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Abstract 

Exposure to adversity has been linked to accelerated biological aging, which in turn has been 

shown to predict numerous health problems, including neuropsychiatric disease.  In recent years, 

measures of DNA methylation-based epigenetic age – known as “epigenetic clocks” – have been 

used to estimate accelerated epigenetic aging.  Yet, few studies have been conducted in children.  

Using data from the Avon Longitudinal Study of Parents and Children (n=973), we explored the 

prospective association between repeated measures of childhood exposure to seven types of 

adversity on epigenetic age assessed at age 7 using the Horvath and Hannum epigenetic clocks.  

With a Least Angle Regression variable selection procedure, we evaluated the effects of the 

developmental timing, accumulation, and recency of adversity exposure. We found that exposure 

to sexual or physical abuse, financial stress, or neighborhood disadvantage during sensitive 

periods in early and middle childhood best explained variability in the deviation of the Hannum 

epigenetic age from the chronological age.  Secondary sex-stratified analyses identified 

particularly strong sensitive period effects, such that by age 7, girls who were exposed to abuse 

at age 3.5 were biologically older than their unexposed peers by almost 2 months.  These effects 

were undetected in analyses comparing children “exposed” versus “unexposed” to adversity.  

Our results suggest that exposure to adversity may alter methylation processes in ways that 

perturb normal cellular aging and that these effects may be heightened during sensitive periods in 

development.  Research is needed to demonstrate the effect of accelerated epigenetic aging on 

negative health outcomes following childhood adversity exposure.  
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Introduction  

Exposure to childhood adversity, such as abuse or poverty, represents one of the most 

potent risk factors for a range of negative health outcomes––including mental health problems–– 

across the lifespan, with estimates linking such exposures to at least a two-fold increase in 

subsequent risk for mental disorders1-6.  Although these associations are well-established, the 

specific mechanisms through which adversity “gets under the skin” remain poorly understood. 

 Accumulating evidence suggests adversity may become biologically embedded through 

accelerated aging of cells, tissues, and organs7-9.  Accelerated biological aging, in which 

biological age outpaces chronological age, is known to be a valid indicator of both the impaired 

functionality of the cell, and the biological system in which the cell interacts10.  To date, 

telomere length has been the most studied measure of biological aging11, 12, with dozens of 

studies showing an association between psychosocial stressors – ranging from maternal 

depression13 to child maltreatment14 to neighborhood disorder15 – and shorter telomere length in 

children16 and adults17.  One meta-analysis of this association in adults found that a broadly 

defined self-reported measure of psychological stress was moderately and negatively (r=-0.25) 

correlated with telomere length18.  

More recently, DNA methylation (DNAm) patterns at specific CpG sites have been 

proposed as a promising alternative measure of biological aging.  These DNAm-based measures 

are referred to as the “epigenetic clocks” due to their remarkably high correlation with 

chronological age (r =0.96) 19, 20. Two independent algorithms that have been developed to 

generate these DNAm-based age estimates are: the Horvath clock19, which uses multi-tissue 

DNAm signatures at 353 loci, and the Hannum clock20, which uses whole-blood DNAm 

measures at 71 loci located in or near genes associated with oxidative stress, DNA damage and 
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repair, and/or the development of age-related disease.  Both clocks can be used to capture 

accelerated epigenetic aging, which represents the discrepancy between the estimate of 

epigenetic age based on DNAm patterns and an individual’s actual chronological age19, 20.  

Although both epigenetic clocks were first developed in adults, studies have also confirmed their 

appropriateness in younger populations21, 22. Accelerated epigenetic aging as measured by these 

epigenetic clocks has been correlated with numerous adverse health outcomes, including 

frailty23, and increased mortality risk, such that individuals with accelerated aging show around a 

20% higher mortality risk over 10 years in comparison to those without epigenetic age 

acceleration24, 25.  

Yet, despite promising evidence of the predictive power of epigenetic clocks and the 

association between adversity exposure and other forms of biological aging, only a handful of 

studies to date have explored how exposure to adversity influences epigenetic aging.  One study 

of children between 6-13 years of age found that children who had twice as much exposure to 

violence had older epigenetic age profiles than their less exposed peers26.  Studies of adults have 

also found links between cumulative lifetime stress7, childhood exposure to parental 

depression27, 28, sexual abuse29, and chronic financial stress30 with accelerated epigenetic aging. 

