves of the split are). People often show high rejection rates towards unfair offers 67 

(Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003), which has been explained in 68 

terms of inequity-aversion tendencies (Fehr & Camerer, 2007) and punishment (Brañas-69 

Garza, Espín, Exadaktylos, & Herrmann, 2014). Others have emphasized the 70 

importance of social norms, and how these impact the perception of fairness (Chang & 71 

Sanfey, 2013). In these scenarios, the mechanisms underlying the processing of offers 72 

depending on their fairness and participants’ subsequent responses have been 73 
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extensively studied. Here the role of the anterior cingulate cortex (ACC) and 74 

supplementary motor area (SMA) stands out, concerning both fairness and people’s 75 

decisions (for a meta-analysis, see Gabay et al., 2014). Authors such as Sanfey et al., 76 

(2003) have shown the involvement of the anterior insula (aI) in fairness processing. 77 

Also, Corradi-Dell’Acqua, Civai, Rumiati, & Fink (2013) differentiated its role from the 78 

one of the medial prefrontal cortex (mPFC), which appears to be linked to emotional 79 

self-related responses during interpersonal bargaining situations.  80 

 81 

Despite the extensive and diverse studies in interpersonal games, it is largely unknown 82 

how the brain represents socially relevant priors in these scenarios. Recent proposals 83 

have tried to link predictive coding and the representation of social traits in relation to 84 

social expectations (e.g., Tamir and Thornton, 2018). Several studies have described a 85 

set of regions underlying the representation of knowledge that guides social predictions 86 

in a broad context (termed Social Cognition Network; Frith & Frith, 2008), including 87 

personal traits, stereotyping, semantic knowledge about people or inferences about 88 

others and their mental states (Tamir & Thornton, 2018; Tamir, Thornton, Contreras, & 89 

Mitchell, 2016). This network includes the temporoparietal junction (TPJ), superior 90 

temporal sulcus (STS), precuneus (PC), anterior temporal lobes (ATL), amygdala and 91 

the mPFC (Contreras et al., 2013; Frith, 2007; Frith and Frith, 2001; Mitchell et al., 92 

2008). These regions underlie processes such as Theory of Mind (ToM; Saxe and 93 

Kanwisher, 2003). Similarly, in decisions in social contexts, the mPFC has been related 94 

to expectations about others’ behaviour (Corradi-Dell’Acqua, Turri, Kaufmann, 95 

Clément, & Schwartz, 2015). Importantly, prior expectations during social decisions 96 

also influence behaviour when they are not followed by their usual consequences. In 97 

this line, different studies (Fouragnan et al., 2013; Ruz and Tudela, 2011) have observed 98 

increased activation in brain areas associated with cognitive control, such as the ACC 99 

and the aI when expectations about partners do not match their subsequent behaviour. 100 

Similarly, Chang and Sanfey (2013) found a relationship between the deviation of the 101 

expectations and increased activation in the aI, ACC and SMA. Specifically, in the UG, 102 

an increase of activation in the dorsolateral PFC (dlPFC) and aI has been related to 103 

participants' reaction to unfair offers (Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 104 

2006; Sanfey et al., 2003), which has also been interpreted as a violation of what we 105 

expect from others.  106 

 107 
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In addition to this, social expectations can also be based on the personal traits of others, 108 

which are an essential component of social representations (Tamir & Thornton, 2018). 109 

The priors that they generate relate to stereotypes and interact with perceptual processes 110 

(Stolier & Freeman, 2016, 2017). These personality traits can be decomposed in three 111 

different dimensions: rationality, social impact and, crucially to our investigation, 112 

valence (positive vs. negative; Tamir and Thornton, 2018; Thornton and Mitchell, 113 

2017). The representation of the character of others in association with positive or 114 

negative information is an important source of bias in interpersonal decisions (Díaz-115 

Gutiérrez et al., 2017). For instance, Delgado et al. (2005), found that participants 116 

trusted partners associated with positive moral traits more than those having negative 117 

ones. Furthermore, a variety of studies employing the UG paradigm have observed that 118 

participants tend to accept more offers from partners associated with positive 119 

descriptions, compared to negative ones (Gaertig, Moser, Alguacil, & Ruz, 2012). This 120 

tendency is steeper when participants navigate uncertain scenarios (Ruz, Moser, & 121 

Webster, 2011). Moreover, in this context, the use of high-density 122 

electroencephalography (EEG) has shown that negative descriptions of partners lead to 123 

a higher amplitude of the medial frontal negativity (MFN; associated with the 124 

evaluation of outcomes, Hajcak et al., 2006; Yeung and Sanfey, 2004) when decisions 125 

are made (Moser et al., 2014). These data indicate how, regardless of fairness, people 126 

evaluate offers as more negative when they come from a disagreeable partner. Such 127 

knowledge about personal traits has been suggested to be integrated by the mPFC (Van 128 

Overwalle, 2009). For example, this area increases its coupling with other regions 129 

responding to specific traits (Hassabis et al., 2014), and shows heightened activation 130 

when a partner's behaviour violates previous trait implications (Ma et al., 2012). 131 

 132 

Nonetheless, despite the key relevance of valence in psychological theories and its 133 

marked impact on social decision-making, it is not well understood how valence is 134 

represented at the neural level and its effect on subsequent choices (Barrett & Bliss-135 

Moreau, 2009). Results of a recent meta-analysis (Lindquist, Satpute, Wager, Weber, & 136 

Barrett, 2015) provide evidence of  a general recruitment of a set of regions for valenced 137 

versus neutral information, including the bilateral aI, the ventral and dorsal portions of 138 

the mPFC (vm/dmPFC), the dorsal ACC, SMA, and lateral PFC. Lindquist et al. (2015) 139 

found that the vmPFC/ACC was more frequently activated in positive vs. negative than 140 
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in positive vs. neutral contrasts, which could indicate that these regions represent 141 

valence information along a single bipolar dimension.  142 

 143 

Taking all this into account, in the current functional Magnetic Resonance Imaging 144 

