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Summary 
Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. 

Genetic risk loci provide novel insights into disease pathogenesis. To broaden COPD genetic risk loci 

discovery and identify cell type and phenotype associations we performed a genome-wide association 

study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the 

International COPD Genetics Consortium. We identified 82 loci with P value < 5x10
-8

; 47 were previously 

described in association with either COPD or population-based lung function.  Of the remaining 35 novel 

loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using 

gene expression and regulation data, we identified enrichment for loci in lung tissue, smooth muscle 

and alveolar type II cells. We found 9 shared genomic regions between COPD and asthma and 5 

between COPD and pulmonary fibrosis. COPD genetic risk loci clustered into groups of quantitative 
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imaging features and comorbidity associations. Our analyses provide further support to the genetic 

susceptibility and heterogeneity of COPD. 

Background 
 

Chronic obstructive pulmonary disease (COPD) is a disease of enormous and growing global burden
1
, 

ranked third as a global cause of death by the World Health Organization in 2016
2
. Environmental risk 

factors, predominately cigarette smoking, account for a large fraction of disease risk, but there is 

considerable variability in COPD susceptibility among individuals with similar smoking exposure. Studies 

in families and in populations demonstrate that genetic factors account for a substantial fraction of 

disease susceptibility. Similar to other adult-onset complex diseases, common variants likely account for 

the majority of population risk
3,4

. Our previous efforts identified 22 genome-wide significant loci
5
. 

Expanding the number of risk loci can lead to novel disease pathogenesis insights not only through 

discovery of novel biology
6,7

 but also through informing more global insights such as functional links 

between loci and cell-type and phenotype identification driving COPD genetic risk
5
. 

We performed a genome-wide association study including previously described studies from the 

International COPD Genetics Consortium (ICGC) with additional subjects from UK Biobank
8
, a 

population-based study of several hundred thousand subjects with lung function and cigarette smoking 

assessment. We determined, through bioinformatic and computational analysis, the likely set of 

variants, genes, cell types, and biologic pathways implicated by these associations. Finally, we assessed 

our genetic findings for relevance to COPD-specific, respiratory, and other phenotypes. 

 

Results 
Genome-wide association study of COPD 
We included a total of 257,811 individuals from 25 studies in the analysis, including studies from 

International COPD Genetics Consortium and UK Biobank. We defined COPD based on pre-

bronchodilator spirometry using pre-bronchodilator spirometry according to modified Global Initiative 

for Chronic Obstructive Lung Disease (GOLD) criteria for moderate to very severe airflow limitation
9
, 

resulting in 35,735 cases and 222,076 controls (Supplementary Tables 

See the Excel file. 

Supplementary Table 1). We tested association of COPD and 6,224,355 variants in a meta-analysis of 25 

studies using a fixed-effects model. We found no evidence of confounding by population substructure 

using linkage disequilibrium score regression (LDSC) intercept (1·0377, s.e. 0·0094). 

We identified 82 loci (defined using 2-Mb windows) at genome-wide significance (P < 5 x 10
-8

) (Figure 2). 

Forty-seven of 82 loci were previously described as genome-wide significant in COPD
5,10–12

 or lung 

function
13,14,23,15–22

 (Supplementary Table 2), leaving 35 novel loci (Table 1). We then sought to replicate 

these novel loci. Given the strong genetic correlation between population-based lung function and 

COPD, we tested the lead variant at each for association with FEV1 or FEV1/FVC in 79,055 individuals 

from SpiroMeta. We identified 13 loci - C1orf87, DENND2D, DDX1, SLMAP, BTC, FGF18, CITED2, ITGB8, 
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STN1, ARNTL, SERP2, DTWD1, and ADAMTSL3 that replicated using a Bonferroni correction for a one-

sided P < 0·05/35; Table 1). Although not meeting the strict Bonferroni threshold, additional 14 novel 

loci were nominally significant in SpiroMeta (consistent direction of effect and one-sided P < 0·05): 

ASAP2, EML4, VGLL4, ADCY5, HSPA4, CCDC69, RREB1, ID4, IER3, RFX6, MFHAS1, COL15A1, TEPP, and 

THRA (Table 1). In our overall meta-analysis, all 82 of the genome-wide significant loci showed 

consistent direction of effect with either FEV1 or FEV1/FVC ratio in SpiroMeta (Table 1 and 

Supplementary Table 2). We note that 9 of our 35 novel loci were recently described in a 

contemporaneous analysis of lung function in UK Biobank
24

. None of the novel loci appeared to be due 

to cigarette smoking (Supplementary Results). Including all 82 genome-wide significant variants, we 

explain up to 7·0 % of the phenotypic variance in liability scale, using a 10% prevalence of COPD, and 

acknowledging that these effects are likely overestimated in the discovery sample. This represents a 

48% increase in COPD phenotypic variance explained by genetic loci compared to the 4·7% explained by 

22 loci reported in a recent GWAS of COPD
5
. 