 Although evidence from these studies suggests a link between exposure to adversity and 

epigenetic aging, most of this work has primarily focused on one or two types of adversity, as 

opposed to a range of possible exposure types.  Furthermore, to our knowledge, no studies have 

examined the importance of the characteristics of adversity, including the timing and duration of 

exposure.  Given the growing body of support for “sensitive periods” in development, during 

which time developing organs, tissues, and biological systems may be particularly susceptible to 

the effects of experience31-33, as well as evidence documenting the consequences of more 
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accumulated exposure34, consideration of the timing and duration of adversity across the life 

course is warranted.   

 In the current study, we aimed to address these limitations by: (1) investigating the 

association between exposure to multiple types of adversity between birth and age 7 on 

epigenetic aging at age 7, and (2) identifying the life course theoretical models that best 

explained the relationship between adversity exposure and epigenetic aging, for each adversity 

type.  To accomplish these goals, we used data from a prospective, longitudinal study of children 

to test three theoretical models derived from life course theory35, 36: a sensitive or critical period 

model, which posits that the developmental timing of exposure is most important in shaping 

accelerated aging32, 37, an accumulation model, which posits that every additional year of 

exposure is associated with an increased risk for accelerated aging34, 38, 39, and a recency model, 

which suggests that the effects of adversity can be time-limited, and thus accelerated epigenetic 

aging may be more strongly linked to proximal rather than distal events40.  Three secondary 

analyses focused on evaluating the importance of studying these adversity characteristics relative 

to simply examining the presence or absence of exposure, using a broader set of age ranges to 

define sensitive periods, and understanding sex-specific effects. 

 

Methods 

Sample and Procedures 

We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

large population-based birth cohort out of Avon, England of children followed from before birth 

through early adulthood41-43.  ALSPAC generated blood-based DNAm profiles at age 7 as part of 

the Accessible Resource for Integrated Epigenomics Studies (ARIES), which is a subsample of 
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1,018 mother-child pairs from the ALSPAC44.  These ARIES mother-child pairs were randomly 

selected out of those with complete data across at least five waves of data collection.  See 

Supplemental Materials for additional information about the ALSPAC sample. 

 

Measures 

Cellular Aging  

DNAm was determined at age 7 using the Illumina Human Methylation 450k BeadChip 

microarray, which captures DNAm at 99% of RefSeq genes (over 485,000 CpG sites).  DNA 

methylation wet laboratory procedures, preprocessing analyses, and quality control were 

performed at the University of Bristol as described elsewhere44.  The level of methylation is 

expressed as a ‘beta’ value (β-value), representing the proportion of cells methylated at each 

interrogated CpG site, and ranges from 0 (no methylated dinucleotides observed) to 1 (all 

dinucleotides methylated).   

Using the β-values for each participant in the sample, we generated two estimates of 

epigenetic age based on the approaches of Horvath19 and Hannum20.  For each clock, we 

estimated age acceleration using a regression procedure in which epigenetic age was the outcome 

and chronological age was the independent variable.  For the Horvath clock, we used the online 

epigenetic clock calculator (http://labs.genetics.ucla.edu/horvath/dnamage/) to calculate 

“intrinsic epigenetic age acceleration” (IEAA), which is derived by regressing the epigenetic age 

against chronological age, adjusting for cell counts 45.  To derive the Hannum clock, we summed 

the normalized β-values using the Touleimat method46 multiplied by the 71 respective regression 

coefficients obtained by Hannum and colleagues in their model20.  This regression procedure 

adjusted for blood cell composition (specifically percentage of CD8+,CD4+,CD56, CD19,CD14, 
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and granulocytes), similar to the IEAA score.  In both the Horvath and Hannum epigenetic 

clocks, age acceleration or deceleration is represented by the residuals of the above described 

regression procedures 24, 47.  Positive residuals indicate accelerated aging, in which the child’s 

chronological age is lower than their estimated methylation age (hereafter referred to as 

accelerated aging).  Conversely, negative residuals indicate age deceleration, in which the child’s 

estimated methylation age is lower than their actual chronological age.  