(fMRI) study, we employed a modified version of the UG (Gaertig et al., 2012) to 145 

investigate how socially relevant priors represented by the valence of personal 146 

descriptions of partners bias interpersonal economic choices. First, we aimed to study 147 

which neural regions code for the generation and maintenance of positive and negative 148 

expectations about other people. In a second step, we assessed how these expectations 149 

bias decisions. We expected to find specific neural representations underlying the 150 

expectations about the partners, with different patterns depending on the valence of 151 

these predictions (Lindquist et al., 2015). Specifically, we hypothesized that these 152 

patterns would be represented in regions related to social cognition and priors in 153 

decision-making (Contreras et al., 2012; González-García et al., 2016; Saxe & 154 

Kanwisher, 2003). Last, we intended to ascertain which neural mechanisms were 155 

engaged when there is a mismatch between personal expectations and the partners’ 156 

behaviour. We predicted that control-related areas would be engaged when the valenced 157 

description was not congruent with the subsequent partner’s behaviour.  158 

 159 

2. Methods 160 

2.1. Participants 161 

Twenty-four volunteers were recruited from the University of Granada (M = 21.08, SD 162 

= 2.92, 12 men), matching the sample size employed in Moser et al. (2014), who 163 

implemented the same version of the task for electroencephalography (EEG).  This 164 

sample is similar to previous fMRI studies using the UG (Chang and Sanfey, 2013; 165 

Grecucci, Giorgetta, Bonini & Sanfey, 2013). All participants were right-handed with 166 

normal or corrected vision and received economic remuneration (20-25 Euros, 167 

proportionally to their acceptance rates). Participants signed a consent form approved by 168 

the Ethics Committee of the University of Granada.  169 

 170 

2.2. Apparatus and stimuli 171 

We employed 16 adjectives used in previous studies (Gaertig et al., 2012; Moser et al., 172 

2014; Ruz et al., 2011; see Table 1) as trait-valenced descriptions of the game 173 
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proposers, extracted from the Spanish translation of the Affective Norms for English 174 

Words database (ANEW; Redondo et al., 2007). Half of the adjectives were positive (M 175 

= 7.65 valence, SD = 0.43), and the other half were negative (M = 2.3 valence, SD = 176 

0.67). All words were matched in arousal (M = 5.69, SD = 0.76), number of letters (M = 177 

6.19, SD = 1.42) and frequency of use (M = 20.19, SD = 18.47). In addition, we 178 

employed numbers from 1 to 9 (two in each trial) in black colour to represent different 179 

monetary offers. Stimuli were controlled and presented by E-Prime software (Schneider, 180 

Eschman, & Zuccolotto, 2002). Inside the scanner, the task was projected on a screen 181 

visible to participants through a set of mirrors placed on the radiofrequency coil.  182 

 183 

2.3. Task and procedure 184 

To add credibility to the interpersonal game setting, participants were told that they 185 

were about to receive offers made by real participants in a study of a previous 186 

collaboration with a foreign university. Furthermore, to engage participants in the game 187 

as a real social scenario, prior to the scanner they performed two tasks in which they 188 

had to make economic offers that would be used for other participants in future studies. 189 

In one of the tasks, participants acted as proposers, filling a questionnaire where they 190 

had to make offers for 16 different unknown partners, who would be involved in future 191 

experimental games. Here, they had to split 10 Euros into two parts, one for themselves 192 

and the other for their partners. Additionally, in a second task, they played a short 193 

version of the Dictator Game (Kahneman, Knetsch, & Thaler, 1986), where they 194 

decided how to divide another 10 Euros between themselves and an anonymous partner, 195 

who would have a merely passive role concerning the output of the offer. Moreover, 196 

participants were told that the offers that they were about to see in the scanner were 197 

each provided by a different partner who previously performed the same tasks as they 198 

did before the scanner, and therefore, the offers were real examples of other 199 

participants’ responses when acting as proposers. Participants were informed that each 200 

offer would be preceded by a word that had been obtained as an output from a series of 201 

personality and social questionnaires filled by their partners and, therefore, that these 202 

adjectives described them in some way (see Table 1). Choices made by participants had 203 

an influence in their final payment, as it actually varied (20-25 Euros) according to their 204 

choices during the game in the scanner. In a post-scanning informal debriefing session, 205 

none of the participants reported suspicions regarding the background story of this 206 
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procedure, which has also been used successfully in other settings (e.g. Correa, 207 

Alguacil, Ciria, Jiménez, & Ruz, 2020; Correa et al., 2017). 208 

 209 

In the scanner, participants played the role of the responder in a modified UG (e.g., 210 

Gaertig et al., 2012), deciding whether to accept or reject monetary offers made by 211 

different partners (proposers). If they accepted the offer, both parts earned their 212 

respective splits, whereas if they rejected it, neither of them earned money from that 213 

exchange. Offers consisted of splits of 10 Euros, which could be fair (5/5, 4/6) or unfair 214 

(3/7, 2/8, 1/9). The number presented at the left on the screen was always the amount of 215 

money given to the participant, and the one on the right side was the one proposed by 216 

the partners for themselves.  217 

 218 

Table 1. List of adjectives employed in the task (Gaertig et al., 2012).  219 

Positive words Negative words 

Friend Criminal 

Generous Cruel 

Honest Disloyal 

Honourable False 

Humble Guilty 

Kind Hostile 

Loyal Selfish 

Warm Traitor 

 220 

 221 

Personal information about the partners was included as adjectives with different 222 

valence. A third of these descriptions was positive, another third negative, and the last 223 

third was neutral, represented by text indicating the absence of information about that 224 

partner ("no test"). The valence of the adjectives was orthogonal to the fair-unfair nature 225 

of the offer. The order of the offers and adjectives was randomized, and each type of 226 

personal information (positive, negative, no information) preceded each offer equally 227 

within and across runs. Decision-response associations were counterbalanced between 228 

participants.  229 

 230 
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Participants performed a total of 192 trials, arranged in 8 runs (24 trials per run). In each 231 

run, a start cue of 6 s was followed by 24 trials. Each trial (see Figure 1) started with an 232 

adjective for 1 s (mean = 2.98º), preceding a jittered interval lasting 5.5 s on average (4-233 

