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Abstract 13	

 14	

The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is 15	

a prevalent index of human brain function. Increasing evidence questions the utility of trial-16	

/group averaged power estimates, as seemingly sustained activity patterns may be brought 17	

about by time-varying transient signals in each single trial. Hence, it is crucial to accurately 18	

describe the duration and power of rhythmic and arrhythmic neural responses on the single 19	

trial-level. However, it is less clear how well this can be achieved in empirical MEG/EEG/LFP 20	

recordings. Here, we extend an existing rhythm detection algorithm (extended Better 21	

OSCillation detection: “eBOSC”; cf. Whitten et al., 2011) to systematically investigate 22	

boundary conditions for estimating neural rhythms at the single-trial level. Using simulations 23	

as well as resting and task-based EEG recordings from a micro-longitudinal assessment, we 24	

show that alpha rhythms can be successfully captured in single trials with high specificity, but 25	

that the quality of single-trial estimates varies greatly between subjects. Importantly, our 26	

analyses suggest that rhythmic estimates are reliable within-subject markers, but may not be 27	

consistently valid descriptors of the individual rhythmic process. Finally, we highlight the 28	

utility and potential of rhythm detection with multiple proof-of-concept examples, and discuss 29	

various implications for single-trial analyses of neural rhythms in electrophysiological 30	

recordings. 31	

 32	
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Highlights 35	

• Traditional narrow-band rhythm metrics conflate the power and duration of rhythmic 36	

and arrhythmic periods. 37	

• We extend a state-of-the-art rhythm detection method (eBOSC) to derive rhythmic 38	

episodes in single trials that can disambiguate rhythmic and arrhythmic periods. 39	

• Simulations indicate that this can be done with high specificity given sufficient rhythmic 40	

power, but with strongly impaired sensitivity when rhythmic power is low. 41	

• Empirically, surface EEG recordings exhibit stable inter-individual differences in α-42	

rhythmicity in ranges where simulations suggest a gradual bias, leading to high 43	

collinearity between narrow-band and rhythm-specific estimates. 44	

• Beyond these limitations, we highlight multiple empirical proof-of-concept benefits of 45	

characterizing rhythmic episodes in single trials. 46	

 47	

  48	

eBOSC disambiguates rhythmic and arrhythmic periods in single trials

A	

B	 Detected/non-detected	masked	power	values	@	IAF	(8-15	Hz)	@	Oz	

Time (a.u.)

+ 47 3 8 1 6 9
Exemplary 
stimulus 
sequence

rhythmic

Yellow boxes 
show 

representative
subjects.

rhythmic arrhythmic

Trials

Retention

Abundance

EO1 EO2 EC1 EC2

0

0.5

1

Rhythmic 
amplitude
(excl. BG)

0

500

1000

Arhythmic
amplitude

But: rhythm detection & characterization 
is impaired when rhythmic power is low

Individual alpha power varies in 
similar ranges, suggesting empirical 
limitations for unbiased estimates

eBOSC specifically identifies rhythmic periodsTraditional narrowband 
estimates conflate rhythmic and 

arrhythmic temporal episodes

Beyond such limitations, we highlight 
empirical proof-of-concept use cases of 

identifying rhythms in single trials

Rhythmic periods

Arrhythmic periods

Amplitude

Duration

Frequency

Traditional estimates

Phase
We discuss the impact on the empirical 

separability of rhythmic amplitude and duration

Rhythm-conditional spectra

Rhythm-evoked potentials
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1.1 Towards a single-trial characterization of neural rhythms 49	
 50	

Episodes of rhythmic neural activity in electrophysiological recordings are of prime 51	

interest for research on neural representations and computations across multiple scales of 52	

measurement (e.g. Buzsáki, 2006; Wang, 2010). At the macroscopic level, the study of 53	

rhythmic neural signals has a long heritage, dating back to Hans Berger’s classic investigations 54	

into the Alpha rhythm (Berger, 1938). Since then, advances in recording and processing 55	

techniques have facilitated large-scale spectral analysis schemes (e.g. Gross, 2014) that were 56	

not available to the pioneers of electrophysiological research, who often depended on the 57	

manual analysis of single time series to indicate the presence and magnitude of rhythmic events. 58	

Interestingly, improvements in analytic methods still do not capture all of the information that 59	

can be extracted by manual inspection. For example, current analysis techniques are largely 60	

naïve to the specific temporal presence of rhythms in the continuous recordings, as they often 61	

employ windowing of condition- or group-based averages to extract putative rhythm-related 62	

characteristics (Cohen, 2014). However, the underlying assumption of stationary, sustained 63	

rhythms within the temporal window of interest might not consistently be met (Jones, 2016; 64	

Stokes & Spaak, 2016), thus challenging the appropriateness of the averaging model (i.e., the 65	

ergodicity assumption (Molenaar & Campbell, 2009)). Furthermore, in certain situations, 66	

single-trial characterizations become necessary to derive unbiased individual estimates of 67	

neural rhythms (Cohen, 2017). For example, this issue becomes important when asking whether 68	

rhythms appear in transient or in sustained form (van Ede, Quinn, Woolrich, & Nobre, 2018), 69	

or when only single-shot acquisitions are feasible (i.e., resting state or sleep recordings).  70	

 71	

1.2 Duration as a powerful index of rhythmicity 72	

 73	

The presence of rhythmicity is a necessary prerequisite for the accurate interpretation 74	

of measures of amplitude, power, and phase (Aru et al., 2015; Jones, 2016; 75	

Muthukumaraswamy & Singh, 2011). This is exemplified by the bias that arrhythmic periods 76	

exert on rhythmic power estimates. Most current time-frequency decomposition methods of 77	

neurophysiological signals (such as the electroencephalogram (EEG)) are based on the Fourier 78	

transform (Gross, 2014). Following Parceval’s theorem (e.g. Hansen, 2014), the Fast Fourier 79	

Transform (FFT) decomposes an arbitrary time series into a sum of sinusoids at different 80	

frequencies. Importantly, FFT-derived power estimates do not differentiate between high 81	

amplitude transients and low amplitude sustained signals. In the case of FFT power, this is a 82	
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direct result of the violated assumption of stationarity in the presence of a transient signal. 83	

Short-time FFT and wavelet techniques alleviate (but do not eliminate) this problem by 84	

analyzing shorter epochs, during which stationarity is more likely to be obtained. However, 85	

whenever spectral power is averaged across these episodes, both high-amplitude rhythmic and 86	

low-amplitude arrhythmic signal components may once again become intermixed. In the 87	

presence of arrhythmic content (often referred to as the “signal background,” or “noise”), this 88	

results in a reduced amplitude estimate of the underlying rhythm, the extent of which relates to 89	

the duration of the rhythmic episode relative to the length of the analyzed segment (which we 90	

will refer to as ‘abundance’) (see Figure 1A). Therefore, integration across epochs that contain 91	

a mixture of rhythmic and arrhythmic signals results in an inherent ambiguity between the 92	

strength of the rhythmic activity (as indexed by power/amplitude) and its duration (as indexed 93	

by the abundance of the rhythmic episode within the segment) (see Figure 3B).  94	

Crucially, the strength and duration of rhythmic activity theoretically differ in their 95	

neurophysiological interpretation. Rhythmic power most readily indexes the magnitude of 96	

synchronized changes in membrane potentials within a network (Buzsáki, Anastassiou, & 97	

Koch, 2012), and is thus related to the size of the participating neural population. The duration 98	

of a rhythmic episode, by contrast, tracks how long population synchrony is upheld. Notably, 99	

measures of rhythm duration have recently gained interest as they may provide additional 100	

information regarding the biophysical mechanisms that give rise to the recorded signals 101	

(Peterson & Voytek, 2017; Sherman et al., 2016), for example, by differentiating between 102	

transient and sustained rhythmic events (van Ede et al., 2018).  103	

 104	

1.3. Single-trial rhythm detection as a methodological challenge 105	

 106	

In general, the accurate estimation of process parameters depends on a sufficiently strong 107	

signal in the neurophysiological recordings under investigation. Especially for scalp-level 108	

M/EEG recordings it remains elusive whether neural rhythms are sufficiently strong to be 109	

clearly detected in single trials. Here, a large neural population has to be synchronously active 110	

to give rise to potentials that are visible at the scalp surface. This problem intensifies further by 111	

signal attenuation through the skull (in the case of EEG) and the superposition of signals from 112	

diverse sources of no interest both in- and outside the brain (Lopez da Silva, 2018). In sum, 113	

these considerations lead to the proposal that the signal-to-noise ratio (SNR), here operationally 114	

defined as the ratio of rhythmic to arrhythmic variance, may fundamentally constrain the 115	

accurate characterization of single-trial rhythms.  116	
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Following those considerations, we set out to answer the following hypotheses and 117	

questions: (1) A precise differentiation between rhythmic and arrhythmic timepoints can 118	

disambiguate the strength and the duration of rhythmicity. (2) To what extent does the single-119	

trial rhythm representation in empirical data allow for an accurate estimation of rhythmic 120	

strength and duration in the face of variations in the signal-to-noise ratio of rhythmicity? (3) 121	

What are the empirical benefits of separating rhythmic (and arrhythmic) duration and power? 122	

Recently, different methods have been proposed to characterize rhythmicity at the single-123	

trial level: the power-based Better OSCillation Detection (BOSC; Caplan, Madsen, 124	