  

Exposure to Adversity 

We examined the effect of seven adversities on methylation age residuals: (a) caregiver 

physical or emotional abuse; (b) sexual or physical abuse (by anyone); (c) maternal 

psychopathology; (d) one adult in the household; (e) family instability; (f) financial 

stress/poverty; and (g) neighborhood disadvantage/poverty.  These adversity types were chosen 

based on previous research29, 48-50 linking these exposures to epigenetic change27, 29, 48, 49 or 

accelerated biological aging13-16.  Each type of adversity was measured on at least five occasions 

at or before age 7 (see Table 1) from a single item or psychometrically validated standardized 

measures.   For each type of adversity, we generated three sets of variables to test the three life 

course hypotheses: (a) for the sensitive period hypothesis, we created a set of variables indicating 

presence versus absence of the adversity at a specific developmental stage; specific time periods 

of assessment for each adversity are denoted in Supplemental Table 1.  To test the (b) 

accumulation hypothesis, we generated a single variable denoting the total number of time 

periods of exposure to a given type of adversity.  For the (c) recency hypothesis, we generated a 

single variable denoting the total number of developmental periods of exposure, with each 

exposure weighted by the age in months of the child during the measurement time period; this 
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recency variable gave a larger weight to more recent exposures, thus, allowing us to determine 

whether more recent exposures were more impactful. 

 

Covariates 

 We controlled for the following covariates, measured at child birth: child race/ethnicity; 

number of births in the pregnancy (pregnancy size); number of previous pregnancies; maternal 

marital status; highest level of maternal education; maternal age; maternal smoking during 

pregnancy; child birth weight; parental homeownership; and parent job status (see Supplemental 

Materials for coding).    

 

Analyses 

We began by running univariate and bivariate analyses to examine the distribution of 

covariates and exposures to adversity in the total analytic sample.  To reduce potential bias and 

minimize loss of power due to attrition, we performed multiple imputation (on missing exposures 

and covariates): we used logistic regression in 20 datasets with complete data on the outcome 

with 25 iterations, separately for each exposure, including covariates (see Supplemental 

Materials).  We then used a novel two-stage structured life course modeling approach 

(SLCMA)51, 52 to evaluate, separately for each adversity type, which of the three life course 

theoretical models (sensitive period, accumulation, recency) could best explain the relationship 

between adversity exposure and epigenetic age.  Compared to other methods, such as standard 

multiple regression, the SLCMA provides an unbiased way to compare multiple competing 

theoretical models simultaneously and identify the most parsimonious explanation for variation 

in epigenetic age.  
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In the first stage of the SLCMA, we entered the set of variables described earlier into the 

Least Angle Regression (LARS) variable selection procedure53.  LARS identifies the smallest 

combination of variables that explain the most amount of outcome variation.  We used a 

covariance test54 and elbow plots (Supplemental Figure 1) to determine whether the selected 

models were supported by the ARIES data.  In the second stage, the life course theoretical 

models found in the first stage to best fit the observed data – that is, the model(s) appearing at the 

“elbow” of the plot and/or those with p-values <.05 in the covariance test – were then carried 

forward to a multivariate regression framework.  In this framework, measures of effect were 

estimated for all selected hypotheses (see Supplemental Materials for details on LARS 

selection procedure).  With respect to multiple testing, the covariance test p-values are adjusted 

for the number of variables included in the LARS procedure, controlling the type I error rate for 

each adversity type on each epigenetic clock.   

 

Secondary Analyses 

Three additional sets of analyses were performed following the primary analyses 

described above.  First, to gauge the importance of studying these adversity characteristics 

relative to simply examining the presence or absence of exposure, we compared the results 

derived from the three life course models to those obtained from an ever versus never exposed 

model.  (Table 3).  

Second, to explore the possibility that a broader definition of sensitive periods would 

yield comparable results, and to facilitate interpretation of our findings in comparison to prior 

studies55-58, we re-analyzed our data focusing on three sensitive periods: very early childhood 

(ages 8 months – 2.75 years); early childhood (ages 3.5 – 5.75 years); and middle childhood 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/355743doi: bioRxiv preprint 

https://doi.org/10.1101/355743
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

(ages 6 – 7 years).  Third, we performed sex-stratified secondary analyses, given that adversity 

exposure59 varies between males and females and males overall have higher IEAA than 

females22. 

 

Results 

Sample Characteristics 

There were 973 children in the analytic sample (50.2% female, 97.2% white).  At the 

time of their child’s birth, most mothers were between 20-35 years of age (89.5%), married 

(82.6%), non-smokers (89.3%), and living in their own home (88.3%).  Forty-seven percent of 

mothers were experiencing their first pregnancy.  Descriptive statistics on other covariates are 

presented in Supplemental Table 2.  