Identification of secondary association signals 
We then used approximate conditional and joint analysis to find secondary signals at each of the 82 

genome-wide significant loci. We found 82 secondary signals at 50 loci, resulting in a total of 164 

independent associations in 82 loci (Supplementary Table 3). Of 50 loci containing secondary 

associations, 33 were at loci previously described for COPD or lung function, and 6 at Bonferroni-

replicated novel loci. Of 82 secondary associations, 20 reached genome-wide significance (P < 5 x 10
-8

) 

(Supplementary Table 3). Of 61 novel (not previously described in COPD or lung function) independent 

associations, 21 reached a region-wise Bonferroni-corrected threshold (one-sided P < 0.05/novel 

independent association(s) in each locus) in unconditioned associations from SpiroMeta (Methods and 

Supplementary Table 3).  

Tissue and specific cell types 
In determining the tissue in which COPD genetic variants function to increase COPD risk, lung is the 

obvious tissue to consider; however, COPD is a systemic disease
25,26

 and within the lung, the specific cell-

types underlying disease pathogenesis are largely unknown. Furthermore, available databases often 

include cell types (e.g. smooth muscle) from non-lung organs (e.g. the gastrointestinal tract). To identify 

putative causal tissues and cell types, we assessed the enrichment of our genome-wide significant COPD 

loci in integrated genome annotations at the single tissue level
27

, tissue-specific epigenomic marks
28

, 

and genome-wide gene expression patterns
29

. Lung tissue showed the most significant enrichment (OR 

9·25, P=1·36 x 10
-9

), as previously described, though significant enrichment was also seen in heart (OR 

6·85, P=3·83 x 10
-8

) and the gastrointestinal (GI) tract (OR 5·53, P=6·45 x 10
-11

). In an analysis of enriched 

epigenomic marks, the most significant enrichment was in fetal lung and GI smooth muscle DNase 

hypersensitivity sites (DHS) (P= 6·75 x 10
-8

) and H3K4me1 (P= 7·31 x 10
-7

) (Supplementary Table 4). To 

further identify lung-specific cell types, we tested whether 47 known and 13 novel COPD-associated loci 

contain genes specifically expressed in data sets from single-cell RNA-seq. We found enrichment of 

alveolar type II and basal cells (P=0·016 and P=0·042, respectively) using single-cell RNA-seq gene 

expression data from respiratory cell types
30

 (Supplementary Figure 3 and Supplementary Table 5 for 

individual locus results).  
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Fine-mapping of associated loci 
To identify the most likely causal variants, we performed fine mapping using Bayesian credible sets

31
. 

Including 160 potential primary and secondary association signals (excluding four variants in the major 

histocompatibility complex (MHC) region), 61 independent signals had a 99% credible set with fewer 

than 50 variants; 34 signals had credible sets with fewer than 20 variants (Supplementary Figure 4). 

Only the association signal at NPNT (4q24) could be fine-mapped to single variant; however, in 17 other 

loci, a single variant had posterior probability of driving association (PPA) greater than 60% 

(Supplementary Table 6). Most sets included variants that overlapped genic enhancers of lung-related 

cell types (e.g., fetal lung fibroblasts, fetal lung, and adult lung fibroblasts) and were predicted to alter 

transcription binding motifs (Supplementary Table 6). Of 61 credible sets with fewer than 50 variants, 

eight sets contained at least one deleterious variant. These deleterious variants included 1) missense 

variants affecting TNS1, RIN3, GPR126, ADAM19, ATP13A2, BTC, and CRLF3; and 2) a splice donor variant 

affecting a lincRNA - AP003059.2. 

Candidate target genes 
In most cases, the closest gene to a lead SNP will not be the gene most likely to be the causal or effector 

gene of disease-associated variants
32–34

. Thus, to identify the potential effector (‘target’) genes 

underlying these genetic associations, we integrated additional molecular information including gene 

expression; gene regulation (open chromatin and methylation data), chromatin interaction, co-

regulation of gene expression with gene sets and coding variant data (Methods and Figure 3a). 

At 82 loci, 472 genes were implicated by analysis of least one dataset; 106 genes were implicated by 

gene expression (Bonferroni corrected at locus level), and an additional 50 genes by >= 2 other datasets 

(methylation, chromatin interaction, open chromatin regions, similarity in gene sets or deleterious 

coding variants (Figure 3a)), for a total of 156 genes meeting more strigent criteria.  Excluding loci in the 

extended MHC region, the median numbers of potentially implicated genes per locus was four with a 

maximum of 17 genes (7q22.1 and 17q21.1). The median distance of implicated genes to top associated 

variants was 346 Kb, restricting to genes +/-1 Mb of top associated variants. Among 82 loci, 60 loci (73%) 

included the nearest gene. We identified 20 genes which were region-wise Bonferroni significant in 

exome sequencing data. Two genes (ADAM19 and ADAMTSL3) were implicated by five datasets (Figure 

3b) and another two (EML4 and RIN3) were implicated by four datasets. A summary of all genes 

implicated using these approaches in Supplementary Table 7.  