Raghavachari, & Kahana, 2001; Whitten, Hughes, Dickson, & Caplan, 2011) and the phase-125	

based lagged coherence index (Fransen, van Ede, & Maris, 2015). Notably, both proposed 126	

algorithms make different assumptions regarding the definition of rhythmicity: BOSC assumes 127	

that rhythms are defined as spectral peaks that are superimposed on an arrhythmic 1/f 128	

background, whereas lagged coherence defines rhythms based on the predictability of phase 129	

estimates at a temporal lag that is defined by the rhythm’s period.  130	

Here, we extend the BOSC method (i.e., extended BOSC; eBOSC) to derive rhythmic 131	

temporal episodes that can be used to further characterize rhythmicity. Using simulations, we 132	

derive rhythm detection benchmarks and probe the boundary conditions for unbiased rhythm 133	

indices. Furthermore, we apply the novel eBOSC algorithm to resting- and task-state data from 134	

a micro-longitudinal dataset to systematically investigate the feasibility to derive reliable and 135	

valid indices of neural rhythmicity from single-trial scalp EEG data. We calculate lagged 136	

coherence during the resting state to probe the inter-individual convergence between rhythm 137	

definitions. Finally, we showcase eBOSC’s ability to characterize rhythmic and arrhythmic 138	

content. We focus on alpha rhythms (~8-15 Hz; defined here based on individual FFT-peaks) 139	

due to (a) their high amplitude in human EEG recordings, (b) the previous focus on the alpha 140	

band in the rhythm detection literature (Caplan, Bottomley, Kang, & Dixon, 2015; Fransen et 141	

al., 2015; Whitten et al., 2011), and (c) their importance for human cognition (Grandy, Werkle-142	

Bergner, Chicherio, Lövdén, et al., 2013a; Klimesch, 2012; Sadaghiani & Kleinschmidt, 2016). 143	

We present examples beyond the alpha range to highlight the ability to apply eBOSC in 144	

multiple, diverse frequency ranges. 145	

 146	

2. Methods 147	

 148	
2.1 Study design 149	

 150	
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Resting state and task data were collected in the context of a larger assessment, 151	

consisting of eight sessions in which an adapted Sternberg short-term memory task (Sternberg, 152	

1966) and three additional cognitive tasks were repeatedly administered. Resting state data are 153	

from the first session, task data are from sessions one, seven and eight, during which EEG data 154	

were acquired. Sessions one through seven were completed on consecutive days (excluding 155	

Sundays) with session seven completed seven days after session one by all but one participant 156	

(eight days due to a two-day break). Session eight was conducted approximately one week after 157	

session seven (M = 7.3 days, SD = 1.4) to estimate the stability of the behavioral practice 158	

effects. The reported EEG sessions lasted approximately three and a half to four hours, 159	

including approximately one and a half hours of EEG preparation. For further details on the 160	

study protocol and results of the behavioural tasks see (Grandy, Lindenberger, & Werkle-161	

Bergner, 2017). 162	

 163	

2.2 Participants 164	

 165	
The sample contained 32 young adults (mean age = 23.3 years, SD = 2.0, range 19.6 to 166	

26.8 years; 17 women; 28 university students) recruited from the participant database of the 167	

Max Planck Institute for Human Development, Berlin, Germany (MPIB). Participants were 168	

right-handed, as assessed with a modified version of the Edinburgh Handedness Inventory 169	

(Oldfield, 1971), and had normal or corrected-to-normal vision, as assessed with the Freiburg 170	

Visual Acuity test (Bach, 1996; 2007). Participants reported to be in good health with no known 171	

history of neurological or psychiatric incidences and were paid for their participation (8.08 € 172	

per hour, 25.00 € for completing the study within 16 days, and a performance-dependent bonus 173	

of 28.00 €; see below). All participants gave written informed consent according to the 174	

institutional guidelines of the ethics committee of the MPIB, which approved the study.  175	

 176	

2.3 Procedure 177	

 178	

Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an 179	

acoustically and electrically shielded chamber. A resting state assessment was conducted prior 180	

to the initial performance of the adapted Sternberg task. Two resting state periods were used: 181	

the first encompassed a duration of two minutes of continuous eyes open (EO1) and eyes closed 182	

(EC1) periods, respectively; the second resting state was comprised of two 80 second runs, 183	
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totalling 16 repetitions of 5 seconds interleaved eyes open (EO2) – eyes closed (EC2) periods. 184	

An auditory beep indicated to the subjects when to open and close their eyes. 185	

Following the resting assessments, participants performed an adapted version of the 186	

Sternberg task. Digits were presented in white on a black background and subtended ~2.5° of 187	

visual angle in the vertical and ~1.8° of visual angle in the horizontal direction. Stimulus 188	

presentation and recording of behavioral responses were controlled with E-Prime 2.0 189	

(Psychology Software Tools, Inc., Pittsburgh, PA, USA). The task design followed the original 190	

report (Sternberg, 1966). Participants started each trial by pressing the left and right response 191	

key with their respective index fingers to ensure correct finger placement and to enable fast 192	

responding. An instruction to blink was given, followed by the sequential presentation of 2, 4 193	

or 6 digits from zero to nine. On each trial, the memory set size (i.e., load) varied randomly 194	

between trials, and participants were not informed about the upcoming condition. Also, the 195	

single digits constituting a given memory set were randomly selected in each trial. Each 196	

stimulus was presented for 200 ms, followed by a fixed 1000 ms blank inter-stimulus interval 197	

(ISI). The offset of the last stimulus coincided with the onset of a 3000 ms blank retention 198	

interval, which concluded with the presentation of a probe item that was either contained in the 199	

presented stimulus set (positive probe) or not (negative probe). Probe presentation lasted 200 200	

ms, followed by a blank screen for 2000 ms, during which the participant’s response was 201	

recorded. A beep tone indicated the end of the trial. The task lasted about 50 minutes. 202	

For each combination of load x probe type, 31 trials were conducted, cumulating in 186 203	

trials per session. Combinations were randomly distributed across four blocks (block one: 48 204	

trials; blocks two through four: 46 trials). Summary feedback of the overall mean RT and 205	

accuracy within the current session was shown at the end of each block. At the beginning of 206	

session one, 24 practice trials were conducted to familiarize participants with the varying set 207	

sizes and probe types. To sustain high motivation throughout the study, participants were paid 208	

a 28 € bonus if their current session’s mean RT was faster or equal to the overall mean RT 209	

during the preceding session, while sustaining accuracy above 90%. Only correct trials were 210	

included in the analyses.  211	

 212	

2.4 EEG recordings and pre-processing  213	

 214	

EEG was continuously recorded from 64 Ag/AgCl electrodes using BrainAmp 215	

amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp electrodes were arranged 216	

within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system 217	
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(cf. Oostenveld, Fries, Maris, & Schoffelen, 2011) with the ground placed at AFz. To monitor 218	

eye movements, two electrodes were placed on the outer canthi (horizontal EOG) and one 219	

electrode below the left eye (vertical EOG). During recording, all electrodes were referenced 220	

to the right mastoid electrode, while the left mastoid electrode was recorded as an additional 221	

channel. Prior to recording, electrode impedances were retained below 5 kΩ. Online, signals 222	

were recorded with an analog pass-band of 0.1 to 250 Hz and digitized at a sampling rate of 1 223	

kHz. 224	

Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 225	

(Oostenveld et al., 2011) and using custom-written MATLAB (The MathWorks Inc., Natick, 226	

MA, USA) code. Offline, EEG data were filtered using a 4th order Butterworth filter with a 227	

pass-band of 0.5 to 100 Hz, and were linearly detrended. Resting data with interleaved eye 228	

closure were epoched relative to the auditory cue to open and close the eyes. An epoch of -2 s 229	

to +3 s relative to on- and offsets was chosen to include padding for the analysis. During the 230	

eBOSC procedure, three seconds of signal were removed from both edges (see below), resulting 231	

in an effective epoch of 4 s duration that excludes evoked components following the cue onset. 232	

Continuous eyes open/closed recordings were segmented to the cue on- and offset. For the 233	

interleaved data, the first and last trial for each condition were removed, resulting in an effective 234	

trial number of 14 trials per condition. For the task data, we analyzed two intervals: an extended 235	

interval to assess the overall dynamics of detected rhythmicity and a shorter interval that 236	

focused on the retention period. Unless otherwise noted, we refer to the extended interval when 237	

presenting task data. For the extended segments, task data were segmented to 21 s epochs 238	

ranging from -9 s to +12 s with regard to the onset of the 3 s retention interval for analyses 239	

including peri-retention data. For analyses including only the retention phase, data were 240	

segmented to -2 s to +3 s around the retention interval. Note that for all analyses, 3 s of signal 241	

were removed on each side of the signal during eBOSC detection, effectively removing the 242	

evoked cue activity (2 s to account for edge artifacts following wavelet-transformation and 1 s 243	

to account for eBOSC’s duration threshold, see section 2.6), except during the extended task 244	

interval. Hence, detected segments were restricted to occur from 1s after period onset until 245	

period offset, thereby excluding evoked signals. Blink, movement and heart-beat artifacts were 246	

identified using Independent Component Analysis (ICA; Bell & Sejnowski, 1995) and removed 247	

from the signal. Subsequently, data were downsampled to 250 Hz and all channels were re-248	

referenced to mathematically averaged mastoids. Artifact-contaminated channels (determined 249	

across epochs) were automatically detected (a) using the FASTER algorithm (Nolan, Whelan, 250	

& Reilly, 2010) and (b) by detecting outliers exceeding three standard deviations of the kurtosis 251	
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of the distribution of power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) 252	

frequency bands, respectively. Rejected channels were interpolated using spherical splines 253	

(Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy epochs were likewise 254	

excluded based on FASTER and recursive outlier detection, resulting in the rejection of 255	

approximately 13% of trials. To prevent trial rejection due to artifacts outside the signal of 256	

interest, artifact detection was restricted to epochs that included 2.4 s of additional signal around 257	

the on- and offset of the retention interval, corresponding to the longest effective segment that 258	

was used in the analyses. A further 2.65% of incorrectly answered trials from the task were 259	

subsequently excluded.  260	

 261	
2.5 Rhythm-detection using extended BOSC 262	

 263	

We applied an extended version of the Better OSCillation detection method (eBOSC; 264	

cf. Caplan et al., 2001; Whitten et al., 2011) to automatically separate rhythmic from arrhythmic 265	

episodes. The BOSC method reliably identifies rhythms using data-driven thresholds based on 266	

theoretical assumptions of the signal characteristics. Briefly, the method defines rhythms as  267	

time points during which wavelet-derived power at a particular frequency exceeds a power 268	

threshold based on an estimate of the arrhythmic signal background. The theoretical duration 269	

threshold defines a minimum duration of cycles this power threshold has to be exceeded to 270	

exclude high amplitude transients. Previous applications of the BOSC method focused on the 271	

analysis of resting-state data or long data epochs, where reliable detection has been established 272	

regardless of specific parameter setups (Caplan et al., 2001; 2015; Whitten et al., 2011). We 273	

introduce the following adaptations here (for details see section 2.6, Figures 1 & 2): (1) we  274	

remove the spectral alpha peak and use robust regression to establish power thresholds; (2) we 275	

combine detected time points into continuous rhythmic episodes and (3) we reduce the impact 276	

of wavelet convolution on abundance estimates. We benchmarked the algorithm and compared 277	

it to standard BOSC using simulations (see section 2.8). 278	

 279	
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 280	
Figure 1: Schematic illustration of rhythm detection. (A) Average amplitude estimates (right) 281	

increase with the focus on rhythmic episodes within the averaged time interval. The left plots 282	

show simulated time series and the corresponding time-frequency power. Superimposed red 283	

traces indicate rhythmic time points. The upper right plot shows the average power spectrum 284	

averaged across the entire epoch, the lower plot presents amplitudes averaged exclusively 285	

across rhythmic time points. An amplitude gain is observed due to the exclusion of arrhythmic 286	

low amplitude time points. (B-E) Comparison of standard and extended BOSC. (B+C) Rhythms 287	

were detected based on a power threshold estimated from the arrhythmic background spectrum. 288	

Standard BOSC applies a linear fit in log-log space to define the background power, which may 289	

overestimate the background at the frequencies of interest in the case of data with large 290	

rhythmic peaks. Robust regression following peak removal alleviates this problem. (D) 291	

Example of episode detection. White borders circumfuse time frequency points, at which 292	

standard BOSC indicated rhythmic content. Red traces represent the continuous rhythmic 293	

episodes that result from the extended post-processing. (E) Applied thresholds and detected 294	

rhythmic abundance. The black border denotes the duration threshold at each frequency 295	

(corresponding to D), i.e., for how long the power threshold needed to be exceeded to count as 296	

a rhythmic period. Note that this threshold can be set to zero for a post-hoc characterization of 297	

the duration of episodes (see Methods 2.13). The color scaling within the demarcated area 298	

indicates the power threshold at each frequency. Abundance corresponds to the relative length 299	

of the segment on the same time scale as presented in D. White dots correspond to the standard 300	

BOSC measure of rhythmic abundance at each frequency (termed Pepisode). Red lines indicate 301	
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the abundance measure used here, which is defined as the proportion of sample points at which 302	

a rhythmic episode between 8-15 Hz was indicated (shown as red traces in D). 303	

 304	

2.6 Specifics of rhythm-detection using extended BOSC 305	

 306	

Rhythmic events were detected within subjects for each channel and condition. Time-307	

frequency transformation of single trials was performed using 6-cycle Morlet wavelets 308	

(Grossmann & Morlet, 1985) with 49 logarithmically-spaced center frequencies ranging from 309	

1 to 64 Hz. Following the wavelet transform, 2 s were removed at each segment’s borders to 310	

exclude edge artefacts. To estimate the background spectrum, the time-frequency spectra from 311	

all trials were temporally concatenated within condition and channel and log-transformed, 312	

followed by temporal averaging. For eyes-closed and eyes-open resting states, both continuous 313	

and interleaved exemplars were included in the background estimation for the respective 314	

conditions. The resulting power spectrum was fit linearly in log(frequency)-log(power) 315	

coordinates using a robust regression, with the underlying assumption that the EEG background 316	

spectrum is characterized by colored noise of the form A*f^(−α) (Buzsáki & Mizuseki, 2014; 317	

He, Zempel, Snyder, & Raichle, 2010; Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 318	

2001). A robust regression with bisquare weighting (e.g. Holland & Welsch, 2007) was chosen 319	

to improve the linear fit of the background spectrum (cf. Haller et al., 2018), which is 320	

characterized by frequency peaks in the alpha range for almost all subjects (Supplementary 321	

Figure 2). In contrast to ordinary least squares regression, robust regression iteratively down-322	

weights outliers (in this case spectral peaks) from the linear background fit. To improve the 323	

definition of rhythmic power estimates as outliers during the robust regression, power estimates 324	

within the wavelet pass-band around the individual alpha peak frequency were removed prior 325	

to fitting1. The passband of the wavelet (e.g. Linkenkaer-Hansen et al., 2001) was calculated as  326	

																																																								
1 	This procedure is similar to calculating the background spectrum from conditions with 

attenuated alpha power (e.g., the eyes open resting state; Caplan, Bottomley, Kang & Dixon 

(2015)). However, here we ensure that alpha power is sufficiently removed, whereas if 

conditions with reduced alpha peak magnitudes are selected, alpha power may still remain 

sufficiently elevated to influence slope or intercept estimates. Furthermore, the reliance on 

conditions with decreased rhythmicity appears less suitable given inter-individual differences 

in alpha engagement in e.g., the eyes open condition. This may induce an implicit contrast to 
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𝑃𝑎𝑠𝑠𝑏𝑎𝑛𝑑	[𝐻𝑧] = 	𝐼𝐴𝐹	 ± 	0.5 ∗ 5
67

∗ 𝐼𝐴𝐹   327	

[Formula 1] 328	

in which IAF denotes the individual alpha peak frequency and WL refers to wavelet length 329	

(here, six cycles in the main analysis). IAF was determined based on the peak magnitude within 330	

the 8-15 Hz average spectrum for each channel and condition (Grandy, Werkle-Bergner, 331	

Chicherio, Schmiedek, et al., 2013b). This ensures that the maximum spectral deflection is 332	

removed across subjects, even in cases where no or multiple peaks are present2. This procedure 333	

effectively removes a bias of the prevalent alpha peak on the arrhythmic background estimate 334	

(see Figure 1B and C & Figure 4C). The power threshold for rhythmicity at each frequency was 335	

set at the 95th percentile of a χ2(2)-distribution of power values, centered on the linearly fitted 336	

estimate of background power at the respective frequency (for details see Whitten et al., 2011). 337	

This essentially implements a significance test of single-trial power against arrhythmic 338	

background power. A three-cycle threshold was used as the duration threshold to exclude 339	

transients, unless indicated otherwise (see section 2.13). The conjunctive power and duration 340	

criteria produce a binary matrix of ‘detected’ rhythmicity for each time-frequency point (see 341	

Figure 2C). To account for the duration criterion, 1000 ms were discarded from each edge of 342	

this ‘detected’ matrix.  343	

 344	

 345	

																																																								
eyes open rhythmicity. Note that when the frequency range is chosen so that the alpha peak 

represents the middle of the chosen interval, the alpha-induced bias would be captured by a 

linear increment in the intercept of the background fit, which may also be alleviated by choosing 

a higher percentile for the power threshold. Notably, removing the alpha peak as done here 

attenuates such bias, even in cases where the alpha peak biases the slope of the background fit, 

as would happen if the alpha peak is not centered within the range of sampled frequencies.	
2 When multiple alpha-band peaks are present or the peak has a broader appearance, the spectral 

peak may not be removed entirely, which could result in misfits of the background spectrum. 

For this purpose, we employed robust regression to down-weight potential residuals around the 

alpha peak.  Our current implementation only accounts for a peak in the alpha range, but could 

be extended to other frequency ranges using the same logic (see discussion on limitations in 

section 4.6). 
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 346	
Figure 2: Example of eBOSC’s post-processing routines to derive sparse continuous rhythmic 347	

‘episodes’. (A) Simulated signal containing 1/f noise and superimposed 10 Hz rhythmicity. (B) 348	

10 Hz rhythmic signal only. (C) Traditional output of BOSC detection: a binary matrix indicates 349	

time-frequency points that adhere to power and duration thresholds (in yellow). These matrices 350	

are used to calculate Pepisode. (D) First step of eBOSC’s post-processing: the detected matrix 351	

is ‘sparsified’ in the spectral dimension to create continuous rhythmic episodes. (E) Second 352	

step of eBOSC’s post-processing: each episode is temporally corrected for the temporal wavelet 353	

convolution by estimating the bias of each time point on adjacent time points (here exemplified 354	

for select time points via red traces). Only time points that exceed the bias estimated from 355	

surrounding time points are retained. (F) Example of final episode trace. The black line 356	

indicates the time points that were retained, whereas the red segments were removed during 357	

step E. The final episode output is then characterized according to e.g., mean frequency, 358	

duration and amplitude, whereas the time points of rhythmicity can for example be used to 359	

define rhythm-conditional spectra. These episodes are used to calculate abundance. 360	

 361	

The original BOSC algorithm was further extended to define rhythmic events as 362	

continuous temporal episodes that allow for an event-wise assessment of rhythm characteristics 363	

(e.g. duration). The following steps were applied to the binary matrix of ‘detected’ single-trial 364	

rhythmicity to derive such sparse and continuous episodes. First, to account for the spectral 365	

extension of the wavelet, we selected time-frequency points with maximal power within the 366	

A

C

E

B

D

F
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wavelet’s spectral smoothing range (i.e. the pass-band of the wavelet; 5
67

*frequency; see 367	

Formula 1). That is, at each time point, we selected the frequency with the highest indicated 368	

rhythmicity within each frequency’s pass-band. This served to exclude super-threshold 369	

timepoints that may be accounted for by spectral smoothing of a rhythm at an adjacent 370	

frequency. Note that this effectively creates a new frequency resolution for the resulting 371	

rhythmic episodes, thus requiring sufficient spectral resolution (defined by the wavelet’s pass-372	

band) to differentiate simultaneous rhythms occurring at close frequencies. Finally, continuous 373	

rhythmic episodes were formed by temporally connecting extracted time points, while allowing 374	

for moment-to-moment frequency transitions (i.e. within-episode frequency non-stationarities; 375	