		

Distribution of Exposure to Adversity and Age Acceleration 

Table 1 shows the prevalence of childhood adversity overall and by each age period of 

assessment.  The lifetime prevalence of adversity exposure ranged from 12.6% for physical 

abuse to 48.7% for family instability.  For some adversities, including caregiver physical or 

emotional abuse, as well as sexual or physical abuse, the prevalence of exposure was equally 

distributed across the developmental time periods.  For other adversities, including maternal 

psychopathology and financial stress, exposure was concentrated during very early childhood, 

meaning from 8 months to 2.75 years.  Children exposed to any type of adversity were more 

likely than their unexposed peers to be non-white and born to non-married mothers with low 

education, low social class, and with more than three previous pregnancies (Supplemental 

Table 2).  
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As shown in Supplemental Table 2, girls were, on average, epigenetically older than 

boys.  Also, children born to married mothers with higher education and lower social class had 

lower age residuals (according to Hannum’s epigenetic clock) compared to children whose 

mothers fell into other corresponding categories.  No significant differences were observed for 

race, maternal smoking, weight at birth, maternal education, pregnancy size, home ownership, 

and number of previous pregnancies (all p-values >.10) (Supplemental Table 2).  

 

Association between Exposure to Adversity and Age Acceleration  

Table 2 displays, separately for each adversity type and epigenetic clock, the theoretical 

model selected by the LARS that best explained variability in age acceleration.  As shown, 

evidence for three associations emerged for Hannum’s epigenetic clock, all of which emphasized 

age acceleration following adversity exposure and the importance of sensitive periods.  First, we 

found evidence that exposure to sexual or physical abuse at 3.5 years was associated with older 

epigenetic age (effect β=.07 years ; 95% CI=.00-.14, p=.001, R2=.01). Similarly, exposure to 

financial stress at 7 years (effect β=.11, CI=.08-.14, p = .001, R2=.05), and neighborhood 

disadvantage at 7 years (effect β= .12 years, CI=.01-.22, p = .001, R2=.01) were associated with 

an acceleration in epigenetic aging.  The magnitude of these beta estimates translates into an age 

acceleration of about one month among children exposed to adversity. None of the other life 

course theoretical models were selected as explaining a significant amount of the variability in 

age acceleration for these three or any other adversity types.  Using Horvath’s epigenetic clock, 

none of the life course models were associated with epigenetic age acceleration for any of the 

adversities studied (Table 2).   
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Secondary Analyses 

We performed three secondary analyses of epigenetic age acceleration.  First, to compare 

the benefits of an aforementioned complex model of adversity versus a simpler one, we 

conducted an ever vs. never exposed model for each adversity type and found that financial stress 

was the only adversity associated with age acceleration, as estimated by Hannum’s clock (Table 

3).  This finding suggests that exposure to financial stress is associated with older epigenetic age 

relative to chronological age, regardless of timing.  Exposure to any adversity was not associated 

with epigenetic age acceleration when Horvath’s clock was used (Supplemental Table 3). .   

Second, we re-ran the analyses using three broader categories to define sensitive periods 

(very early childhood, early childhood, middle childhood).  Similar results were obtained when 

the sensitive periods were collapsed into these three categories (Supplemental Table 4).  In 

addition to the models reported in Table 2, analyses using these broader age categories found 

evidence of stronger associations for two adversities with Hannum’s clock.  Specifically, having 

only one adult in the household during early childhood (effect β=.06 years, CI=.02-.09, p=.002,) 

and being exposed to maternal psychopathology in middle childhood (effect β=.03 years, 

CI=.06-.02, p =.023) was associated with a modest acceleration in epigenetic age. 

Third, to evaluate potential sex-differences, we performed sex-stratified analyses which 

did reveal differences in the association between adversity exposure and epigenetic aging 

between boys and girls.  Sex-stratified analyses using Hannum’s clock are reported in Table 4. 

For girls, having only one adult in the household, or being exposed to maternal psychopathology, 

financial stress, or abuse of any kind were associated with increased epigenetic age; each of these 

associations showed sensitive period specificity.  For example, by age 7, girls who were exposed 

to abuse at age 3.5 were biologically older than their unexposed peers by almost 2 months.  In 
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boys, a sensitive period was identified at age 7 for exposure to financial stress and neighborhood 

disadvantage.  Sex-stratified analyses using Horvath’s epigenetic clock are reported in 

Supplemental Table 5.  This analysis revealed an association in girls between caregiver 

physical or emotional abuse and epigenetic age acceleration and was similar to the results using 

Hannum’s clock. 