7 s, +/0.76º). Then, the offer appeared for 0.5 s (1.87º), followed by a second jittered 234 

interval (mean = 5.5 s; 4-7 s, +/0.76º). Overall, each run lasted 5.1 minutes and the 235 

whole task 41 minutes approximately. 236 

 237 

 238 

Figure 1. Sequence of events in a trial. The task varied the Valence of the partner’s information (Positive, 239 

Negative, No information) and the Fairness of the offer (Fair/Unfair), which were manipulated 240 

orthogonally in the design.  241 

 242 

2.4. Image acquisition and preprocessing 243 

MRI images were acquired using a Siemens Magnetom TrioTim 3T scanner, located at 244 

the Mind, Brain and Behavior Research Center in Granada. Functional images were 245 

obtained with a T2*-weighted echo-planar imaging (EPI) sequence, with a TR of 2000 246 

ms. Thirty-two descendent slices with a thickness of 3.5 mm (20% gap) were extracted 247 

(TE = 30 ms, flip angle = 80 º, voxel size of 3.5 mm3). The sequence was divided into 8 248 

runs, consisting of 166 volumes each. After the functional sessions, a structural image 249 

of each participant with a high-resolution T1-weighted sequence (TR = 1900 ms; TE = 250 

2.52 ms; flip angle = 9º, voxel size of 1 mm3) was acquired.  251 

 252 

 Data were preprocessed with SPM12 software 253 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The first three volumes of each run 254 
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were discarded to allow the signal to stabilize. Images were realigned and unwarped to 255 

correct for head motion, followed by slice-timing correction. Afterwards, T1 images 256 

were coregistered with the realigned functional images. Then, functional images were 257 

spatially normalized according to the standard Montreal Neurological Institute (MNI) 258 

template and smoothed employing an 8 mm Gaussian kernel. Low-frequency artefacts 259 

were removed using a 128 high-pass filter. Data for multivariate analyses was only 260 

head-motion and slice-time corrected and coregistered. 261 

 262 

2.5. Univariate analyses 263 

First-level analyses were conducted for each participant, following a General Linear 264 

Model in SPM12. We employed an event-related design, where activity was modelled 265 

using regressors for each valence type of adjective and for the offers. The estimated 266 

model included three regressors for the Words (positive, negative, no information) and 267 

six for the Offers (Fair offers_Positive, Fair offers_Negative, Fair offers_Neutral, 268 

Unfair offers_Positive, Unfair offers_Negative, Unfair offers_Neutral). Note that since 269 

decisions were made when the offers appeared, and that responses (choices) showed a 270 

strong dependency on offer fairness, offer fairness and decisions cannot be modelled 271 

separately. Given our research questions, we modelled the offer events considering their 272 

fairness regardless of participants’ choices. Regressors were convolved with a standard 273 

hemodynamic response, with adjectives modelled with their duration (1 s + jitter), and 274 

offers modelled as events with zero duration. This temporal difference is accounted by 275 

the fact that the words describing the partners trigger preparatory processes, which 276 

extend in time (e.g. Bode & Haynes, 2009; Di Russo et al., 2017; González-García, 277 

Arco, Palenciano, Ramírez, & Ruz, 2017; González-García et al., 2016; Sakai, 2008), 278 

whereas the processing of the offers ends shortly after with the response of each trial 279 

(see Moser et al., 2014). In addition, the orthogonal manipulation of these variables in 280 

the design avoided covariance confounds between word cues and target offers.  281 

 282 

At the second level of analysis, t-tests were conducted for comparisons related to the 283 

presence of expectations (information about the partner > no information), the valence 284 

of the information (positive > negative, negative > positive) and the fairness of the offer 285 

(fair > unfair, unfair > fair). We also carried out contrasts for congruence effects 286 

between the events, where we had congruent (positive descriptions followed by fair 287 

offers, negative descriptions followed by unfair offers) and incongruent trials (positive 288 
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descriptions followed by unfair offers, negative descriptions followed by fair offers). To 289 

control for false positives at the group level, we employed permutations tests with 290 

statistical non-parametric mapping (SnPM13, http://warwick.ac.uk/snpm) and 5000 291 

permutations. We performed cluster-wise inference on the resulting voxels with a 292 

cluster-forming threshold of 0.001, which was later used to obtain significant clusters 293 

(FWE corrected at p<0.05).  294 

 295 

2.6 Multivariate analyses 296 

We performed MVPA to examine the brain areas representing the valence of the 297 

expectations, that is, the regions containing information about whether the partners were 298 

described with positive vs. negative adjectives. To this end, we performed a whole-brain 299 

searchlight (Kriegeskorte et al., 2006) on the realigned images (prior to normalization). 300 

We employed The Decoding Toolbox (TDT; Hebart et al., 2015), to create 12-mm 301 

radius spheres, where linear support vector machine classifiers (C=1; Pereira et al., 302 

2009) were trained and tested using a leave-one-out cross-validation scheme, employing 303 

the data from the 8 scanning runs (training was performed with data from 7 runs and 304 

tested in the remaining run, in an iterative fashion). We used a Least-Squares Separate 305 

model (LSS; Turner, 2010) to reduce collinearity between regressors (Abdulrahman & 306 

Henson, 2016; Arco et al., 2018). This approach fits the standard hemodynamic 307 

response to two regressors: one for the current event of a trial (positive/negative 308 

adjective) and a second one for all the remaining events and trials. As in the previous 309 

analyses, adjective regressors were modelled with their duration (1 s + jitter) and offers 310 

with zero duration. Consequently, the output of this model was one beta image per 311 

event (total = 128 images, 64 for each type of adjective, 112 for training and 16 for 312 

testing in each iteration). Afterwards, at the group level, non-parametrical statistical 313 

analyses were performed on the resulting accuracy maps following the method proposed 314 

by Stelzer et al. (2013) for MVPA data. We permuted the labels and trained the 315 

classifier 100 times for each participant. The resulting maps were then normalized to an 316 