Atallah & Scanziani, 2009) (for a single-trial illustration see Figures 1D and 2D).  376	

In addition to the spectral extension of the wavelet, the choice of wavelet parameter also 377	

affects the extent of temporal smoothing, which may bias rhythmic duration estimates. To 378	

decrease such temporal bias, we compared observed rhythmic amplitudes at each time point  379	

within each rhythmic episode with those expected by smoothing adjacent amplitudes using the 380	

wavelet (Figure 2E). By retaining only those time points where amplitudes exceeded the 381	

smoothing-based expectations, we removed supra-threshold time points that can be explained 382	

by temporal smoothing of nearby rhythms (e.g., ‘ramping’ up and down signals). In more detail, 383	

we simulated the positive cycle of a sine wave at each frequency, zero-shouldered each edge 384	

and performed (6-cycle) wavelet convolution. The resulting amplitude estimates at the zero-385	

padded time points reflect the temporal smoothing bias of the wavelet on adjacent arrhythmic 386	

time points. This bias is maximal (BiasMax) at the time point immediately adjacent to the 387	

rhythmic on-/offset and decreases with temporal distance to the rhythm. Within each rhythmic 388	

episode, the ‘convolution bias’ of a time-frequency (TF) point’s amplitude on surrounding 389	

points was estimated by scaling the points’ amplitude by the modelled temporal smoothing bias.  390	

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠?,ABCD7:7DA = F(𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒A? − 𝑃𝑇?) ∗
𝐵𝑖𝑎𝑠𝑉𝑒𝑐𝑡𝑜𝑟?,ABCD7:7DA:

𝐵𝑖𝑎𝑠𝑀𝑎𝑥?
R +	𝑃𝑇? 391	

[Formula 2] 392	

Subscripts F and T denote frequency and time within each episode, respectively. 393	

BiasVector is a vector with the length of the current episode (L) that is centered around the 394	

current TF-point. It contains the wavelet’s symmetric convolution bias around BiasMax. Note 395	

that both BiasVector and BiasMax respect the possible frequency variations within an episode 396	

(i.e., they reflect the differences in convolution bias between frequencies). The estimated 397	

wavelet bias was then scaled to the amplitude of the rhythmic signal at the current TF-point. 398	

PT refers to the condition- and frequency-specific power threshold applied during rhythm 399	
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detection. We subtracted the power threshold to remove arrhythmic contributions. This 400	

effectively sensitizes the algorithm to near-threshold values, rendering them more likely to be 401	

excluded. Finally, time points with lower amplitudes than expected by the convolution model 402	

were removed and new rhythmic episodes were created (Figure 2F). The resulting episodes 403	

were again checked for adhering to the duration threshold. 404	

As an alternative to the temporal wavelet correction based on the wavelet’s simulated 405	

maximum bias (‘MaxBias’; as described above), we investigated the feasibility of using the 406	

wavelet’s full-width half maximum (‘FWHM’) as a criterion. Within each continuous episode 407	

and for each “rhythmic” sample point, 6-cycle wavelets at the frequency of the neighbouring 408	

points were created and scaled to the point’s amplitude. We then used the amplitude of these 409	

wavelets at the FWHM as a threshold for rhythmic amplitudes. That is, points within a rhythmic 410	

episodes that had amplitudes below those of the scaled wavelets were defined as arrhythmic. 411	

The resulting continuous episodes were again required to pass the duration threshold. As the 412	

FWHM approach indicated decreased specificity of rhythm detection in the simulations 413	

(Supplementary Figure 1) we used the ‘MaxBias’ method for our analyses.   414	

Furthermore, we considered a variant where total amplitude values were used (vs. 415	

supra-threshold amplitudes) as the basis for the temporal wavelet correction. Our results 416	

suggest that using supra-threshold power values leads to a more specific detection at the cost 417	

of sensitivity (Supplementary Figure 1). Crucially, this eliminated false alarms and abundance 418	

overestimation, thus rendering the method highly specific to the occurrence of rhythmicity. As 419	

we regard this as a beneficial feature, we used supra-threshold amplitudes as the basis for the 420	

temporal wavelet correction throughout the manuscript. 421	

 422	

2.7 Definition of abundance, rhythmic probability and amplitude metrics 423	

 424	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2019. ; https://doi.org/10.1101/356089doi: bioRxiv preprint 

https://doi.org/10.1101/356089
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING	HEAD:	SINGLE-TRIAL	CHARACTERIZATION	OF	NEURAL	RHYTHMS	

	 16	

 425	
 426	
Figure 3: eBOSC disambiguates the magnitude and duration of rhythmic episodes. (A) Schema 427	

of different amplitude metrics. (B) Rhythm-detection disambiguates rhythmic amplitude and 428	

duration. Overall amplitudes represent a mixture of rhythmic power and duration. In the 429	

absence of noise (upper row), eBOSC perfectly orthogonalizes rhythmic amplitude from 430	

abundance. Superimposed noise leads to an imperfect separation of the two metrics (lower row). 431	

The duration of rhythmicity is similarly indicated by abundance and the overlap between 432	

rhythmic and overall amplitudes. This can be seen by comparing the two rightmost plots in each 433	

row.  434	
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 435	

A central goal of rhythm detection is to disambiguate rhythmic power and duration 436	

(Figure 3). For this purpose, eBOSC provides multiple indices. We describe the different 437	

indices for the example case of alpha rhythms. Please note that eBOSC can be applied in a 438	

similar fashion to any other frequency range. The abundance of alpha rhythms denotes the 439	

duration of rhythmic episodes with a mean frequency in the alpha range (8 to 15 Hz), relative 440	

to the duration of the analyzed segment. This frequency range was motivated by clear peaks 441	

within this range in individual resting state spectra (Supplementary Figure 2). Note that 442	

abundance is closely related to standard BOSC’s Pepisode metric (Whitten et al., 2011), with 443	

the difference that abundance refers to the duration of the continuous rhythmic episodes and 444	

not the ‘raw’ detected rhythmicity of BOSC (cf. Figure 2C and D). We further define rhythmic 445	

probability as the across trials probability to observe a detected rhythmic episode within the 446	

alpha frequency range at a given point in time. It is therefore the within-time, across-trial 447	

equivalent of abundance. 448	

As a result of rhythm detection, the magnitude of spectral events can be described using 449	

multiple metrics (see Figure 3A for a schematic). The standard measure of window-averaged 450	

amplitudes, overall amplitudes were computed by averaging across the entire segment at its 451	

alpha peak frequency. In contrast, rhythmic amplitudes correspond to the amplitude estimates 452	

during detected rhythmic episodes. If no alpha episode was indicated, abundance was set to 453	

zero, and amplitude was set to missing. Unless indicated otherwise, both amplitude measures 454	

were normalized by subtracting the amplitude estimate of the fitted background spectrum. This 455	

step represents a parameterization of rhythmic power (cf. Haller et al., 2018) and is conceptually 456	

similar to baseline normalization, without requiring an explicit baseline segment. This 457	

highlights a further advantage of rhythm-detection procedures like (e)BOSC. In addition, we 458	

calculated an overall signal-to-noise ratio (SNR) as the ratio of the overall amplitude to the 459	

background amplitude: TUVWXYY
ZX[\]W^_`a

. In addition, we defined rhythmic SNR as the background-460	

normalized rhythmic amplitude as a proxy for the rhythmic representation: 461	
bcdecfg[DZX[\]W^_`a

ZX[\]W^_`a
. Unless stated differently, subject-, and condition-specific amplitude and 462	

abundance values were averaged within and across trials, and across posterior-occipital 463	

channels (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2), in which 464	

alpha power was maximal (Figure 5A, Figure 11).  465	

 466	

2.8 eBOSC validation via alpha rhythm simulations 467	
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 468	

To assess eBOSC’s detection performance, we simulated 10 Hz sine waves with varying 469	

amplitudes (0, 2, 4, 6, 8, 12, 16, 24 [a.u.]) and durations (2, 4, 8, 16, 32, 64, 128, 200 [cycles]) 470	

that were symmetrically centred within random 1/f-filtered white noise signals (20 s; 250 Hz 471	

sampling rate). Amplitudes were scaled relative to the power of the 8-12 Hz 6th order 472	

Butterworth-filtered background signal in each trial to approximate SNRs. To ensure 473	

comparability with the empirical analyses, we computed overall SNR analogously to the 474	

empirical data, which tended to be lower than the target SNR. We chose the maximum across 475	

simulated durations as an upper bound (i.e., conservative estimate) on overall SNR. For each 476	

amplitude-duration combination we simulated 500 “trials”. We assessed three different 477	

detection pipelines regarding their detection efficacy: the standard BOSC algorithm (i.e., linear 478	

background fit incorporating the entire frequency range with no post-editing of the detected 479	

matrix); the eBOSC method using wavelet correction by simulating the maximum bias 480	

introduced by the wavelet (“MaxBias); and the eBOSC method using the full-width-at-half-481	

maximum amplitude for convolution correction (“FWHM”). The background was estimated 482	

separately for each amplitude-duration combination. 500 edge points were removed bilaterally 483	

following wavelet estimation, 250 additional samples were removed bilaterally following 484	

BOSC detection to account for the duration threshold, effectively retaining 14 s of simulated 485	

signal.  486	

Detection efficacy was indexed by signal detection criteria regarding the identification 487	

of rhythmic time points between 8 and 12 Hz (i.e., hits = simulated and detected points; false 488	

alarms = detected, but not simulated points). These measures are presented as ratios to the full 489	

amount of possible points within each category (e.g., hit rate = hits/all simulated time points). 490	

For the eBOSC pipelines, abundance was calculated identically to the analyses of empirical 491	

data. As no consecutive episodes (cf. Pepisode and abundance) are available in standard BOSC, 492	

abundance was defined as the relative amount of time points with detected rhythmicity between 493	

8 to 12 Hz. 494	

A separate simulation aimed at establishing the ability to accurately recover amplitudes. 495	

