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Abstract 
Visual inspection and analysis is integral to quality 
control, hypothesis generation, methods develop-
ment and validation of genomic data. The richness 
and complexity of genomic data necessitates cus-
tomized visualizations highlighting specific features 
of interest while hiding the often vast tide of irrele-
vant attributes. However, the majority of genome-
visualization occurs either in general-purpose tools 
such as IGV (Robinson et al, 2011) or the UCSC 
Genome Browser (Kent et al, 2002) – which offer 
many options to adjust visualization parameters, but 
very little in the way of extensibility – or narrowly-
focused tools aiming to solve a single visualization 
problem. Here, we present genomeview, a python-
based visualization engine which is easy to extend 
and simple to integrate into existing analysis pipe-
lines. 
 
Description 
Genomeview includes built-in support for visualizing 
a number of standard genomics data types: 

 
-­‐   Genomic features such as transcripts, exons 

and introns 
-­‐   Sequencing data including reads, read-pairs, 

mismatches and insertions/deletions (indels) 
-­‐   Quantitative data specified at the nucleotide or 

locus level 
 
These features can be provided directly from python 
or in accompanying files in BAM/CRAM, BED and 
BigWig formats. In addition, genomeview includes 
several features intended to improve the visualiza-
tion of noisy long-fragment sequencing data such as 
PacBio and Oxford Nanopore, most notably a quick-
consensus mode that hides putative sequencing er-
rors while retaining likely variants. 
 Genomic features and data are visualized rela-
tive to a common reference coordinate system, typ-
ically a reference genome. Notably, the python inter-
face to genomeview facilitates visualizing novel non-
reference genomic loci, for example displaying fea-
tures and support relative to contigs from a  genomic 

sequence assembly. 
 Genomeview natively out-
puts to the web graphics 
standard SVG file format, 
making it trivial to produce 
and view visualizations from 
the jupyter web-based inter-
active data analysis platform 
(Kluyver et al, 2016). In addi-
tion, genomeview can also 
output to PDF or PNG format, 
enabling the generation of vis-
ualizations as an automated 
step during analysis pipelines. 
 Genomeview takes ad-
vantage of the vibrant bioin-
formatics ecosystem in py-
thon. Of particular interest, 
because genomeview builds 
on pysam (itself built on htslib) 
and pyBigWig, most native 
data types can be streamed 
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Figure 1. Genomeview visualization of PacBio (top), paired-end Illumina (middle) and 
a BED-format annotation track (bottom). Mismatches (here, mostly SNPs) are shown 
as short vertical bars. Insertions (here, mostly sequencing errors) are shown as purple 
bars with text indicating the length. A deletion is depicted by thin lines connecting Pac-
Bio sequences. Reads are colored blue or pink based on the mapped strand. 
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over the internet and thus only require downloading 
a small index file plus the data in the genomic region 
of interest. 
 Finally, genomeview is intended as a platform 
for customized genomic visualizations. The simple, 
object-oriented python implementation includes op-
portunities for python callbacks, enabling, for exam-
ple, programmatically selecting and highlighting 
reads of interest; inheritance of the included track 
types in order to more deeply modify visual output; 
and creation of entirely new visualization tracks. 
 
Usage 
An example genomeview visualization demon-
strates the automatic filtering of erroneous mis-
matches and short indels from a PacBio dataset, 
emphasizing a small number of single nucleotide 
polymorphisms (SNPs) present in the sample  
(Figure 1). The code and data necessary to produce 
visualizations is available online from github and us-
ing the jupyter nbviewer at http://bit.ly/2Ipfs33 (also 
available as Supplementary Figure 1). Data is drawn 
from Genome in a Bottle sample HG002 (Zook et al, 
2018). 

That notebook demonstrates how substantial 
new functionality can be obtained with just a few ad-
ditional lines of code. Up-to-date documentation can 
be viewed at http://genomeview.readthedocs.io/. 
 
Discussion 
Genomeview has substantial utility for both high-
throughput visualization of many loci and datasets 
directly from python, as well for customizable views 
of genomic data. As the underlying visualization en-
gine for the latest version of svviz (Spies et al, 2015), 
genomeview is already being used widely in a pro-
duction setting. In addition, we have found it to be 
invaluable in an exploratory research context, allow-
ing us to easily and quickly create customized and 
focused views of highly error-prone long-fragment 
sequencing data and whole-genome sequence as-
sembly results directly from within jupyter. 
 
Availability 
Genomeview is available as a python package from 
PyPI (https://pypi.org/project/genomeview) and the 
source code is distributed under the MIT license 
(https://github.com/nspies/genomeview). Ques-

tions, feature requests, bug reports and pull re-
quests can be submitted on the github issues page 
(https://github.com/nspies/genomeview/issues). 
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