MNI space. Afterwards, we randomly picked one of these maps per each participant and 317 

averaged them, obtaining a map of group accuracies. This procedure was repeated 318 

50000 times, building an empirical chance distribution for each voxel position and 319 

selecting the 50th greatest value, which corresponds to the threshold that marks the 320 

statistical significance. Only the voxels that surpassed this were considered significant. 321 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 30, 2020. ; https://doi.org/10.1101/355115doi: bioRxiv preprint 

https://doi.org/10.1101/355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

The resulting map was FWE corrected at 0.05, computing previously the cluster size 322 

that matched this value from the clusters obtained in the empirical distribution.  323 

 324 

Importantly, the valence of the description influenced acceptance rates, which could 325 

generate potential confounds in the previous decoding. The association between hand 326 

and decision (left/right, acceptance/rejection) was fully counterbalanced across 327 

participants, but remained constant for each of them. Therefore, the classifier could use 328 

response information (accept vs. reject) when decoding valence. To clarify this issue, 329 

we performed a response classification at the offer period (following the same 330 

procedure as for the valence decoding). Then, we ran a conjunction analysis, computing 331 

the intersection between valence and response group maps to examine whether the 332 

regions containing relevant information about the valence were the same as those 333 

representing the participants’ decisions (accept vs. reject). Moreover, to test additionally 334 

the potential overlap between the neural representations of participants’ decisions and 335 

the valence of the expectations about the partners, we performed a cross-classification 336 

analysis (Kaplan, Man, & Greening, 2015) between these two domains. Following again 337 

the same classification procedure described above in this section, we trained the 338 

classifier with the participants’ responses to the offers (accept vs. reject) and tested it on 339 

the valence of the partner’s descriptions (positive vs. negative). 340 

 341 

2.7. Relationship between decoding accuracy and choices 342 

To examine the extent to which the fidelity of representation of (positive vs. negative) 343 

personal priors relates to the decisions made by participants, we performed a correlation 344 

analysis between an individual bias index and mean decoding accuracy values from 345 

each significant cluster in the MVPA described above. To obtain this behavioural index, 346 

for each participant we subtracted the average acceptance rate following negative 347 

descriptions from the average acceptance rate after positive descriptions (regardless of 348 

the nature of the offer). For each subject, we performed a one-tailed (right) Spearman’s 349 

correlation between the behavioural index and the decoding accuracy from each 350 

significant cluster (Bonferroni-corrected for multiple comparisons). To further ascertain 351 

that participants’ motor responses were not contaminating this link between valence 352 

representation and interpersonal choices, we ran an additional correlation analysis 353 

following the same approach, this time to examine the link between valence’ decoding 354 

results and the response made by participants (acceptance or rejection of the offer). 355 
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Therefore, for each participant, we calculated their average acceptance rate in general, 356 

regardless of the valence of the expectation and the fairness of the offers. 357 

 358 

3. Results 359 

3.1. Behavioural data 360 

Acceptance rates (AR) and reaction times (RTs) were analysed in a Repeated Measures 361 

ANOVA, with Offers (fair/unfair) and Valence of the descriptions (positive, negative, 362 

neutral) as factors. The Greenhouse-Geisser correction was applied whenever the 363 

sphericity assumption was violated.   364 

3.1.1. Acceptance rates  365 

Participants responded on 100% of the trials. Data showed (see Figure 2) a main effect 366 

of Offer F1,23 = 74.50, p < .001, ηp
2 = .764, where fair offers were accepted more often 367 

(M = 84.09%; SD = 22.10) than unfair ones (M = 24.18%; SD = 24.10). Valence was 368 

also significant, F2,22 = 13.735, p = .001, ηp
2 = .374. Participants accepted more offers 369 

when they were preceded by a positive description of the partner (M = 59.39%; SD = 370 

23.09), than when there was no information (M = 56.31%; SD = 21.89) or when this 371 

was negative (M = 46.70%; SD = 24.33). Planned comparisons revealed that these 372 

differences were significant between all pairs (all ps<.05). Finally, the Offer X Valence 373 

interaction was also significant, F2,22 = 4.262, p = .033, ηp
2 = .156. Planned 374 

comparisons showed that for fair offers, there were differences between all comparisons 375 

(ps = .002) except between positive and neutral information (p = .399), whereas for 376 

unfair offers, there was no difference in acceptance rates between negative and neutral 377 

information (p = .074) but there was for the rest of the pairwise comparisons: ps < .01) 378 

 379 

3.1.2. Reaction times  380 

Results showed (see Figure 2) a main effect of Offer F1,23 = 22.489, p < .001, ηp
2 = .494, 381 

where participants took longer to respond to unfair (M = 1023.53 ms; SD = 373.10 ms) 382 

than to fair offers (M = 925.62 ms; SD = 309.57 ms). Neither Valence, F2,22 = 1.05, p = 383 

.341, or its interaction with Fairness, F2,22 = 1.956, p = .168 were significant. In 384 

addition, to measure the influence of expectations on participant's responses (see Ruz et 385 

al., 2011), we ran an ANOVA where we included the valence of the descriptions and the 386 

decision (accept, reject) made to the offers. Here, we did not find any effect of Valence, 387 

F<1, but we found significant effects of Decision, F1,23 = 5.519, p = .028, ηp
2 = .194, 388 
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since participants were faster to accept (M = 951.37 ms; SD = 356.01 ms) than to reject 389 

the offers (M = 988.97 ms; SD = 316.91 ms). Interestingly, data showed an interaction 390 

Valence X Decision, F2,22 = 4.23, p = .025, ηp
2 = .155, replicating previous findings 391 