Associated pathways 
To gain further functional insight of associated genetic loci, we performed gene-set enrichment analysis 

using DEPICT. Among 165 enriched gene sets at FDR < 5%, 44% of them were related to the 

developmental process term, with lung development P = 1.02 x 10
-6

; significant sub-terms included lung 

alveolus development (nominal P= 0·0003) and lung morphogenesis (nominal P= 0·0005). We also found 

enrichment of extracellular matrix -related pathways including laminin binding, integrin binding, 

mesenchyme development, cell-matrix adhesion, and actin filament bundles. Additional pathways of 

note included histone deacetylase binding, Wnt receptor signaling pathway, SMAD binding, the MAPK 

cascade, and transmembrane receptor protein serine/threonine kinase signaling pathway. Full 

enrichment analysis results including the top genes for each DEPICT gene set are shown in 

Supplementary Table 8. 
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Phenotypic effects of known and novel associations for COPD 
To characterize the phenotypic effects of 82 genome-wide significant loci, we performed a phenome-

wide association analysis within the deeply phenotyped COPDGene study
35

. We tested the overall 

structure of associated phenotypes by using hierarchical clustering across scaled Z scores of 

associations. We identified two clusters of associated variants (Supplementary Figure 5). As these two 

clusters appeared to predominantly differentiate among imaging features, we repeated variant 

clustering limited to quantitative computed tomography (CT) imaging features. We found two clusters of 

variants, differentiated by association with quantitative emphysema, emphysema distribution, gas 

trapping, and airway phenotypes (Figure 4a). We then evaluated the association of the 82 genome-wide 

significant variants in a prior GWAS of emphysema and airway quantitative CT features
36

  

(Supplementary Table 10).  

We also examined all genome-wide significant loci in the NHGRI-EBI GWAS Catalog
37

 (Supplementary 

Figure 6 and Supplementary Table 11) and looked for variants in linkage disequilibrium (r
2
 > 0·2) with 

the lead GWAS variant. Many variants associated with anthropometric measures including height and 

body mass index (BMI), measurements on blood cells (red and white cells), and cancers. COPD is well 

known for having common comorbidities, such as coronary artery disease (CAD), type 2 diabetes 

mellitus (T2D), bone density, and lung cancer. Of these diseases, we only found evidence of modest 

overall genetic correlation (using linkage disequilibrium score regression) between COPD and lung 

cancer (Supplementary Results). However, at individual loci, and using more stringent linkage 

disequilibrium (r
2
 > 0·6), we found evidence of shared risk factors for COPD, including a genome-wide 

significant variant near PABPC4 associated with T2D, four variants with CAD (near CFDP1, DMWD, STN1, 

and TNS1), and a variant near SPPL2C with bone density (Figure 4b).  

Identification of loci overlapping with asthma and pulmonary fibrosis 
Based on our previous identification of genetic overlap of COPD with asthma, and COPD with pulmonary 

fibrosis, we also examined loci for specific overlap with these two diseases. In asthma, we noted an r
2
 > 

0.2 with one of our variants, and previously reported variants and ID2, ZBTB38, C5orf56, MICA, AGER, 

HLA-DQB1, ITGB8, CLEC16A, and THRA. In pulmonary fibrosis, in addition to our previously described 

overlap between FAM13A, DSP, and 17q21, we noted ZKSCAN1 and STN1 (Supplementary Table 11). To 

more closely examine overlap, applied a Bayesian method (gwas-pw) of COPD associations from our 

current GWAS with previous GWASs of asthma (limited to those of European ancestry) and pulmonary 

fibrosis
38,39

. To mitigate the effect of including asthma cases in the GWAS of COPD, we excluded 

individuals with self-reported asthma from the UK Biobank (Methods and Supplementary Results). We 

identified 14 shared genome segments (posterior probability > 70%), nine with asthma and five with 

pulmonary fibrosis (Figure 4c and Supplementary Table 9). Of nine segments shared with asthma, five 

segments reside within the MHC region (6p21-22). Non-MHC segments included loci near ADAM19, 

ARMC2, ELAVL2, and STAT6. Of five segments shared with pulmonary fibrosis, two segments were 

identified including loci near ZKSCAN1, STN1 (formerly known as OBFC1), in addition to the three 

segments identified in the previous study
5
 (FAM13A, DSP, and the 17q21 locus, here CRHR1). For all 

overlapping loci between COPD and asthma, overlapping variants had the same direction of effect (i.e., 

increasing risk for both COPD and asthma). Conversely, shared variants between COPD and pulmonary 

fibrosis all had an opposite effect (i.e., increasing risk for COPD but protective for pulmonary fibrosis). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/355644doi: bioRxiv preprint 

https://doi.org/10.1101/355644


Discussion 

Genetic factors play an important role in COPD susceptibility. We examined genetic risk of COPD in a 

genome-wide association study including a total of 35,735 cases and 222,076 controls. We identified 82 

genome-wide significant loci for COPD, of which 47 were previously identified in genome-wide 

association studies of COPD, or population-based lung function. Of 35 loci not previously described, 13 

replicated in an independent study of population-based lung function. Our results identify important 

disease pathways and may further explain the clinical heterogeneity seen in COPD. 