 

Discussion 

This study explored the association between a variety of adversity exposures – as well as 

the timing and accumulation of those exposures – and accelerated epigenetic age as measured by 

two epigenetic clocks.  By comparing different theoretical life course models of exposure, we 

could investigate which features of adversity exposure best captured the underlying signal.  To 

our knowledge, this study represents one of the first to investigate whether the effects of 

adversity on epigenetic aging are observable in children and the extent to which these 

relationships may vary as a function of the timing and type of exposure.   

The main finding of this study was that there appear to be sensitive periods in 

development when a broad range of adversity exposures are associated with an acceleration in 

epigenetic age.  Specifically, we found that exposure to sexual or physical abuse in early 

childhood (age 3.5 years) and exposure to financial stress or neighborhood disadvantage in 

middle childhood( age 7) were all associated with epigenetic age acceleration by about one 

month.  We acknowledge that the incremental variance explained was limited, but this estimate 

of effect is consistent with previous literature60.  Although the literature to date on the association 

between social environmental exposures and epigenetic aging in children is limited, our findings 

are consistent with previous work linking adversities, such as abuse29, financial stress tied to 
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chronic low income30, and parental psychopathology27, 29, with accelerated epigenetic aging in 

adulthood.  

Our results extend previous findings by exploring the effects of the timing of exposure. 

We found evidence for sensitive periods during early and middle childhood, when the 

association between adversity exposure and epigenetic aging appears to be particularly strong.  

This finding aligns with human61, 62 and animal63-66 studies showing the importance of sensitive 

periods in epigenetic programming. It seems therefore plausible that the epigenetic age of cells is 

influenced by environmental inputs in a similar time-susceptibility manner.  The current findings 

further emphasize the importance of attending to possible time-dependent effects when studying 

the effects of adversity on cellular aging, including DNAm and other cellular-based measures of 

accelerated aging.  Our results suggest that an approach that does not account for the specific life 

stages when adversity occurs may fail to detect effects of adversity on epigenetic age 

acceleration, and crude classifications of children as exposed vs. unexposed to “early life” 

adversity may mask observed differences among those exposed to adversity.    

Additionally, given known sex-differences in the effects of adversity exposure, and sex-

differences intrinsic to epigenetic age acceleration, we performed a set of sex-stratified analyses.  

These analyses revealed that adversity could differentially affect epigenetic age acceleration in 

boys and girls.  Specifically, we found the link between maternal psychopathology exposure and 

accelerated aging was only present for girls, as was the association between exposure to abuse 

and age acceleration.  Some of these associations were particularly relevant; for example by age 

7, girls who were exposed to abuse at age 3.5 were biologically older than their unexposed peers 

by almost 2 months.  These findings suggest that the associations found in our main analyses 

may have been largely driven by the strength of the effect in girls.  Our sex-stratified results are 
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also consistent with previous findings indicating sex-specific effects in the patterning of 

epigenetic marks following childhood adversity61, 67, and underscore the value of sex-

stratification in future analyses. 

It is worth noting that epigenetic age represents one of a number of biological age 

predictors, such as telomere length.  Although more work is required, studies using both markers 

suggest that epigenetic and telomeric clocks may capture different but complementary aspects of 

biological aging25.  For example, accelerated epigenetic aging has been correlated with a 

comprehensive measure of frailty, even in the absence of a correlation between telomere length 

and frailty23.  In another study, telomere length and epigenetic clock estimates were each found 

to be independent predictors of chronological age and mortality risk, consistent with weak, 

nonsignificant correlations between the two biological age measures25.  Thus, studies that 

investigate epigenetic markers may contribute to our understanding of biological age beyond 

what more traditional telomere studies can tell us. 