(Gaertig et al., 2012; Ruz et al., 2011). Planned comparisons indicated that these 392 

differences in RT for responses took place only after positive, F1,23 = 13.997, p = .001, 393 

ηp
2 = .378 (Accept: M = 927.60 ms, SD = 297.37 ms; Reject: M = 993.91 ms, SD = 394 

335.52 ms), and neutral descriptions, F1,23 = 4.504, p = .045, ηp
2 = .165 (Accept: M = 395 

955.8 ms, SD = 304.96 ms; Reject: M = 987.80 ms, SD = 328.48 ms), but not for 396 

negative descriptions, F<1. 397 

 398 

Figure 2. Acceptance Rates (AR, bars) and reaction times (RT, lines) to fair and unfair offers preceded 399 

by positive, negative and neutral descriptions of the partner (error bars represent S.E.M). 400 

 401 

3.2. Neuroimaging data 402 

3.2.1. Univariate results 403 

Expectations  404 

During the presentation of the description and the time interval that followed, that is, 405 

when participants had personal information to generate expectations [(Positive 406 

adjective & Negative adjective) > No Information], we observed a cluster of activity 407 

(see Figure 3a) in the left dorsal aI (k = 109; -33, 21, 4) and bilateral Supplementary 408 

Motor Cortex (SMA; k = 138; -8, 11, 53; see Fig. 3). Additionally, the right inferior 409 

parietal lobe (right IPL) showed higher activity (k = 264; 55, -35, 53) for positive 410 
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descriptions compared to negative ones. No cluster surpassed the statistical threshold 411 

(p>0.05) for the opposite contrast.  412 

413 
Figure 3. a) Univariate results during the expectation period. Scales reflect peaks of significant t-values 414 

(p<.05, FWE-corrected for multiple comparisons). b) Time course of activation in the IFG/aI (-3, 21, 0; 415 

top) and SMA (-5, 18, 53; bottom) clusters obtained from the conjunction analysis. From these regions, 416 

we extracted the signal change values related to the processing of personal information minus the average 417 

during the neutral condition, time-locked to the adjective onset.  The shaded areas show the variable time 418 

window during which the offer could appear (5-8 s after the adjective onset) whereas the dotted lines 419 

show its average (6.5 after the adjective onset). 420 

During offer processing, the previous presentation of personal information about the 421 

partner [(Offer_Pos & Offer_Neg > Offer_Neu] yielded again significant activity 422 

involving the bilateral dorsal aI and right SMA (k = 23349; -33, 21, 4).  423 

To check whether the regions related to personal information were the same during the 424 

presentation of the valenced adjectives and during the presentation of the offer (positive 425 

and negative > neutral in both cases), we ran a conjunction analysis with the regions 426 

significant in both contrasts (Nichols, Brett, Andersson, Wager, & Poline, 2005). 427 

Similar to each contrast individually, we observed two clusters: one in the left IFG/aI (k 428 

= 93; -3, 21, 0) and one involving bilateral SMA (k = 126; -5, 18, 53), suggesting that 429 

both areas increased their activation during the expectation and offer stages (see Figure 430 

3b). 431 
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 432 

Offer fairness 433 

Fair offers (Fair > Unfair) generated activity (see Figure 4) in the right medial frontal 434 

gyrus (mFG) and ACC (k = 171; 6, 39, -14), while the opposite contrast (unfair > fair) 435 

did not yield any significant clusters (p>0.05). Furthermore, we examined neural 436 

responses depending on whether previous expectations were matched or not by the 437 

nature (fair vs. unfair) of the offer. Here, congruence (see Figure 4) between 438 

expectations and offer (Congruent > Neutral) showed a cluster of activity in right 439 

cerebellum (right Crus; k = 153; 17, -88, -32). Conversely, incongruence (see Figure 4) 440 

between expectations and offer (Incongruent > Neutral) yielded activations in the right 441 

medial Superior Frontal Gyrus (mSFG) and its lateral portion bilaterally (k = 401; 13, 442 

39, 56), as well as in left IFG (k = 177; -54, 39, 0). Lastly, regarding general conflict 443 

effects, a comparison between mismatch (incongruent) vs. match (congruent) trials 444 

showed clusters of bilateral activity in the IFG/aI (k = 232; -43, 25, -11/ k = 140; 34, 445 

35, 4; see Figure 4).  446 

 447 

 448 

Figure 4. Univariate results for the offer. Scales reflect peaks of significant t-values (p<.05, FWE-449 

corrected for multiple comparisons). 450 

 451 

3.2.2. Multivariate results 452 

Valence of expectations’ classification  453 

Expectations about the partners (positive vs. negative information) showed distinct 454 

patterns of neural activity in a cluster including the left inferior and middle frontal gyrus 455 

(IFG/MFG) and aI (k = 319; -46.5, 28, -32.2), the bilateral ventromedial prefrontal 456 

cortex (vmPFC) and ACC (k = 483; 6, 21, -19.6), and the bilateral middle cingulate 457 

cortex (MCC) and SMA (k = 339; -4.5, 14, 35; see Figure 5).  458 

 459 
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Although the same comparisons (positive vs. negative) in univariate GLM only yielded 460 

a significant cluster activation in the IPL for positive > negative expectations, we ran a 461 

conjunction analysis (Nichols, Brett, Andersson, Wager & Poline, 2005) to test whether 462 

the regions that increased their activation during the presentation of the adjectives 463 

(positive & negative > neutral) were similar to those that contained relevant information 464 

about the valence (as reflected by multivariate results). For this, we computed the 465 

intersection between the group maps from both contrasts. Results showed two clusters 466 

(see Figure 5): one in the left IFG/aI (k = 56; -36, 25, 0) and one involving the bilateral 467 