Our study supports the role of early life events in the risk of COPD. Gene set enrichment analysis on our 

putative causal genes identified lung morphogenesis and lung alveolar development, the canonical Wnt 

receptor signaling pathway
40,41

, the MAPK cascade, Ras protein signal transduction, and the nerve 

growth factor receptor signaling pathway. Further, the importance of gene regulation at fetal stages was 

highlighted through enrichment of heritability in epigenomic marks of various fetal tissues, with fetal 

lung showed the strongest signals. Our findings are consistent with recent epidemiologic studies 

demonstrating that a substantial portion of the risk of COPD may be develop in early life: genetic 

variants may set initial lung function
42

 and patterns of growth
42–44

.  

We also identified several genes and pathways of interest not primarily related to lung development, 

some of which have been previously identified in studies of lung function
13

, including mesenchyme 

development and extracellular matrix, cilia structure, elastin-associated microfibrils, and retinoic acid 

receptor beta
45–47

. We used several data sources to attempt to assign causal gene at each locus, 

identifying 156 genes at 82 loci that were supported by either gene expression or a combination of at 

least 2 other data sources. One of our genes with the most support was ADAMTSL3. In addition to a role 

in development, this gene plays a role in cell-matrix interactions or in assembly of specific extracellular 

matrices
48

. Another novel finding was an association with the chitinase acidic (CHIA) gene at 1p13.3, 

which encodes a protein that degrades chitin
49

 and exhibits lung-specific expression
50,51

. CHIA variants 

have been associated with FEV1
52

, asthma
53–56

, and acid mammalian chitinase activity
55,57

. Its role in 

airway inflammation was demonstrated in an animal model of asthma
58

. Interleukin 17 receptor D 

(IL17RD) at 3p14.3 encodes a membrane protein belonging to the interleukin-17 receptor (IL-17R) 

protein family
49

. The gene product affects fibroblast growth factor signaling, inhibiting or stimulating 

growth through MAPK/ERK signaling
49

. It also interacts with TNF receptor 2 (TNFR2) to activate NF-κB
59

. 

Integrin subunit beta 8 (ITGB8) at 7p21.1 is a member of the integrin beta chain family and ITGB8 

protein expression protein is increased in COPD
60–62

. This locus was also recently described in a separate 

study of allergic disease and asthma
63

. The ITGB8 gene and encodes a single-pass type I membrane 

protein that binds to an alpha subunit to form an integrin complex
49

. The complex mediates cell-cell and 

cell-extracellular matrix interactions and plays a role in human airway epithelial proliferation
49

 and 

repair
64

. 

In addition to identifying the effector gene, the effector cell type is of critical important for functional 

studies. We identified an overall enrichment of epigenomic marks in lung tissue and smooth muscle 

(also identified in studies of lung function
21

); this latter association is driven by non-respiratory cell 

types. Within a set of four lung cell types identified by single cell RNA-Seq, we identified enrichment for 

alveolar type 2 (AT2) cells, which recently have been shown to have regenerative properties
65

. The lung 

is comprised at least 40 different resident cell types
66

; thus, while our findings suggest cell types for 

further functional studies, they also highlight the need for profiling of additional lung cell types. 
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Characterization of genome-wide significant associations revealed heterogenous effect to COPD-related 

phenotypes and other biological processes. Within the well-phenotyped COPDGene cohort, we 

identified variable effects of these variants on computed tomography (CT) features, smoking status and 

intensity, diffusing capacity of carbon monoxide, asthma, and inflammatory biomarkers. Clustering 

these variants found differential effects on emphysema and airway phenotypes, a well-described source 

of heterogeneity in COPD
67–69

. Analyzing over hundreds of diseases/traits in GWAS Catalog, we identified 

overlapping associations with various diseases/traits in multiple organ systems, comorbidities such as 

coronary artery disease, bone mineral density, and type 2 diabetes mellitus. Together, the identification 

of variable COPD risk loci associations with sub-phenotypes and other diseases
70,71

 may have potential 

for more nuanced approaches to therapy for COPD.  