 In the current study, we did not find an association between exposure to the studied 

adversities on Horvath’s epigenetic clock.  Other studies using both the Horvath and Hannum 

clocks have similarly found that associations may exist for one clock, but not for another47, as 

recently also shown in a meta-analysis 68.  As described by others, there are a number of 

possibilities for such discrepancies.  For instance, the Horvath and Hannum models differ in the 

tissue and age of subjects used to develop them, and the loci used are largely different as well, 

with only a few genes overlapping between the two algorithms.  Therefore, the possibility exists 

that each clock has a level of disease specificity that is dependent on the prioritized methylation 

loci, making us unlikely to capturing methylation change that is more tissue-specific.  Moreover, 

our estimate of epigenetic age using Hannum’s clock was based on directly measured cell blood 
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count, whereas Horvath’s clock infers cell blood count from the methylation levels.  Together, 

these differences suggest that the two clocks may be capturing slightly different aspects of 

biological aging, with the Horvath clock representing overall frailty in the body, whereas 

Hannum’s clock may be more related to immune response60, 69.  The only exposure associated 

with both epigenetic clocks was caregiver abuse, among girls.   

There are several strengths of the current study.  We included a more inclusive and 

detailed assessment of adversity types; most research in the field to date has focused on single 

types of adversity exposure, such as parental depression or low socioeconomic status only.  

Moreover, we also incorporated different life course theoretical models of adversity exposure, 

thereby allowing us to investigate which temporal features of exposure are most strongly 

associated with epigenetic aging.  Also, although analyses on diverse racial and ethnic samples 

are still lacking, the current study presents findings on a cohort of children of primarily European 

ancestry, adding to recent work done using the ARIES subsample70.  Finally, most studies to date 

have focused on older samples, often with a median chronological age above 45 years70, whereas 

the current study focused on epigenetic aging in children. 

 However, our study had limitations.  Our findings are based on DNA extracted from 

blood, which may be limiting as patterns of epigenetic change following social environmental 

stress exposure have been found to be tissue-specific, such that the same individual may have 

different Horvath’s epigenetic clock estimates for different tissues 71.  Therefore, we cannot 

exclude the possibility that childhood adversities affect cell methylation in a tissue-specific 

pattern and that blood-based measures of DNAm may not capture methylation changes of all 

tissues that occur following adversity.  The challenge of tissue and cell-type specificity is 

unfortunately a limitation of all epigenome-brain research in living human subjects.  Moreover, 
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given the structure of the data and the lack of complete overlap in adversity assessment across 

time, we were unable to examine the adversities all together.  Attending to only one adversity 

type at a time may lead to overestimates of the effect of a given exposure.  At the same time, by 

examining each type of adversity individually, we were able to identify meaningful differences 

in the association between adversity and accelerated aging.  One challenge for future analyses 

will be to develop new ways to examine multiple adversities simultaneously without simply 

summing across number of exposures72.  Although we used multiple imputation in an effort to 

reduce potential bias and minimize loss of power, we cannot rule out the possibility that missing 

or incomplete outcome data due to attrition may have influenced our findings.  Finally, since the 

oldest sensitive period coincides with the most recent exposure occasion for all children, it may 

be difficult to discern between the oldest sensitive period and recent exposure. 

In conclusion, we found that adversity experiences assessed in very early, early, and 

middle childhood were differentially associated with accelerated epigenetic aging at age 7.  

These findings suggest that accelerated epigenetic aging may function as one of the mechanisms 

through which childhood adversity becomes biologically embedded, and that adversity exposures 

during sensitive periods in childhood may have a particularly strong accelerating effect on 

epigenetic age.  Additional research is needed to further demonstrate the other aspect of the 

effect of accelerated cellular aging on subsequent risk for depression and other neuropsychiatric 

disorders.  Nevertheless, understanding the biological sequelae of childhood adversity––and how 

those sequelae differ depending on sensitive periods in exposure––represents the first step 

towards the development of targeted strategies designed to disrupt the processes linking 

adversity to psychiatric diseases as early in life course as possible. 
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Table 1. Exposure to childhood adversity in the total analytic sample and by the age at exposure (n=973) 
 Caregiver 

physical or 
emotional 

abuse 

Sexual or 
physical 

abuse (by 
anyone) 

Family instability Maternal 
psychopathology Financial stress One adult in the 

household 
Neighborhood 
disadvantage  

 