For this purpose, we simulated a whole-trial alpha signal (i.e., duration = 1) and a quarter-trial 496	

alpha signal (duration = .25) with a larger range of amplitudes (1:16 [a.u.]) and performed 497	

otherwise identical procedures as described above. To assess eBOSC’s ability to disambiguate 498	

power and duration (Figure 3B), we additionally performed simulations in the absence of noise 499	

across a larger range of simulated amplitudes and durations. 500	
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A major change in eBOSC compared to standard BOSC is the exclusion of the rhythmic 501	

peak prior to estimating the background. To investigate to what extent the two methods induce 502	

a bias between rhythmicity and the estimated background magnitude (for a schematic see Figure 503	

1C and D), we calculated Pearson correlations between the overall amplitude and the estimated 504	

background amplitude across all levels of simulated amplitudes and durations (Figure 4C). 505	

 As the empirical data suggested a trial-wise association between amplitude and 506	

abundance estimates also at high levels of signal-to-noise ratios (Figure 8), we investigated 507	

whether such associations were also present in the simulations. For each pair of simulated 508	

amplitude and duration, we calculated Pearson correlations between the overall amplitude and 509	

abundance across single trials. Note that due to the stationarity of simulated duration, trial-by-510	

trial fluctuations indicate the bias under fluctuations of the noise background (as amplitudes 511	

were scaled to the background in each trial). For each cell, we performed Fisher’s r-to-z 512	

transform to account for unequal trial sizes due to missing amplitude/abundance estimates (e.g. 513	

when no episodes are detected).  514	

 515	

2.9 Calculation of phase-based lagged coherence 516	

 517	
To investigate the convergence between the power-based duration estimate (abundance) 518	

and a phase-based alternative, we calculated lagged coherence at 40 linearly scaled frequencies 519	

in the range of 1 to 40 Hz for each resting-state condition. Lagged coherence assesses the 520	

consistency of phase clustering at a single sensor for a chosen cycle lag (see Fransen et al., 2015 521	

for formulas). Instantaneous power and phase were estimated via 3-cycle wavelets. Data were 522	

segmented to be identical to eBOSC’s effective interval (i.e., same removal of signal shoulders 523	

as described above). In reference to the duration threshold for power-based rhythmicity, we 524	

calculated the averaged lagged coherence using two adjacent epochs à three cycles. We 525	

computed an index of alpha rhythmicity by averaging values across epochs and posterior-526	

occipital channels, finally extracting the value at the maximum lagged coherence peak in the 8 527	

to 15 Hz range. 528	

 529	
2.10 Dynamics of rhythmic probability and rhythmic power during task performance 530	

 531	

To investigate the detection properties in the task data, we analysed the temporal 532	

dynamics of rhythmic probability and power in the alpha band. We created time-frequency 533	

representations as described in section 2.6 and extracted the IAF power time series, separately 534	



RUNNING	HEAD:	SINGLE-TRIAL	CHARACTERIZATION	OF	NEURAL	RHYTHMS	

	 20	

for each person, condition, channel and trial. At the single-trial level, values were allocated to 535	

rhythmic vs. arrhythmic time points according to whether a rhythmic episode with mean 536	

frequency in the respective range was indicated by eBOSC (Figure 2B; Figure 3C). These time 537	

series were averaged within subject to create individual averages of rhythm dynamics. 538	

Subsequently, we z-scored the power time series to accentuate signal dynamics and attenuate 539	

between-subject power differences. To highlight global dynamics, these time series were 540	

further averaged within- and between-subjects. Figure captions indicate which average was 541	

used. 542	

 543	

2.11 Rhythmic frequency variability during rest 544	

 545	
As an exemplary characteristic of rhythmicity, we assessed the stability of IAF 546	

estimates by considering the variability across trials of the task as a function of indicated 547	

rhythmicity. Trial-wise rhythmic IAF variability (Figure 10A) was calculated as the standard 548	

deviation of the mean frequency of alpha episodes (8-15 Hz). That is, for each trial, we averaged 549	

the estimated mean frequency of rhythmic episodes within that trial and computed the standard 550	

deviation across trials. Whole-trial IAF variability (Figure 10B) was similarly calculated as the 551	

standard deviation of the IAF, with single-trial IAF defined as the frequency with the largest 552	

peak magnitude between 8-15 Hz, averaged across the whole trial, i.e., encompassing segments 553	

both designated as rhythmic and arrhythmic. Finally, we compared the empirical variability 554	

with that observed in simulations (see section 2.8). 555	

 556	

2.12 Rhythm-conditional spectra and abundance for multiple canonical frequencies 557	

 558	

To assess the general feasibility of rhythm detection outside the alpha range, we analysed the 559	

retention interval of the adapted Sternberg task, where the occurrence of theta, alpha and beta 560	

rhythms has been reported in previous studies (Brookes et al., 2011; Jensen, Gelfand, Kounios, 561	

& Lisman, 2002; Jokisch & Jensen, 2007; Lundqvist et al., 2016; Raghavachari et al., 2001; 562	

Tuladhar et al., 2007). For this purpose, we re-segmented the data to cover the final 2 s of the 563	

retention interval +- 3 s of edge signal that was removed during the eBOSC procedure. We 564	

performed eBOSC rhythm detection with otherwise identical parameters to those described in 565	

section 2.6. We then calculated spectra across those time points where rhythmic episodes with 566	

a mean frequency in the range of interest were indicated, separately for four frequency ranges: 567	

3-8 Hz (theta), 8-15 Hz (alpha), 15-25 Hz (beta) and 25-64 Hz (gamma). We subtracted spectra 568	
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across the remaining arrhythmic time-points for each range from these ‘rhythm-conditional’ 569	

spectra to derive the spectra that are unique to those time points with rhythmic occurrence in 570	

the band of interest. 571	

For the corresponding topographic representations, we calculated the abundance metric 572	

as described in section 2.7 for the apparent peak frequency ranges. 573	

 574	

2.13 Post-hoc characterization of sustained rhythms vs. transients 575	

 576	

Instead of exclusively relying on a fixed a priori duration threshold as done in previous 577	

applications, eBOSC’s continuous ‘rhythmic episodes’ also allow for a post-hoc separation of 578	

rhythms and transients based on the duration of identified rhythmic episodes. This is afforded 579	

by our extended post-processing that results in a more specific identification of rhythmic 580	

episodes (see Figure 4) and an estimated length for each episode. For this analysis (Figure 14), 581	

we set the a priori duration threshold to zero and separated the resulting episodes post-hoc 582	

based on their duration (shorter vs. longer than 3 cycles) at their mean frequency. That is, any 583	

episode crossing the amplitude threshold was retained and episodes were sorted by their 584	

‘transient’ or sustained appearance afterwards. We conducted this analysis in the extended task 585	

data to highlight the temporal dynamics of rhythmic and transient events. 586	

Similarly, the temporal specificity of rhythmic episodes allow the assessment of 587	

‘rhythm-evoked’ effects in the temporal or spectral domain. Here, we showcase the rhythm-588	

evoked changes in the same frequency band to indicate the temporal specificity of the indicated 589	

rhythmic periods (Figure 15). For this purpose, we calculated time-frequency representations 590	

using 6-cycle wavelets and extracted power in the theta (3-8 Hz), alpha (8-15 Hz), beta (15-25 591	

Hz) and gamma-band (25-64 Hz) in 2.4 s periods centred on the on- and offset of indicated 592	

rhythmic periods in the respective band. Separate TFRs were calculated for the detected 593	

episodes in each channel, followed by averaging across episodes and channels. Finally, we z-594	

transformed the individual averages to highlight the consistency across subjects.  595	

 596	

3. Results 597	

 598	

3.1. Extended BOSC (eBOSC) increases specificity of rhythm-detection 599	
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 600	
Figure 4: Rhythm detection performance of standard and extended BOSC in simulations. (A) 601	

Signal detection properties of the two algorithms. For short simulated rhythmicity, abundance 602	

is overestimated by standard BOSC, but not eBOSC, whereas eBOSC underestimates the 603	

duration of prolonged rhythmicity at low SNRs (A1). Extended BOSC has decreased sensitivity 604	

(A2), but higher specificity (A3) compared with extended BOSC. Note that for simulated zero 605	

alpha amplitude, all sample points constitute potential false alarms, while by definition no 606	

sample point constitutes a potential hit. (B) Amplitude and abundance estimates for signals with 607	

sustained (left) and short rhythmicity (right). Black dots indicate reference estimates for a pure 608	

sine wave without noise, coloured dots indicate the respective estimates for data with the 1/f 609	

background. [Note that the reference estimates were interpolated at the empirical abundance of 610	

the 1/f data. Grey dots indicate the perfect abundance estimates in the absence of background 611	

noise.] When rhythms are sustained (left), impaired rhythm detection at low SNRs causes an 612	

overestimation of the rhythmic amplitude. At low rhythmic duration (right), this deficit is 613	

outweighed by the severe bias of arrhythmic duration on overall amplitude estimates (e.g., 614	

Figure 13). Simulated amplitudes (and corresponding empirical SNRs in brackets) are shown 615	

on the right. Vertical lines indicate the simulated rhythmic duration. (C) eBOSC successfully 616	

reduces the bias of the rhythmic peak on the estimation of the background amplitude. In 617	

comparison, standard BOSC induces a strong coupling between the peak magnitude and the 618	

background estimate. (D) eBOSC indicates abundance more accurately than standard BOSC at 619	
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high amplitudes (i.e., high SNR; see also A1). The leftward shift indicates a decrease in 620	

sensitivity. Horizontal lines indicate different levels of simulated duration. Dots are single-trial 621	

estimates across levels of simulated amplitude and duration. (E) Standard BOSC and eBOSC 622	

induce trial-wise correlations between amplitude and abundance. eBOSC exhibits reduced trial-623	

by-trial coupling at higher SNR compared to standard BOSC. Values are r-to-z-transformed 624	

correlation coefficients. 625	

 626	

We extended the BOSC rhythm detection method to characterize rhythmicity at the 627	

single-trial level by creating continuous ‘rhythmic episodes’ (see Figure 1 & 2). A central goal 628	

of this approach is the disambiguation of rhythmic power and duration (see Figure 3). In 629	

situations without background noise, this can be achieved perfectly. However, the addition of 630	