We performed additional specific analysis in two diseases that overlap with COPD, asthma and 

pulmonary fibrosis. Extending from previously reported genetic correlations
5
, we identified 14 genetic 

loci shared between these pairs of diseases. Our analysis is the first to identify evidence for shared 

genetic segments between asthma and COPD. We identified multiple overlapping loci with asthma at 

the MHC region (6p21-22) and four other loci. The locus near DDX1 was previously suggested to be 

associated with both COPD and asthma in a combined meta-analysis
72

, and is involved in NFkB 

pathway
73

, leading to a possible shared inflammatory mechanism between these diseases. In addition to 

three previously reported overlapping loci for COPD and IPF (FAM13A and DSP, both genome-wide 

significant, and 17q21, identified through Bayesian overlap analysis), we identified two loci near 

ZKSCAN1 (7q22.1) and STN1 (previously known as OBFC1, 10q24). The top associated variant near STN1 

is in linkage disequilibrium with a CAD-associated variant (rs12765878, r
2
=0·61). This locus has also been 

associated with leukocyte telomere length
74

, and lends additional support to a role of telomere 

maintenance as a common risk factor for these three diseases. Overall, our phenotype, gene-, and 

pathway- analyses illustrate the utility of both searching for enrichment of genetic signal overall and 

performing a more detailed identification of the effects of individual variants or groups of variants. 

While our study is the largest genome-wide study of COPD, individuals meeting criteria for COPD in the 

UK Biobank may be different from other smoker-enriched studies, especially for smoking history. In 

addition, our use of population-based lung function for replication, along with pre-bronchodilator 

spirometry, could bias our findings against variants that are only associated with more severe forms of 

COPD. However, we observed concordant effect size estimates when including or excluding asthmatics. 

Thus, together with prior analyses
5
, our findings suggest that bias due to COPD case misclassification is 

likely small. However, we cannot rule out a role for studying more severe disease. We note that the 

alpha-1 locus (SERPINA1) was identified as genome-wide significant in smaller studies of emphysema 

and in severe COPD in smokers. In the current study, the association of the PIZ allele had P = 2·2 x 10
-5

 

using moderate-to-severe cases, and a lower P-value (1·4 x 10
-6

) in severe (FEV1 < 50% predicted) cases 

despite a smaller sample size, an effect we have previously described
75

. Thus, despite the strong overlap 

of COPD with quantitative spirometry, new loci may be identified through studies of sufficiently large 

subsets of COPD patients with severe COPD or more specific and homogenous COPD phenotypes. Given 

suggestive evidence for replication using a related (but not identical) phenotype for additional novel loci 

beyond the 13 meeting Bonferroni, we chose to include all loci significant in discovery in subsequent 

analyses, recognizing that we likely included some false positive associations. Our study focused on 

relatively common variants, predominantly in individuals of European ancestry; more detailed studies of 
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rare variants, HLA regions, and other ethnicities are warranted, but broader multi-ethnic analyses are 

limited by the number of cases in currently available cohorts. 

The global burden of COPD is increasing. Our work finds a substantial number of new loci for COPD, and 

uses multiple lines of supportive evidence to identify potential genes and pathways for both existing and 

novel loci. Further investigation of genetic overlap and phenotypic effects finds new shared loci for 

asthma and idiopathic pulmonary fibrosis, and suggests heterogeneity across COPD-associated loci. 

Together, these insights provide multiple new avenues for investigation for this deadly disease.  

Methods 
Study populations 
The UK Biobank is a population-based cohort consisting of 502,682 individuals

8
. To determine lung 

function, we used measures of forced expiratory volume in 1 second (FEV1) and forced vital capacity 

(FVC) derived from the spirometry blow volume-time series data, subjected to additional quality control 

based on ATS/ERS criteria
76

 (Supplementary Methods). We defined COPD in European-ancestry subjects 

using two pre-bronchodilator measurements of lung function according to modified Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) criteria for moderate to very severe airflow limitation
9
: FEV1 

less than 80% of predicted value (using reference equations from Hankinson et al.
77

), and the ratio 

between FEV1 and FVC less than 0.7. Genotyping was performed using Axiom UK BiLEVE array and Axiom 

Biobank array (Affymetrix, Santa Clara, California, USA) and imputed to the Haplotype Reference 

Consortium (HRC) version 1.1 panel
78

.  

We invited participants in the prior International COPD Genetics Consortium (ICGC) COPD genome-wide 

association study to provide case-control association results (with the exception of the 1958 British Birth 

Cohort, to avoid overlapping samples with the replication sample). ICGC cohorts performed case-control 

association analysis based on pre-bronchodilator measurements of FEV1 and FEV1/FVC, and cases were 

identified using modified GOLD criteria, as above. Studies were imputed to 1000 Genomes reference 

panels. Detailed cohort descriptions and cohort-specific methods have been previously published
5
 

(Supplementary Methods).  

Based on the strong genetic overlap of lung function and COPD
5
, we performed lookups of select 

significant variants for FEV1 and FEV1/FVC in the SpiroMeta consortium meta-analysis
24

. Briefly, 

SpiroMeta comprised of a total of 79,055 individuals from 22 studies imputed to either the 1000 

Genomes Project Phase 1 reference panel (13 studies) or the HRC (9 studies). Each study performed 

linear regression adjusting for age, age
2
, sex, and height, using rank-based inverse normal transforms, 

adjusting for population substructure using principal components or linear mixed models, and 

performing separate analyses for ever- and never- smokers or using a covariate for smoking (for studies 

of related subjects). Genomic control was applied to individual studies, and results were combined using 

fixed-effects meta-analysis
24

. 

