
genomeview – an extensible python-based genomics visualization engine

Noah Spies1,2,3*, Justin Zook1,2, Arend Sidow1,3 and Marc Salit1,2

1Joint Initiative for Metrology in Biology, Stanford, CA
2National Institute of Standards and Technology, Stanford, CA
3Departments of Pathology and Genetics, Stanford University, Stanford, CA

*Correspondence to nspies@stanford.edu

Abstract
Visual inspection and analysis is integral to quality
control, hypothesis generation, methods develop-
ment and validation of genomic data. The richness
and complexity of genomic data necessitates cus-
tomized visualizations highlighting specific features
of interest while hiding the often vast tide of irrele-
vant attributes. However, the majority of genome-
visualization occurs either in general-purpose tools
such as IGV (Robinson et al, 2011) or the UCSC
Genome Browser (Kent et al, 2002) – which offer
many options to adjust visualization parameters, but
very little in the way of extensibility – or narrowly-
focused tools aiming to solve a single visualization
problem. Here, we present genomeview, a python-
based visualization engine which is easy to extend
and simple to integrate into existing analysis pipe-
lines.

Description
Genomeview includes built-in support for visualizing
a number of standard genomics data types:

-­‐ Genomic features such as transcripts, exons

and introns
-­‐ Sequencing data including reads, read-pairs,

mismatches and insertions/deletions (indels)
-­‐ Quantitative data specified at the nucleotide or

locus level

These features can be provided directly from python
or in accompanying files in BAM/CRAM, BED and
BigWig formats. In addition, genomeview includes
several features intended to improve the visualiza-
tion of noisy long-fragment sequencing data such as
PacBio and Oxford Nanopore, most notably a quick-
consensus mode that hides putative sequencing er-
rors while retaining likely variants.
 Genomic features and data are visualized rela-
tive to a common reference coordinate system, typ-
ically a reference genome. Notably, the python inter-
face to genomeview facilitates visualizing novel non-
reference genomic loci, for example displaying fea-
tures and support relative to contigs from a genomic

sequence assembly.
 Genomeview natively out-
puts to the web graphics
standard SVG file format,
making it trivial to produce
and view visualizations from
the jupyter web-based inter-
active data analysis platform
(Kluyver et al, 2016). In addi-
tion, genomeview can also
output to PDF or PNG format,
enabling the generation of vis-
ualizations as an automated
step during analysis pipelines.
 Genomeview takes ad-
vantage of the vibrant bioin-
formatics ecosystem in py-
thon. Of particular interest,
because genomeview builds
on pysam (itself built on htslib)
and pyBigWig, most native
data types can be streamed

125

184

229

pacbio

illumina

NM_003676
NM_001321541
NM_001321542

bed

224,377.5kb 224,382.5kb 224,387.5kb 224,392.5kb

Figure 1. Genomeview visualization of PacBio (top), paired-end Illumina (middle) and
a BED-format annotation track (bottom). Mismatches (here, mostly SNPs) are shown
as short vertical bars. Insertions (here, mostly sequencing errors) are shown as purple
bars with text indicating the length. A deletion is depicted by thin lines connecting Pac-
Bio sequences. Reads are colored blue or pink based on the mapped strand.

made available for use under a CC0 license.
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355636doi: bioRxiv preprint

https://doi.org/10.1101/355636

over the internet and thus only require downloading
a small index file plus the data in the genomic region
of interest.
 Finally, genomeview is intended as a platform
for customized genomic visualizations. The simple,
object-oriented python implementation includes op-
portunities for python callbacks, enabling, for exam-
ple, programmatically selecting and highlighting
reads of interest; inheritance of the included track
types in order to more deeply modify visual output;
and creation of entirely new visualization tracks.

Usage
An example genomeview visualization demon-
strates the automatic filtering of erroneous mis-
matches and short indels from a PacBio dataset,
emphasizing a small number of single nucleotide
polymorphisms (SNPs) present in the sample
(Figure 1). The code and data necessary to produce
visualizations is available online from github and us-
ing the jupyter nbviewer at http://bit.ly/2Ipfs33 (also
available as Supplementary Figure 1). Data is drawn
from Genome in a Bottle sample HG002 (Zook et al,
2018).

That notebook demonstrates how substantial
new functionality can be obtained with just a few ad-
ditional lines of code. Up-to-date documentation can
be viewed at http://genomeview.readthedocs.io/.

Discussion
Genomeview has substantial utility for both high-
throughput visualization of many loci and datasets
directly from python, as well for customizable views
of genomic data. As the underlying visualization en-
gine for the latest version of svviz (Spies et al, 2015),
genomeview is already being used widely in a pro-
duction setting. In addition, we have found it to be
invaluable in an exploratory research context, allow-
ing us to easily and quickly create customized and
focused views of highly error-prone long-fragment
sequencing data and whole-genome sequence as-
sembly results directly from within jupyter.

Availability
Genomeview is available as a python package from
PyPI (https://pypi.org/project/genomeview) and the
source code is distributed under the MIT license
(https://github.com/nspies/genomeview). Ques-

tions, feature requests, bug reports and pull re-
quests can be submitted on the github issues page
(https://github.com/nspies/genomeview/issues).

Acknowledgements
Certain commercial equipment, instruments, or ma-
terials are identified to adequately specify experi-
mental conditions or reported results. Such identifi-
cation does not imply recommendation or endorse-
ment by the National Institute of Standards and
Technology, nor does it imply that the equipment,
instruments, or materials identified are necessarily
the best available for the purpose.

References
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle
TH, Zahler AM, Haussler D. The human ge-
nome browser at UCSC. Genome Res. 2002; 12(6):
996-1006.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B,
Bussonnier M, Frederic J, Kelley K, Hamrick J,
Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Will-
ing C, Jupyter Development Team. Jupyter Note-
books – a publishing format for reproducible compu-
tational workflows. EIPub, IOS Press. 2016. doi:
10.3233/978-1-61499-649-1-87.

Robinson JT, Thorvaldsdóttir H, Winckler W, Gutt-
man M, Lander ES, Getz G, Mesirov JP. Integra-
tive genomics viewer. Nat Biotechnol. 2011; 29(1):
24-6. doi: 10.1038/nbt.1754.

Spies N, Zook JM, Salit M, Sidow A. svviz: a read
viewer for validating structural variants. Bioinformat-
ics. 2015 Dec 15;31(24):3994-6. doi: 10.1093/bioin-
formatics/btv478.

Zook JM, McDaniel J, Parikh H, Heaton H, Irvine
SA, Trigg L, Truty R, McLean CY, De La Vega FM,
Xiao C, Sherry S, Salit M, Genome in a Bottle Con-
sortium. Reproducible integration of multiple se-
quencing datasets to form high-confidence SNP,
indel, and reference calls for five human genome
reference materials. Biorxiv. 2018. Doi:
10.1101/281006.

made available for use under a CC0 license.
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355636doi: bioRxiv preprint

https://doi.org/10.1101/355636