SMA (k = 69; -8, 18, 46).  468 

 469 

 470 
Figure 5. Multivariate results (violet). Different neural patterns for the valence  of the adjective (positive 471 

vs. negative) during the expectation stage. Scales reflect corrected p-values (<.05). Significant regions in 472 

both univariate and multivariate analyses are highlighted in yellow. 473 

 474 

Moreover, the valence of the partners’ descriptions influenced participants’ choices, 475 

where they accepted more offers after positive than negative descriptions. As explained 476 

in the methods section (2.6 Multivariate analyses), information about participants’ 477 

responses might be employed to decode the valence of partners’ descriptions. To 478 

examine whether the regions containing relevant information about the valence were the 479 

same as those representing the participants’ decisions (accept vs. reject), we performed 480 

a response classification at the offer period and ran a conjunction analysis. Here, we 481 

observed that only a cluster in the bilateral SMA (k = 95; -1, 7, 48) resulted significant 482 

for both classification analyses. Additionally, we carried out a cross-classification 483 

analysis (Kaplan et al., 2015) to examine the overlap between the neural representations 484 

of participants’ choices and the valence of partners’ descriptions. In this case, that a 485 

classifier trained with response data is not able to decode valence category accurately 486 

would suggest that the neural codes underlying valence and response classifications are 487 
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different and, therefore, that the valence decoding results are not explained by 488 

participants’ responses. Results from this analysis showed that cross-decoding was only 489 

possible from bilateral SMA extending to left parietal lobe (k = 671; -1, -11, 45), as well 490 

as from a cluster in left cerebellum extending to lingual and fusiform gyri (k = 381; -18, 491 

-60, -15). This indicates that classification of valence in IFG/aI and vmPFC/ACC 492 

cannot be explained by the patterns related to participants’ responses.  493 

 494 

Correlation between decoding accuracy and the bias index 495 

To explore how much influence the valence of the adjectives had on choices, we 496 

correlated the mean decoding accuracies (positive vs. negative) for each significant 497 

cluster in the MVPA with the behavioural bias index for each participant. This analysis 498 

yielded significant positive correlations between the decoding accuracy for the 499 

descriptions’ valence and the behavioural bias in all 3 significant clusters (see Figure 6): 500 

the left IFG/MFG and aI (r = .42; p = .02), bilateral vmPFC/ACC (r = .44; p = .015), 501 

and the left MCC/SMA (r = .53; p = .0038). Hence, the better the activation patterns in 502 

these regions discriminated between the valence of the partners’ information, the larger 503 

the effect of valenced information on subsequent behavioural choices. A second 504 

correlation control analysis showed that this link was not contaminated by participants’ 505 

motor responses, since there was no correlation between any of the ROIs mean 506 

accuracies and general acceptance rate per participant (all ps>.39), which supports the 507 

specificity of the link between valenced expectations and choices. 508 

 509 
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 510 

Figure 6. Scatter plots showing significant correlations between mean decoding accuracies in each cluster 511 

and the behavioural index. IFG: Inferior frontal gyrus. MFG: Middle frontal gyrus. ACC: Anterior 512 

Cingulate Cortex. MCC: Middle Cingulate Cortex. SMA: Supplementary Motor Area. 513 

 514 

4. Discussion 515 

Our study investigated the neural basis of social valenced expectations during an 516 

interpersonal UG. Results revealed that social information about other people bias 517 

subsequent economic choices, as well as it increases activity in the anterior insula and 518 

SMA. Furthermore, decoding analysis allowed to observe that these areas, together with 519 

the vmPFC, represent the content of such expectations. Notably, the better this 520 

information is represented in these regions, the more biased are participants to employ 521 

such knowledge when making their economic decisions.  522 

 523 

The UG employed showed a clear behavioural effect of interpersonal expectations, 524 

where positive descriptions of others led to higher acceptance rates compared to 525 

negative ones. Additionally, the impact of the expectations was reflected on the speed of 526 

choices, where people needed more time to reject offers after positive (or neutral) 527 

expectations. This pattern indicates that participants integrate social information in their 528 

decision-making process, showing a tendency to process offers as fairer when the 529 

partner is described positively. Further, this data replicates previous results (Gaertig et 530 

al., 2012; Moser et al., 2014; Ruz et al., 2011), emphasizing the role of expectations 531 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 30, 2020. ; https://doi.org/10.1101/355115doi: bioRxiv preprint 

https://doi.org/10.1101/355115
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

(Sanfey, 2009) and valenced morality in decision-making (Barrett & Bliss-Moreau, 532 

2009). Overall, the behavioural pattern of choices observed supports the utility of the 533 

experimental paradigm to induce interpersonal valenced expectations about others that 534 

bias subsequent choices made to the same set of objective behaviour (offers made by 535 

partners).  536 

 537 

Several regions increased their activation when participants held in mind social 538 

expectations about game partners. This information engaged the SMA and the dorsal aI, 539 

which were also active at the offer stage. These are regions have been previously related 540 

to preparation processes (Brass & von Cramon, 2004), as well as sustained (Dosenbach, 541 

Fair, Cohen, Schlaggar, & Petersen, 2008; Palenciano, González-García, Arco, & Ruz, 542 

2019) and transient (Menon & Uddin, 2010; Sridharan, Levitin, & Menon, 2008) top-543 

down control, in paradigms where participants use cue-related information to perform 544 

tasks of different nature on subsequent targets. In previous studies using the UG, these 545 

regions have been linked to response to unfairness (Gabay et al., 2014). In addition, 546 

previous work has related aI activation with the rejection of unfair offers (Sanfey et al., 547 

2003). In the current context, these areas may be involved in using the interpersonal 548 

information contained in the cue to guide or bias the action towards a certain choice, 549 

according to the valence of the expectation. However, univariate contrasts between the 550 

words containing positive vs. negative information, in stark contrast with behavioural 551 

outcomes, showed effects restricted on a cluster in the IPL. This region has been related 552 

to the simulation of others' action in shared representations (Van Overwalle, 2009), and 553 

a part of our cluster it is included in the TPJ (e.g., Scholz et al., 2009), which plays a 554 

main role in ToM (Saxe & Kanwisher, 2003). The increase of activation in this region 555 

for positive expectations could indicate a higher reliance on positive descriptions by the 556 