 N  (%) N (%) N (%) N  (%) N (%) N (%) N  (%) 
Unexposed 822 84.48 850 87.36 499 51.28 686 70.5 669 68.76 833 85.61 829 85.2 
Exposed 151 15.52 123 12.64 474 48.72 287 29.5 304 31.24 140 14.39 144 14.8 
Age at Exposure   
Very early childhood    
  8 months  34 3.66 --- --- --- --- 95 10.24 104 11.26 243 3.67 --- --- 
  1.5/1.75 yrs 38 4.15 28 3 170 18.22 89 9.81 98 10.73 288 4.32 76 8.44 
  2/2.75 yrs 56 6.26 32 3.58 182 20.34 130 14.77 97 10.89 350 5.2 74 8.36 
Early childhood   
  3.5 yrs --- --- 36 3.96 186 20.46 114 12.9 140 14.46 --- --- --- --- 
  4.0/4.75 yrs 41 4.57 35 3.91 118 13.22 --- --- --- --- 410 6.88 --- --- 
  5/5.75 yrs 57 6.36 24 2.74 114 13.01 --- --- --- --- --- --- 55 6.21 
Middle childhood   
  6/6.75 yrs 50 5.66 23 2.61 69 7.82 130 14.91 --- --- --- --- --- --- 
  7 yrs --- --- --- --- --- --- --- --- 121 12.5 504 7.6 43 4.89 
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Table 2. Results of LARS models showing the life course theoretical model that best explained the relationship between adversity and 
age acceleration (n=973) 

Adversity Hannum’s clock Horvath’s clock 

 Model selected p-value Improvement R2 Model selected p-value Improvement R2 
Caregiver physical or emotional 
abuse 

sensitive period (5 
years) .11 0.004 sensitive period (5 years) .11 <0.001 

Sexual or physical abuse sensitive period (3.5 
years) .0013 0.009 sensitive period (4.75 

years) .99 <0.001 

Maternal psychopathology sensitive period (6 
years) .07 0.004 sensitive period (2.75 

years) .89 <0.001 

One adult in the household sensitive period (4 
years) .09 0.003 sensitive period (7 years) .21 <0.001 

Family instability sensitive period (1.5 
years) .93 <0.001 sensitive period (6.75 

years) .98 <0.001 

Financial stress sensitive period (7 
years) <.0001 0.05 sensitive period (7 years) .79 <0.001 

Neighborhood disadvantage sensitive period (7 
years) 0.0002 0.01 sensitive period (7 years) .68 < 0.001 

Models are based on multiply imputed data and are adjusted for sex, race, maternal smoking, birth weight, maternal education, 
pregnancy size, maternal marital status, home ownership, age of mother at child birth, parental job status, and number of previous 
pregnancies.  Values that are statistically significant are denoted in bold.  
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/355743doi: bioRxiv preprint 

https://doi.org/10.1101/355743
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

Table 3. Results of linear regression analysis of exposed vs. non-exposed on Hannum’s epigenetic clock 
(n=973)    

 Beta 
(years) se p-value 95% C.I. 

Caregiver physical or emotional abuse 0.012 0.0145 .428 -0.018 - 0.041 

Sexual or physical abuse 0.027 0.015 .078 -0.003 - 0.056 

Maternal psychopathology 0.003 0.011 .812 -0.019 - 0.025 

One adult in the household 0.029 0.017 .092 -0.005 - 0.063 

Family instability 0.003 0.011 .748 -0.018 - 0.024 

Financial stress 0.047 0.010 <.0001 0.027 - 0.068 

Neighborhood disadvantage 0.004 0.019 .822 -0.033 - 0.041 
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Table 4. Results of LARS models showing the life course theoretical model that best explained the relationship between adversity and age 
acceleration, with Hannum’s epigenetic clock, stratified by sex (n=973) 

 Girls (n=488) Boys (n=485) 

Adversities  Model selected p-value Improvement R2 Model selected  p-value Improvement R2 

Caregiver physical 
or emotional abuse 

sensitive period (5 years) .027 0.012 sensitive period (2.75 years) .193 0.006 

Sexual or physical 
abuse 

sensitive period (3.5 years) .0002 0.027 sensitive period (5.75 years) .615 0.002 

Maternal 
psychopathology 

sensitive period (6 years) .0003 0.020 sensitive period (1.75 years) .578 0.002 

One adult in the 
household 

sensitive period (1.75 
years) 

.030 0.011 sensitive period (8 years) .812 0.001 

Family instability 
sensitive period (4.75 
years) 

.923 <0.001 sensitive period (3.5 years) .235 0.004 

Financial stress recency <.0001 0.050 sensitive period (7 years) <.0001 0.060 

Neighborhood 
disadvantage 

sensitive period (7 years) .108 0.008 sensitive period (7 years) .0005 0.022 
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