1/f noise leads to a partial coupling of the two parameters. As we introduced changes to the 631	

original method, we compared the detection properties of the standard and the extended 632	

(eBOSC) pipeline by simulating varying levels of rhythm magnitude and duration. 633	

Considering the sensitivity and specificity of detection, both pipelines performed 634	

adequately at high levels of SNR with high hit and low false alarm rates (Figure 4A). However, 635	

we observed important differences between the algorithms. While standard BOSC showed 636	

perfect sensitivity above overall SNRs of ~4, specificity was lower than for eBOSC as indicated 637	

by higher false alarm rates (grand averages: .160 for standard BOSC; .015 for eBOSC). This 638	

specificity increase is observed across simulation parameters, suggesting a general abundance 639	

overestimation by standard BOSC (see also Figure 4D). In addition, standard BOSC did not 640	

show a reduced detection of transient rhythms below the duration threshold of three cycles, 641	

whereas hit rates for those transients were clearly reduced in eBOSC (Figure 4A2). This 642	

suggests that wavelet-convolution extended the effective duration of transient rhythmic 643	

episodes, resulting in an exceedance of the temporal threshold. In contrast, by creating explicit 644	

rhythmic episodes and reducing convolution effects, eBOSC more strictly adheres to the 645	

specified target duration. However, there was also a notable reduction in sensitivity for rhythms 646	

just above the duration threshold, suggesting a sensitivity-specificity trade-off  (Figure 4A2). 647	

In addition to decreasing false alarms, eBOSC also more accurately estimated the duration of 648	

rhythmicity (Figure 4A1), although an underestimation of abundance persisted (and was 649	

increased) at low SNRs. In sum, while eBOSC improves the specificity of identifying rhythmic 650	

content, there are also noticeable decrements in sensitivity (grand averages: .909 for standard 651	

BOSC; .614 for eBOSC), especially at low SNRs. Notably, while sensitivity remains an issue, 652	
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the high specificity of detection suggests that the estimated rhythmic abundance serves as a 653	

lower bound on the actual duration of rhythmicity. 654	

In a second set of simulations, we considered eBOSC’s potential to accurately estimate 655	

rhythmic amplitudes. As expected, in signals with stationary rhythms (duration = 1), the overall 656	

amplitude most accurately represented the simulated amplitude (Figure 4B left), as any 657	

methods-induced underestimation would introduce inaccuracies. Hence, at lower SNRs, 658	

underestimation of rhythmic content resulted in an overestimation of rhythmic power, as some 659	

low-amplitude time points were incorrectly excluded prior to averaging. At those low SNRs, 660	

subtraction of the background estimate (cf. baseline normalization) alleviates this 661	

overestimation. The general impairment at low SNRs is however outweighed by the advantage 662	

of rhythm-specific amplitude estimates in time series where rhythmic duration is low and thus 663	

arrhythmicity is prevalent (Figure 4B right). Here, rhythm-specific estimates accurately track 664	

simulated amplitudes, whereas a strong underestimation is observed for unspecific power 665	

indices. We again observed an underestimation of rhythmic duration with decreasing 666	

amplitudes (as in Figure 4A1). 667	

An adaptation of the eBOSC method is the exclusion of the rhythmic alpha peak prior 668	

to fitting the arrhythmic background. This serves to reduce a potential bias of rhythmic content 669	

on the estimation of the arrhythmic content (see Figure 1C for a schematic). Our simulations 670	

indeed indicate a bias of the spectral peak amplitude on the background estimate in the standard 671	

BOSC algorithm, which is substantially reduced in eBOSC (Figure 4C). 672	

To gain a visual representation of duration estimation performance, we plotted 673	

abundance against amplitude estimates across all simulated trials, regardless of simulation 674	

parameters (Figure 4D). This reveals multiple modes of abundance at high levels of amplitude, 675	

which in the eBOSC case more closely track the simulated duration. This further visualizes the 676	

decreased error in abundance estimates, especially at high SNRs (e.g., Figure 4A), while an 677	

observed rightward shift towards higher amplitudes indicated the more pronounced 678	

underestimation of rhythmicity when SNRs are low.   679	

Finally, we investigated the trial-wise association between amplitude and duration 680	

estimate based on the observed coupling in empirical data (see Figure 8). Our simulations 681	

suggest that both standard BOSC and eBOSC can induce spurious positive correlations between 682	

amplitude and abundance estimates, which are most pronounced at low levels of SNR (Figure 683	

4E). Notably, these associations are strongly reduced in eBOSC, especially when rhythmic 684	

power is high. While this suggests a remaining methods-induced association between the two 685	
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parameters, it also indicates that eBOSC provides a better separation between the two (here 686	

independently simulated) parameters. 687	

In sum, our simulations suggest that eBOSC specifically separates rhythmic and 688	

arrhythmic time points in simulated data at the expense of decreased sensitivity, especially 689	

when SNR is low. However, the increase in specificity is accompanied by an increased accuracy 690	

of duration estimates at high SNR, theoretically allowing a more precise investigation of 691	

rhythmic duration. 692	

 693	

3.2 eBOSC detects single-trial alpha rhythms during rest and task states 694	

 695	

 696	
Figure 5: Rhythmic abundance and amplitude during rest. (A) eBOSC identifies high occipital 697	

alpha abundance and rhythmic amplitude especially during the Eyes Closed resting state. (B) 698	

Eye closure modulates both rhythmic amplitude and abundance on an individual level. Arrows 699	

indicate the direction and magnitude of parameter change upon eye closure for each subject. 700	

Red arrows indicate data during continuous eyes closed/eyes open intervals, blue arrows 701	

represent data from the interleaved acquisition. Thick arrows indicate the group average. 702	

 703	

While the simulations provide a gold standard to assess detection performance, we 704	

further probed eBOSC’s detection performance in empirical data from resting and task states 705	

to investigate the practical feasibility and utility of rhythm detection. As the ground truth in real 706	
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data is unknown, we evaluated detection performance by contrasting metrics from detected and 707	

undetected timepoints regarding their topography and time course. 708	

Individual power spectra showed clear rhythmic alpha peaks for every participant 709	

during eyes closed rest and for most subjects during eyes open rest and the task retention period, 710	

indicating the general presence of alpha rhythms during the analysed states (Supplementary 711	

Figure 2). In line with a putative source in visual cortex, alpha abundance was highest over 712	

parieto-occipital channels during the resting state (Figure 5A) and during the WM retention 713	

period (Figure 11). As expected, rhythmic time-points exhibited increased alpha power 714	

compared with arrhythmic time points (Figure 5A). In addition, alpha power and abundance 715	

underwent state modulations. As one of the earliest findings in cognitive electrophysiology 716	

(Berger, 1938), alpha amplitudes increase in magnitude upon eye closure. Here, eye closure 717	

was reflected by a joint shift towards higher amplitudes and durations for almost all participants 718	

(Figure 5B), suggesting that both parameters similarly reflected the state shift.  719	
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 720	
Figure 6: Characterization of detected single-trial rhythmicity during task performance. (A) 721	

Average evoked alpha power and rhythmic probability at posterior-occipital channels. (A1-A4) 722	

B Detected/non-detected masked power values @ IAF (8-15 Hz) @ O2
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Individual dynamics of power and rhythmicity. (A5) Rhythmic power at IAF (blue) and rhythm 723	

probability (red) exhibit stereotypic temporal dynamics during encoding (red bars), retention 724	

(0 to 3 s) and retrieval (black bars). (A6) While arrhythmic power exhibits similar temporal 725	

dynamics, it is strongly reduced in power (see scales in A5 and A6). The arrhythmic power 726	

dynamics are characterized by additional transient increases following stimulus presentations 727	

(blue vs. red traces between vertical bars; cf., A6). Data are from the first session and the high 728	

load condition. (B) Task-related alpha dynamics are captured by eBOSC at the single-trial level. 729	

Each box displays individual trial-wise z-standardized IAF alpha power, separately for 730	

rhythmic (left) and non-rhythmic (right) time points. While rhythmic time points (left) exhibit 731	

clear single-trial power increases that are locked to the task design, arrhythmic time points 732	

(right) do not show evoked task dynamics that separate them from the background, hence 733	

suggesting an accurate rejection of rhythmicity. The subplots’ frame colour indicates the 734	

subjects’ raw power maximum (i.e., the data scaling). Data are from channel O2 during the first 735	

session across load conditions. (C) Individual abundance estimates are stable across sessions. 736	

Data were averaged across posterior-occipital channels and high (i.e., 6) item load trials. 737	

 738	

The temporal dynamics of indicated rhythmicity are another characteristic of interest, 739	

which we assessed by considering the rhythmic probability across trials at each time point. 740	

While such an investigation is difficult for induced rhythmicity during rest, evoked rhythmicity 741	

offers an optimal test case due to its systematic temporal deployment. For this reason, we 742	

analysed task recordings with stereotypic design-locked alpha power dynamics at encoding, 743	

retention and probe presentation (Figure 6AB). At the average level, rhythmic probability 744	

closely tracked power dynamics (Figure 6A) and time points designated as rhythmic exhibited 745	

pronounced alpha power compared with those labelled arrhythmic (6A3 vs. 6A4; 6A5 vs. 6A6). 746	

While rhythm-specific dynamics were closely capturing standard power trajectories, we 747	

observed a dissociation concerning arrhythmic power. Here, we observed transient increases 748	

during stimulus onsets that were absent from either abundance or rhythmic power (Figure 6A6). 749	