ToM processes involved in our task. This fits with the pattern found in RTs where only 557 

positive expectations speeded acceptance choices, whereas negative descriptions did not 558 

speed rejections. Further research will be needed to replicate this imbalance of 559 

information and to better understand the nature of the underlying brain processes.  560 

 561 

Importantly, the use of a multivariate classification analysis (MVPA) unveiled the brain 562 

regions that contain differential patterns for positive vs. negative expectations about 563 

partners. This is especially relevant since previous work has indicated how valence 564 

differences at a neural level are particularly hard to observe (Lindquist et al., 2015). 565 
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These areas included the SMA/MCC, IFG/MPFC and vmPFC/ACC. There was no 566 

difference in RT between positive and negative conditions (see Behavioural data, 567 

section 3.1.), which rules out the possibility that the classifier was mistakenly 568 

discriminating faster vs. slower conditions.  569 

 570 

The relevance of the SMA in social scenarios has been reported previously (Chang & 571 

Sanfey, 2013). These authors observed a relationship between the activity in this area 572 

and the deviation of previous expectations. Moreover, Lindquist et al. (2015) linked this 573 

region to the unspecific representation of valence. Our conjunction analysis shows that 574 

part of the SMA increases its activity during the expectation period and also shows 575 

different patterns depending on the valence of the expectation. This data suggests that 576 

the SMA has a role in general preparation but it also contains specific fine information 577 

relevant to the task. In addition, we observe partial overlapping activation with the 578 

response classification, which suggests that this region also contains some information 579 

about participants’ responses. The MCC, on the other hand, has been associated with an 580 

increase of the efficiency in decision-making, being involved in the anticipation and 581 

consequent expectations of outcomes in a variety of non-social tasks (Vogt, 2016). 582 

Further, it has also been related to the prediction and monitoring of outcomes in social 583 

decisions (Apps, Lockwood, & Balsters, 2013), and it may play a similar role in our 584 

study.  585 

 586 

On the other hand, the patterns of activity in a lateral prefrontal cortex cluster (lPFC), 587 

including the IFG and MPFC, also discriminated the valence of the expectations. 588 

Interestingly, these areas were part of a large cluster that also increased their activation 589 

during the maintenance of social information, as revealed by univariate results. In non-590 

social paradigms, the lPFC has been related to working memory maintenance (Morgan, 591 

Jackson, Van Koningsbruggen, Shapiro, & Linden, 2013; Sala, Rämä, & Courtney, 592 

2003) and other forms of cognitive control (e.g., Reverberi et al., 2012). The IFG 593 

specifically has also been associated with the selection of semantic information 594 

(Jefferies, 2013; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001), and it is also 595 

involved in the expectation to perform different non-social tasks employing verbal 596 

material (e.g., González-García et al., 2017; Sakai and Passingham, 2006). Notably, our 597 

results extend this role to a social context (see also Filkowski et al., 2016; Thye et al., 598 

2018; Van Overwalle, 2009), where verbal information is used to generate positive or 599 
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negative expectations about game partners, by showing that the pattern of activity in this 600 

frontal region differs depending on the nature of the information used to predict the 601 

proximal behaviour of others.  602 

 603 

On the other hand, the vmPFC/ACC did not increase its overall activation during the 604 

expectation period but contained patterns related to the valence of the predictions. 605 

Crucially, this area overlaps with the region isolated in the meta-analysis by Lindquist et 606 

al., (2015), where they linked its activity with a bipolar representation of valence. On a 607 

broader context, this region is part of the social cognition network, associated with 608 

mentalizing processes (Koster-Hale & Saxe, 2013; Tamir et al., 2016), and behaviour 609 

guided by social cues, along with the ACC. Previous studies relate the mPFC with 610 

predictions about others' desires (Corradi-Dell’Acqua et al., 2015), and priors during 611 

valued decisions (Lopez-Persem et al., 2016). Additionally, Van Overwalle (2009) 612 

linked this region to the integration of personal traits, and it has been extensively 613 

associated with the representation of intentions as well (Haynes et al., 2007).   614 

 615 

The association between a brain region and a given behaviour is strengthened when a 616 

link can be observed between the fidelity of a pattern of activity and the behavioural 617 

outcome studied (Naselaris, Kay, Nishimoto, & Gallant, 2011; Tong & Pratte, 2012). 618 

To find this evidence we obtained, for each participant, a bias index representing how 619 

much the valence of the personal information influenced their choices and correlated 620 

this index with the accuracy of the classifier in disentangling the patterns generated by 621 

positive vs. negative words. We observed a positive correlation between these two 622 

factors in the three clusters sensitive to the valence of expectations. Thus, the better the 623 

classifier distinguished between descriptions of different valence, the more people 624 

tended to accept offers preceded by positive compared to negative descriptions. These 625 

results strongly suggest that these valenced representations were used to weight the 626 

posterior acceptance or rejection decisions to the same set of objective offers, biasing 627 

behaviour. Importantly, additional control correlation analysis evidenced that this 628 

finding was not contaminated by participants’ responses.  629 

 630 

We could also observe the effect of expectations by studying the brain activity 631 

generated by offers that matched or mismatched them, that is, fair and unfair offers 632 

preceded by descriptions of the same or opposing valence. Here we found cerebellum 633 
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activity when fair offers were preceded by positive descriptions and unfair ones 634 

followed negative adjectives. This region is associated with prediction in a variety of 635 

contexts, such as language (Lesage, Hansen, & Miall, 2017; Pleger & Timmann, 2018) 636 

and also social cognition (Van Overwalle, Baetens, Mariën, & Vandekerckhove, 2014), 637 

among others. In social scenarios, where people frequently anticipate others' needs or 638 

actions, the understanding of the role of the cerebellum in predictions is particularly 639 

relevant (Sokolov, Miall, & Ivry, 2017). Although previous studies (Berthoz, 2002) 640 

found increased activity in the cerebellum when predictions (social norms) were 641 

violated, we observed the opposite. Hence, our data suggest that in the current context 642 

the cerebellum may signal when predictions are matched by social observations. 643 