Genome-wide association analysis 
In UK Biobank, we performed logistic regression of COPD, adjusting for age, sex, genotyping array, 

smoking pack-years, ever smoking status, and principal components of genetic ancestry. Association 

analysis was done using PLINK 2.0 alpha
79

 (downloaded on December 11, 2017) with Firth-fallback 

settings, using Firth regression when quasi-complete separation or regular-logistic-regression 

convergence failure occurred. We performed a fixed-effects meta-analysis of all ICGC cohorts and UK 
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Biobank using METAL (version 2010-08-01)
80

. We assessed population substructure and cryptic 

relatedness by linkage disequilibrium (LD) score regression intercept
81

. We defined a genetic locus using 

a 2-Mb window (+/-1 Mb) around a lead variant, with conditional analyses as described below. 

To maximize our power to identify existing and discover new loci, we examined all loci at the genome-

wide significance value of P < 5 x 10
-8

. We first characterized loci as being previously described (evidence 

of prior association with lung function
13,14,23,15–22

 or COPD
5,10–12

) or novel. We defined previously reported 

signals if they were in the same LD block in Europeans
82

 and in at least moderate LD (r
2 
>= 0·2). For novel 

loci we attempted replication through association of each lead variant with either FEV1 or FEV1/FVC ratio 

in SpiroMeta, using one-sided p values with Bonferroni correction for the number of novel loci 

examined. Novel loci failing to meet a Bonferroni-corrected p value were assessed for nominal 

significance (one-sided p < 0·05) or directional consistence with FEV1 and FEV1/FVC ratio in SpiroMeta. 

Cigarette smoking is the major environmental risk factor for COPD and genetic loci associated with 

cigarette smoking have been reported
5,83

. While we adjusted for cigarette smoking in our analysis, we 

further examined these effects by additionally testing for association of each locus with cigarette 

smoking and by looking at two separate analyses of ever- and never- smokers in UK Biobank.  

Identification of independent associations at genome-wide significant loci 
We identified specific independent associations at genome-wide significant loci using GCTA-COJO

84
. This 

method utilizes an approximate conditional and joint analysis approach requiring summary statistics and 

representative LD information. As the UK Biobank provided the predominant sample, we used 10,000 

randomly drawn unrelated individuals from this discovery dataset as a LD reference sample. We scaled 

genome-wide significance to a 2-Mb region, resulting in a locus-wide significant threshold of 8 x 10
-5

, or 

2 x 10
-6

 for variants in the major histocompatibility complex (MHC) region (chr6:28477797-33448354 in 

hg19
85

). We created regional association plots via LocusZoom using 1000 Genomes EUR reference data 

(Nov2014 release)
86

.  

Identification and prioritization of tissues and cell types, candidate variants, 
genes, and pathways 
Identification of enriched tissues and specific cell types 
We used LD Score Regression (LDSC)

87
 to estimate the enrichment of functional annotation in disease 

heritability. We utilized LDSC baseline models (e.g., conserved region, promoter flanking region), tissue-

specific annotations from the Roadmap Epigenomics Program
28

 and GenoSkyline
27

. We also used 

SNPsea
29

 to estimate the enrichment of specific cell types from genome-wide significant associations 

using gene expression data (Supplementary Methods). For SNPsea, we used a single-cell RNA-seq 

dataset from the study of idiopathic pulmonary fibrosis (540 cells from 6 IPF lung samples and 3 control 

tissues, available at Gene Expression Omnibus as GSE86618)
30

 (Supplementary Methods). 

Fine-mapping of independent association signals at genome-wide significant loci 
We used Bayesian fine-mapping at each locus to identify the credible set: the set of variants with a 99% 

probability of containing a causal variant. Briefly, for each genome-wide significant loci we calculated 

approximate Bayes factors
31

 of association. We then selected variants in each locus, so that their 

cumulative posterior probability was equal or greater than 0·99 using an unscaled variance. At loci with 

multiple independent associations, we used statistics from approximate conditional analysis with GCTA 

software on each index variant adjusting for other independent variants in the loci. Otherwise, we used 
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unconditioned statistics from our meta-analysis. We characterized variant effects in credible sets using 

variant annotations from Ensembl Variant Effect Predictor
88

.   