This suggests an increase in high-power transients that were excluded due to the 3 cycle 750	

duration threshold. Indeed, an increase in transient events was observed without an a priori 751	

duration threshold (see Figure 14). In sum, these results suggest an accurate detection at the 752	

average level. However, we also observed large inter-individual variability in detected 753	

rhythmicity (Figure 6A2). Such result is consistent with the prevalence of shorter rhythmicity 754	

or a general absence of rhythmic content. To resolve this ambiguity, we investigated detection 755	

in single trials. 756	
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 At the single-trial level, rhythmicity was indicated for periods with visibly elevated 757	

alpha power with strong task-locking (Figure 6B left). Conversely, arrhythmicity was indicated 758	

for time points with low alpha power and little structured dynamics (Figure 6B right). However, 759	

strong inter-individual differences were apparent, with little detected rhythmicity when global 760	

alpha power was low (Figure 6B bottom; plots are sorted by descending power as indicated by 761	

the frame colour of the depicted subjects and scaled using z-scores to account for global power 762	

differences). Crucially, those subjects’ single-trial power dynamics did not present a clear 763	

temporal structure, suggesting a prevalence of noise and therefore a correct rejection of 764	

rhythmicity. 765	

 Notably, individual rhythmicity estimates were stable across multiple sessions (Figure 766	

6C), suggesting that they are indicative of trait-like characteristics rather than idiosyncratic 767	

measurement noise (Grandy et al., 2013). Note that it is unlikely that such detection differences 768	

are primarily due to misfits of the background spectrum. Simulations suggest that compared to 769	

the linear background fit that is implemented in standard BOSC, the robust fit with alpha peak 770	

removal successfully removes the bias of rhythmic alpha power on background estimates 771	

(Figure 4C), while individual power thresholds indicate a successful exclusion of the alpha peak 772	

(Supplementary Figure 2). 773	

In sum, these results suggest that eBOSC successfully separates rhythmic and 774	

arrhythmic episodes in empirical data, both at the group and individual level. However, they 775	

also suggest prevalent and stable differences in single-trial rhythmicity in the alpha band. 776	

 777	

3.3 Rhythmic SNR constrains indicated rhythmicity and rhythm-related metrics 778	
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 779	
Figure 7: Inter-individual alpha abundance is strongly associated with rhythmic, but not 780	

arrhythmic power and may be underestimated at low rhythmic SNR. (A) Individual abundance 781	

estimates are strongly related to the overall SNR of the spectral alpha peak. This relationship is 782	

also observed when only considering individual data within the SNR range for which simulation 783	

analyses indicated an unbiased abundance estimation. The black line indicates interpolated 784	

estimates from simulation analyses with a sustained rhythm (i.e., duration = 1; see Figure 4B 785	

left). Hence, it indicates a lower bound for the abundance underestimation that occurs at low 786	

SNRs, with notable overlap with the empirical estimates in the same SNR range. (B) The 787	

effective rhythmic signal can be conceptualized as the background-normalized rhythmic 788	

amplitude above the background estimate (rhythmic SNR). This proxy for signal clarity is inter-789	

individually linked to abundance estimates. (C) Background estimates are not consistently 790	

related to abundance. This implies that the relationship between amplitude and abundance is 791	

mainly driven by the signal, but not background amplitude (i.e., the effective signal ‘clarity’) 792	

and that associations do not arise from a misfit of the background. (D) Rhythmicity estimates 793	

translate between power- and phase-based definition of rhythmicity. This indicates that the 794	

BOSC-detected rhythmic spectral peak above the 1/f spectrum contains the rhythmic 795	

information that is captured by phase-based duration estimates. All data are from the resting 796	

state. 797	

A B
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 798	

While the empirical results suggest a successful separation of rhythmic and arrhythmic 799	

content at the single-trial level, we also observed strong (and stable) inter-individual differences 800	

in alpha-abundance. This may imply actual differences in the duration of rhythmic engagement 801	

(as indicated in Figure 6B). However, we also observed a severe underestimation of abundance 802	

as a function of the overall signal-to-noise ratio (SNR) in simulations (Figure 4), thus leading 803	

to the question whether empirical data fell into similar ranges where an underestimation was 804	

likely. To answer this question, we calculated the individual overall SNR during the resting 805	

state. We indeed observed that many overall SNRs were in the range, where simulations with 806	

a stationary alpha rhythm suggested an underestimation of abundance (blue line in Figure 7A. 807	

The black line indicates simulation-based estimates for stationary alpha rhythms at different 808	

overall SNR levels; see section 2.8). Moreover, the coupling of individual SNR and abundance 809	

values took on a deterministic shape in this range, whereas the association was reduced in 810	

ranges where simulations suggest sufficient SNR for unbiased abundance estimates (orange 811	

line in Figure 7A). As overall SNR is influenced by the duration of arrhythmic signal, rhythmic 812	

SNR may serve as an even better predictor of abundance due to its specific relation to rhythmic 813	

episodes (Figure 3). In line with this consideration, rhythmic SNR exhibited a strong linear 814	

relationship to abundance (Figure 7B). Importantly, the background estimate was not 815	

consistently related to abundance (Figure 7C), emphasizing that it is the ‘signal’ and not the 816	

‘noise’ component of SNR that determines detection. Similar observations were made in the 817	

task data during the retention phase (Supplementary Figure 3), suggesting that this association 818	

reflects a general link between the magnitude of the spectral peak and duration estimates. The 819	

joint analysis of simulated and empirical data thus question the accuracy of individual duration 820	

estimates, especially at low SNRs, due to the dependence of unbiased estimates on sufficient 821	

rhythmic power. 822	

As eBOSC defines single-trial power deviations from a stationary power threshold as a 823	

criterion for rhythmicity, it remains unclear whether this association is exclusive to such a 824	

‘power thresholding’-approach or whether it constitutes a more general feature of single-trial 825	

rhythmicity. To probe this question, we calculated a phase-based measure of rhythmicity, 826	

termed ‘lagged coherence’ (Fransen et al., 2015), which assesses the stability of phase 827	

clustering at a single sensor for a chosen cycle lag. Here, 3 cycles were chosen for comparability 828	

with eBOSC’s duration threshold. Crucially, this definition of rhythmicity led to highly 829	
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concordant estimates with eBOSC’s abundance measure3 (Figure 7D), suggesting that power-830	

based rhythm detection above the scale-free background overlaps to a large extent with the 831	

rhythmic information captured in the phase-based lagged-coherence measure. Moreover it 832	

suggests that duration estimates are more generally coupled to rhythmic amplitudes, especially 833	

when overall SNR is low. 834	

 835	

 836	
Figure 8: The magnitude and duration of single-trial rhythmicity are intra-individually 837	

associated. Amplitude-abundance association within subjects in the Sternberg task (1st session, 838	

all trials). Dots represent single trial estimates, color-coded by subject. (Inlay) Histogram of 839	

within-subject Fisher’s z-coefficients of within-subject associations. Relationships are 840	

																																																								
3 The eBOSC duration measure was further strongly correlated with the traditional Pepisode measure 

(estimated at the trial-wise IAF) that results from the standard BOSC algorithm (EC: r = .96, p = 2e^-

18; EC2: r=.94, p = 2e^-15; EO: r = .97, p = 3e^-20; EO2 = .97, p = 2e^-20), suggesting that both 

measures are similarly sensitive in our empirical data and reflect to a large extent overlapping 

information. 

A

B
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exclusively positive. (B) Background estimates are uncorrelated with single-trial abundance 841	

fluctuations. Note that a global background is fit for each subject, channel and condition. Trial-842	

by-trial fluctuations of the background amplitude are due to (1) different backgrounds for the 843	

different task conditions and (2) differences in the frequency of detected rhythmic time points. 844	

The background estimate was always extracted from the frequency of the rhythmic time points 845	

(see Figure 2D for a schematic example of within-episode frequency variations).  846	

 847	

While the previous observations were made at the between-subjects level, we further 848	

investigated whether such coupling also persists between trials in the absence of between-849	

person differences. In the present data, we indeed observed a positive coupling of trial-wise 850	

fluctuations of rhythmic SNR and abundance (Figure 8A), whereas the estimate of the scale-851	

free background was generally unrelated to the estimated duration of rhythmicity (Figure 8B). 852	

This suggests that the magnitude of ongoing power fluctuations around the stationary power 853	

threshold relate to the level of estimated abundance. Figure 9 schematically shows how such an 854	

amplitude-abundance coupling may be reflected in single trials as a function of rhythmic SNR. 855	

These relationships were also observed in our simulations, although they were reduced in 856	

magnitude at higher levels of empirical SNR (Figure 4E). Also, there was no significant 857	

interindividual relationship between mean effective rhythmic SNR and the trial-wise 858	

correlation magnitude (r = -.07; p =.69) in the task data. The observed between-trial association 859	

in the empirical data may thus suggest an intrinsic coupling of amplitude and duration as joint 860	

representations of a rhythmic mode over and above the abundance underestimation at low 861	

overall SNRs. 862	

In sum, these results strongly caution against the interpretation of duration measures as 863	

a ‘pure’ duration metric that is independent from rhythmic power, especially at low levels of 864	

SNR. The strong within-subject coupling may however also indicate an intrinsic coupling 865	

between the strength and duration of neural synchrony.   866	

 867	



RUNNING	HEAD:	SINGLE-TRIAL	CHARACTERIZATION	OF	NEURAL	RHYTHMS	

	 34	

 868	
Figure 9: Schematic of the potential interdependence of rhythmic SNR and abundance. Low 869	

SNR may cause the detection of shorter supra-threshold power periods with constrained 870	

amplitude ranges, whereas prolonged periods may exceed the stationary threshold when the 871	

rhythmic signal is clearly separated from the background. 872	

 873	

Finally, given the strong dependence of accurate duration estimates on sufficient 874	

rhythmic power, we investigated how the differences in rhythmicity affect the single-trial 875	

estimation of another characteristic, namely the individual alpha frequency (IAF) that generally 876	

shows high temporal stability (i.e., trait-qualities) within person at the average level (Grandy, 877	