Conversely, when predictions are not met, we observed activation in the lPFC, 644 

specifically the IFG and aI. In this contexts, the lFG has been associated with semantic 645 

cueing (González-García et al., 2016), semantic control (Jefferies, 2013) and emotional 646 

regulation during social decisions (Grecucci, Giorgetta, Bonini, & Sanfey, 2013). 647 

Conversely, the aI has been linked to responses to unfair offers, which represent a 648 

violation of social norms (Corradi-Dell’Acqua et al., 2013). This agrees with the 649 

incompatibility we observe here between previous expectations and actual events. 650 

Altogether, this data also supports the relevance of expectations when participants face 651 

the outcome of an interaction. At this point, they may need to suppress the previous 652 

information to act in accordance with the offer.  653 

 654 

Although it was not the main goal of this work, we also examined brain responses to the 655 

fairness of the offer. While previous work has shown activation in areas such as aI, 656 

cingulate cortex and mPFC in reaction to unfair offers (Corradi-Dell’Acqua et al., 2013; 657 

Gabay et al., 2014), we observed higher activation in ACC/mPFC when participants 658 

faced fair (vs. unfair) offers. In this line, the mPFC has been linked to the monitoring of 659 

emotional reactions in bargaining scenarios (Corradi-Dell’Acqua et al., 2013), and its 660 

involvement could represent the positive outcome related to fair offers, in line with 661 

previous work associating the mPFC with value assessment of outcomes (Amodio & 662 

Frith, 2006). The ACC, on the other hand, has been related to the proposal of fair offers 663 

due to strategic motives (Chen, Chen, Kuo, Kan, & Yang, 2017), suggesting a role of 664 

this area in computing reward. This, in turn, would be in line with our results of the 665 

fairness of the offer, where the ACC could be relevant to signal their rewarding 666 

outcomes.  667 
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 668 

Our study has certain limitations, which should be addressed in future investigations. 669 

First, the optimal procedure to perform multivariate analyses and avoid response-related 670 

confounds is to counterbalance response options for each participant (Todd, Nystrom, & 671 

Cohen, 2013). In the current experiment, however, the association between hand and 672 

response was counterbalanced at the group but not the individual level. Thus, our 673 

valence-related classifications could have been affected by the response patterns linked 674 

to acceptance and rejection choices. To rule this out, we performed an additional 675 

conjunction analysis, which showed that only a small portion of the SMA cluster was 676 

common to both contrasts. Also, we observed that patterns in part of this region 677 

overlapped between participants’ decisions and the valence of their expectations. These 678 

results suggest that the SMA represents both events with similar codes, although it 679 

could also be the case that findings in this region are due to confounds from 680 

participants’ responses. In further support of the relevance of the representation of the 681 

valence in the bias observed in decisions, an additional control analysis showed that the 682 

performance of the classifier for the valence decoding was only related to a specific 683 

behavioural bias resulting from the valence of the expectation, but not with the response 684 

itself. Therefore, our data highlight that the fidelity of the valence representation in 685 

IFG/aI and vmPFC is associated with the extent to which the partners’ descriptions 686 

modulate participants’ decisions.  687 

 688 

Further, it may be argued that the influence of partners’ moral information could be due 689 

to alterations in participants’ mood after reading these descriptions, rather than because 690 

the generation of expectations about their likely behaviour. Although we cannot deny 691 

completely this possibility, our findings show a specific link between participants’ 692 

behavioural bias and the neural representation of partners’ social information, which 693 

would not be in line with an explanation related to general mood fluctuations. 694 

Alternatively, following previous work on affective priming and conflict (Dignath, 695 

Eder, Steinhauser, & Kiesel, 2020; Fritz & Dreisbach, 2013), adjectives could act as 696 

affective primes (Bush et al., 2018). Although we cannot completely rule out this 697 

possibility, previous results suggest otherwise. Gaertig et al. (2012) carried out an 698 

experiment without the social cover story to test this alternative explanation. Here, the 699 

same words failed to trigger valence bias in choices. This indicates that, rather than an 700 

automatic priming effect triggered by the adjectives, it is the association between these 701 
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and the character of the partners which impacted participants’ decisions. An additional 702 

concern relates to the ecological validity of our study, which is limited by the context of 703 

fMRI scanning in a single location. However, we increased the credibility of the social 704 

scenario by means of instructions and a cover story, where we recreated an actual 705 

delayed interaction between participants of different studies, and where actual earnings 706 

were contingent on the choices made during the game. In fact, none of the participants 707 

showed signs of susceptibility about the underlying nature of the study when informally 708 

debriefed at the end of the session. Nonetheless, participants could have approached the 709 

task in various ways, engaging in the social context differently. Thus, we believe that 710 

including a more detailed and structured debriefing where this and other points are 711 

addressed should be included in future studies. Moreover, another step forward would 712 

be to assess participants’ personality and prosocial tendencies, since individual 713 

predispositions can also influence these dynamics (Díaz-Gutiérrez et al., 2017). Futures 714 

studies could use some form of virtual reality during scanning (Mueller et al., 2012) 715 

together with more complex verbal descriptions of others to examine whether similar 716 

brain regions represent this content and the way this is structured, perhaps employing 717 

neuroimaging methods with higher ecological validity (e.g. Pinti et al., 2018). 718 

Additionally, another interesting research question would be to find if there is a sort of 719 

“common valence space” for the two stages of the paradigm. That is, to find out if there 720 

is shared information underlying the valence of the adjective (positive/negative) but also 721 

the "pleasantness" of the offer (fair-positive, unfair-negative). A future study designed 722 

to employ cross-classification decoding approaches (Kaplan et al., 2015) between the 723 

expectation and the evidence game periods with temporally precise methods such as 724 

electroencephalography could offer valuable information on this respect.  725 
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