Identification of target genes 
We used several computational approaches with corresponding available datasets to identify target 

genes in genome-wide significant loci. We used two methods that utilized gene expression data: 1) S-

PrediXcan and 2) DEPICT. We used S-PrediXcan
89

 to identify genes with genetically regulated expression 

associated with COPD. We used data from the Lung-eQTL consortium
90,91

 (1,038 lung tissue samples) as 

an eQTL and gene expression reference database. S-PrediXcan is the extension of PrediXcan
92

 that test 

for association between a trait and imputed gene expression using summary statistics. Here, we 

performed S-PrediXcan using models for protein-coding genes +/- 1 Mb from top-associated variants at 

genome-wide significant loci. We used DEPICT (Data-driven Expression Prioritized Integration for 

Complex Traits) 
93

 to prioritize genes from ‘reconstituted’ gene sets. 

We also used additional information on gene regulation, including epigenetic data: 1) regulatory fine 

mapping, 2) mQTL, and 3) chromosome conformation capture. We used regulatory fine mapping 

(regfm
94

) to overlap 99% credible interval (CI) variants at each GWAS locus with open chromatin regions 

based on DNAse hypersensitivity sites (DHS). DHS cluster accessibility state was then associated with 

gene expression levels (for 13,771 genes) from 22 tissues in the Roadmap Epigenomics Project
95

. Using 

both the 99% CI and DHS overlap, as well as the DHS state and transcript level association, regfm 

calculates a posterior probability of association of each gene +/- 1 Mb of the lead SNP at each GWAS 

locus. We also searched for overlapping methylation quantitative trait loci (mQTL) data from lung tissue, 

as recently described
96

. To determine whether these signals co-localized (rather than being related due 

to linkage disequilibrium), we performed colocalization analysis between our GWAS and mQTL in 

genome-wide significant loci using eCAVIAR
97

 (eQTL and GWAS CAusal Variants Identification in 

Associated Regions, Supplementary Methods). We also sought information from publicly available 

chromosome conformation capture data
98

. We obtained statistics of high-confidence chromatin 

interaction in fetal lung fibroblast cell line (IMR90) and human lung tissue
98

 through HUGIn
99

 (Hi-C 

Unifying Genomic Interrogator). We anchored long range chromatin interactions on top associated 

variants and computed statistical significance of contact at each locus. We retained only the strongest 

associations (i.e., smallest P value) for each cell line/primary cell in the analysis.  

Finally, we searched for signals from non-synonymous variants. We identified coding variants present in 

the credible set in the GWAS with a high posterior probability. We also searched for rare coding variants, 

based on exome sequencing results in the COPDGene, Boston Early-Onset COPD, and International 

COPD Genetics Network studies. In brief, we performed exome sequencing on 485 severe COPD cases 

and 504 smoking resistant controls from the COPDGene study and 1,554 subjects ascertained through 

631 probands with severe COPD from the Boston Early-Onset COPD study (BEOCOPD) and the ICGN 

study. We performed single-variant analyses using Firth and efficient resampling methods (SKAT R 

package
100

) for the COPDGene data (case-control) and generalized linear mixed models (GMMAT) for the 

BEOCOPD-ICGN data (using lung function). Gene-based analyses were conducted using Burden, SKAT, 

and SKAT-O tests with asymptotic and efficient resampling methods (SKAT package) combined with 

Fisher’s method for the COPDGene data, and using SKAT-O tests (MONSTER) for the BEOCOPD-ICGN 

data. Two variant-filtering criteria were considered: deleterious variants (predicted by FATHMM) with 

MAF < 0·01, and functional variants (moderate effect predicted by SNPEff) with MAF < 0·05. Gene-based 
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segregation test (GESE) was also applied to the ultra-rare (MAF < 0·1%) and loss-of-function variants in 

the BEOCOPD-ICGN data on the severe COPD affection status. 

For each dataset described above, we used Bonferroni-corrected P values, or a fixed posterior 

probability threshold to determine target genes at each locus. To correct for possible number of genes 

in each locus, we obtained a list of protein-coding genes +/-1 Mb from a top associated variant from 

BioMart
88

. For each locus, we used a 5% Bonferroni-corrected threshold (i.e., P < 0·05 divided by 

number of genes at that locus) to determine significance for 4 data types: gene expression data, 

chromatin conformation capture data, co-regulation of gene expression, and exome sequencing results. 

For two remaining datasets, we used a fixed posterior probability (of gene association with a GWAS 

locus) threshold of 0·1 for regfm and eCAVIAR. We considered genes that were implicated by gene 

expression or >= 2 combination of other datasets (e.g., methylation and chromatin conformation 

capture data) as target genes.  

Identification of pathways 
To identify enriched pathways in COPD-associated loci, we performed gene-set enrichment analysis 

using the “reconstituted” genes sets from DEPICT, as described above
93

. We defined significant gene 

sets using false discovery rate (FDR) < 5%. 

Effects on COPD-related and other phenotypes 
COPD is a complex and heterogeneous disorder, comprised of different biologic processes and specific 

phenotypic effects. In addition, many loci discovered by GWAS have pleiotropic effects. To identify these 

effects, we performed analyses of a) identification of overlapping genetic loci between related disorders 

(asthma and pulmonary fibrosis) b) genetic association studies of our genome-wide significant findings 

using COPD-related phenotypes, including a cluster analysis to identify groups of variants that may be 

acting via similar mechanisms; c) look up of top variants in prior COPD-related quantitative computed 

tomography (CT) imaging feature GWAS, and d) look up of associations with other diseases/traits using 

GWAS Catalog. 

To identify overlapping loci between COPD and other respiratory disorders, we used gwas-pw
101

 to 

perform pairwise analysis of GWAS. This method searches for shared genomic segments
82

 using 

adaptive significance threshold, allowing detection of sub genome-wide significant loci. We identified 

shared segments or variants using posterior probability of colocalizing greater than 0·9
101

. We obtained 

GWAS summary statistics from two previous studies of pulmonary fibrosis
39

 and GWAS of asthma in 

Europeans
38

. To assess heterogenous effects of COPD susceptibility loci on COPD-related features 

(phenotypes), we evaluated associations of our genome-wide significant SNPs with 121 detailed 

phenotypes (e.g., lung function, computed tomography-derived metrics, biomarkers, and comorbidities) 

available in 6,760 COPDGene non-Hispanic whites. We calculated Z-scores for each SNP-phenotype 

combination relative to the COPD risk allele to create a SNP by phenotype Z-score matrix. We tested 

each COPD-related phenotype with at least one nominally significant association with one of our 

genome-wide significant COPD SNPs, leaving us with 107 phenotypes. We then oriented all Z-scores to 

be positive (based on sign of median Z score) in association with each phenotype to avoid clustering 

based on direction of association. To avoid clustering phenotypes only by strength of association with 

SNPs, we scaled Z-scores within each phenotype by subtracting mean Z-scores and dividing by the 

standard deviation of Z-scores within each phenotype. We then scaled Z-scores across SNPs to 

circumvent clustering of SNPs according only to relative strength of association with phenotypes. We 
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then performed hierarchical clustering of the scaled Z-scores of associations between SNPs and 

phenotypes to identify clusters of SNPs and phenotypes for all 107 phenotypes as well as in the subset 

of 26 quantitative imaging phenotypes. We identified optimal number of clusters using the Calinski 

index
102,103

. To identify features that independently predict cluster membership, we fitted a logistic 

regression model via penalized maximum likelihood using the glmnet package
104

. We determined 

optimal regularization parameters using 10-fold cross validation. We further examined top variant 

associations with COPD-related traits through a look-up of top variants in a prior GWAS of 12,031 

subjects with quantitative emphysema and airway CT features
105

. To examine overlap of our COPD 

results with other traits, we downloaded genome-wide significant associations from the GWAS 

Catalog
37,106

 (P < 5 x 10
-8

). Between a pair of COPD- and trait- associated variants within the same LD 

block in Europeans
82

, we computed the LD using the European ancestry panel and considered the 

overlap if variants were in at least in moderate LD (r
2 

>= 0·2). 
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Figures 
Figure 1 Study design 
COPD, chronic obstructive pulmonary disease; FEV1, force expiratory volume in one second; FVC, forced 

vital capacity. 

Figure 2 Manhattan plot 
Loci are labeled with the closest gene to the lead variant. Colors indicates variants at novel loci which 

replicated using Bonferroni-corrected threshold in SpiroMeta (dark blue, one sided P < 0.05/35) and 

nominally significant threshold (light blue, one-sided P < 0.05). 
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Figure 3 Identification of target genes 
(a) Overview of datasets used to identify target genes at genome-wide significant loci (b) Regional 

association plots at ADAMTSL3 locus showing GWAS (top), chromatin interaction in lung tissue (middle) 

and expression quantitative trait loci (bottom). 

Figure 4 Effects on COPD-related and other phenotypes 
(a) Heatmap of associations of 60 genome-wide significant variants (known and replicated novel 

associations) and imaging phenotypes in COPDGene (b) Overlapping of genome-wide significant loci of 

COPD and select traits from GWAS Catalog (c) Genome-wide overlapping results between COPD with 
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pulmonary fibrosis (left) and asthma (right). PRM emphysema, emphysema quantified by parametric 

response mapping; %LAA-950 (Exp), percentage of low attenuation area at -950 Hounsfield Units at 

expiration (related to gas trapping). GREx, Genetically regulated gene expresssion (significant 

associations identified by S-PrediXcan); mQTL, methylation quantitative trait loci (colocalized signals 

between GWAS and mQTL at posterior probability > 0·1); Cod., Coding associations (significant single 

variant or gene-based association tests for deleterious coding variants); Hi-C, significant chromatin 

interaction identified in human lung or IMR90 cell line; DHS, DNase hypersensititvity sites (using 

regulatory fine-mapping or regfm software); GSet, target genes identified by DEPICT using reconstituted 

gene sets. 

 

Tables 
Table 1 Meta-analysis results showing 35 loci novel for COPD and lung function 

(see the Excel file) 
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