Werkle-Bergner, Chicherio, Schmiedek, et al., 2013b) We observed a strong negative 878	

association between the estimated rhythmicity and fluctuations in the rhythmic IAF between 879	

trials (Figure 10A). That is, for subjects with pervasive alpha rhythms, IAF estimates were 880	

reliably stable across trials, whereas frequency estimates varied when rhythmicity was low. 881	

Notably a qualitatively and quantitatively similar association was observed in simulations with 882	

a stationary alpha frequency (black lines in Figure 10), suggesting that such variation may be 883	

artefactual. As lower abundance implies a smaller number of samples from which the IAF is 884	

estimated, this effect could amount to a sampling confound. However, we observed a similar 885	

link between overall SNR and IAF variability when the latter was estimated across all 886	

timepoints in a trial (Figure 10B). Again, simulations with stationary 10 Hz rhythms gave rise 887	

to similar results, suggesting that estimated frequency fluctuations can arise (at least in part) 888	

from the absence of clear rhythmicity. Hence, even when the IAF is intra-individually stable, 889	

its moment-to-moment estimation may induce variability when the rhythms are not clearly 890	

present. 891	

 892	
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 893	
Figure 10: Trial-by-trial IAF variability is associated with sparse rhythmicity. (A) Individual 894	

alpha frequency (IAF) precision across trials is related to abundance. Lower individual 895	

abundance estimates are associated with increased across-trial IAF variability. (B) This 896	

relationship also exists when considering overall SNR and IAF estimates from across the whole 897	

trial. Superimposed black lines show the 6th order polynomial fit for simulation results 898	

encompassing varying rhythm durations and amplitudes. Empirically estimated frequency 899	

variability is quantitatively similar to the bias observed at low SNRs in the simulated data. 900	

 901	

Combined, these results suggest that the efficacy of an accurate single-trial 902	

characterization of neural rhythms relies on sufficient individual rhythmicity and can not only 903	

constrain the validity of duration estimates, but broadly affect a range of rhythm characteristics 904	

that can be inferred from single trials. 905	

 906	

3.4 Exemplary benefits of single-trial rhythm detection: dissociation of 1/f slope and 907	

rhythmicity; rhythm-conditional spectra; characterizing sustained rhythms and transients 908	

 909	

From the joint assessment of detection performance in simulated and empirical data, it 910	

follows that low SNR constitutes a severe challenge for single trial rhythm characterization. 911	

However, while the magnitude of rhythmicity at the single trial level constrains the detectability 912	

of rhythms, abundance represents a lower bound on rhythmic duration due to eBOSC’s high 913	

specificity. This allows the interpretation of rhythm-related metrics for those time points where 914	

rhythmicity is indicated, leading to tangible benefits over standard analyses. In this section, we 915	

present multiple proof-of-concept use cases of such benefits. 916	

 917	

A B
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 918	
Figure 11: eBOSC uncouples spatially varying topographies of rhythmic and arrhythmic power 919	

during working memory retention. Asterisks mark the channels that were selected for the 920	

spectra on the right. The topographies are grand averages from the retention phase of the 921	

Sternberg task across Sessions 1, 7 and 8. 922	

 923	

A considerable problem in standard narrowband power analyses is the superposition of 924	

rhythmicity on top of a scale-free 1/f background, effectively mixing the two components in 925	

traditional power estimates (e.g. Haller et al., 2018). In contrast, eBOSC inherently uncouples 926	

the two signals via explicit modelling of the arrhythmic background. Figure 11 presents a 927	

comparison between the standard narrowband estimate and eBOSC’s background and 928	

rhythmicity metrics for the alpha band during working memory retention. While high 929	

narrowband power is observed in frontal and parietal clusters, eBOSC differentiated a frontal 930	

1/f component and a posterior-occipital rhythm cluster. Identical comparisons within multiple 931	

low-frequency ranges suggest the separation of a stationary 1/f topography and spatially 932	

varying superpositions of rhythmicity (Supplementary Figure 4). This highlights a successful 933	

separation of the scale-free slope magnitude from rhythmicity across multiple frequencies, even 934	

when topographies are partially overlapping as in the case of theta. 935	

 936	
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 937	
Figure 12: Time-wise indication of rhythmicity affords the analysis of rhythm-conditional 938	

spectra. (A) Comparison of rhythm-conditional spectra with the standard overall spectrum 939	

during the memory retention phase. Rhythm-conditional spectra are created by comparing 940	

spectra from time-points where a rhythm in the respective frequency range has been indicated 941	

with those where no rhythm was present. Notably, this indicates rhythmic peaks at the 942	

frequencies of interest that are not observed in the overall spectrum (e.g. theta, beta) due to the 943	

prevalence of non-rhythmic events. Simultaneous peaks beyond the target frequencies indicate 944	

cross-spectral coupling. Note that these spectra also suggest sub-clusters of frequencies (e.g. an 945	

apparent split of the ‘theta-conditional’ spectrum into a putative delta and theta component). 946	

Data are averaged across sessions, loads, subjects and channels. (B) Abundance topographies 947	

of the observed rhythm-conditional spectral peaks. 948	

A

B
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 949	

Furthermore, the presence of a rhythm is a fundamental assumption for the 950	

interpretation of rhythm-related metrics, i.e., like phase (Aru et al., 2015). This is often verified 951	

by observing a spectral peak at the frequency of interest. However, sparse single-trial 952	

rhythmicity may not produce an overt peak in the average spectrum due to the high prevalence 953	

of low-power arrhythmic content. Crucially, knowledge about the temporal occurrence of 954	

rhythms in the ongoing signal can be used to investigate the spectral content that is specific to 955	

those time points, thereby creating ‘rhythm-conditional spectra’. Figure 12A highlights that 956	

such rhythm-conditional spectra can recover spectral peaks for multiple canonical frequency 957	

bands, even when no clear peak is observed in the grand average spectrum. This showcases that 958	

a focus on detected rhythmic time points allows the interpretation of rhythm-related parameters. 959	

Abundance topographies for the different peaks observed in the rhythm-conditional spectra, 960	

were in line with the canonical separation of these frequencies in the literature (Figure 12B). 961	

Notably, while some rhythmicity was identified in higher frequency ranges, the associated 962	

abundance topographies suggests a muscular generator rather than a neural origin for these 963	

events. 964	

 965	

 966	
Figure 13: Arrhythmic duration linearly biases traditional power estimates during both rest (A) 967	

and task (B) states. The relative gain in alpha amplitudes from global intervals to eBOSC’s 968	

rhythmic periods (see schematic in Figure 1A and Figure 3A) increases with the arrhythmic 969	

duration in the investigated period. That is, if high arrhythmic duration was indicated, a focus 970	

on rhythmic periods strongly increased amplitudes by excluding the pervasive low-amplitude 971	

arrhythmic periods. In contrast, amplitude estimates were similar when arrhythmicity was low 972	

and hence rhythm-unspecific metrics contained little arrhythmic bias. Dots represent individual 973	
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condition averages during the resting state. Amplitude gain is calculated as the relative change 974	

in rhythmic amplitude from the unspecific ‘overall’ amplitude (i.e., (rhythmic amplitude-975	

overall amplitude)/rhythmic amplitude). For both rhythmic and arrhythmic amplitudes, only 976	

the amplitude above the background estimate was considered. 977	

 978	

Related to the recovery of spectral amplitudes from ‘overall amplitudes’, a central 979	

prediction of the present work was that the change from overall to rhythmic amplitudes (i.e., 980	

rhythm-specific gain; see Figure 3 for a schematic) scales with the presence of arrhythmic 981	

signal. Stated differently, if most of the overall signal is rhythmic, the difference between 982	

overall and rhythm-specific amplitude estimates should be minimal. Conversely, if the overall 983	

signal consists largely of arrhythmicity, rhythm-specific amplitude estimates should strongly 984	

increase from their unspecific counterparts. In line with these expectations, we observed a 985	

positive, highly linear, relationship between a subject’s estimated duration of arrhythmicity and 986	

the rhythm-specific amplitude gain (Figure 13). Thus, for subjects with short rhythmicity, 987	

rhythm-specific amplitudes were strongly increased from overall amplitudes, whereas 988	

differences were minute for subjects with prolonged rhythmicity. Note however that in the case 989	

of inter-individual collinearity of amplitude and abundance (as is observed in the present data) 990	

the rhythm-specific gains are unlikely to change the rank-order of subjects as the relative gain 991	

will not only be proportional to the abundance, but due to the collinearity also to the original 992	

amplitude. While such collinearity was high in the alpha band, decreased amplitude-abundance 993	

relationships were observed for other canonical frequency bands (Supplementary Figure 5), 994	

where such ‘amplitude recovery’ may have the most immediate benefits. 995	

 996	
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 997	
Figure 14: eBOSC provides a varied characterization of duration-specific frequency content, 998	

separating sustained rhythmicity (A) from transients (B). Here, episodes with a mean frequency 999	

between 8 and 15 Hz were post-hoc sorted by falling below or above a 3-cycle duration 1000	

threshold. For each index, estimates were averaged across all episodes at any time point, 1001	

followed by averaging across sessions and subjects. Note that all indices are based on episodes 1002	

that fulfil the power threshold for rhythmicity. There are notable differences (e.g., an increased 1003	

prevalence of transient events upon stimulus onset: B1 vs. A1). Furthermore, we observe 1004	

A1 B1

B2

B3

B4

A2

A3

A4

Rhythmic episodes (>= 3 cycles) Burst episodes (< 3 cycles) 

C
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frequency increases during the response period, which may relate to motor suppression. (C) 1005	

Whereas SNR posed a major constraint on the identification of sustained rhythmicity, it did not 1006	

constrain the number of detected transients, suggesting separable sources. 1007	

 1008	

Furthermore, eBOSC’s creation of continuous temporal ’episodes’ affords a 1009	

characterization of rhythmic and transient episodes with significant spectral power in the 1010	

absence of an a priori duration requirement. Using the traditional 3-cycle threshold as a post-1011	

hoc criterion, we observed differences in the temporal prevalence of transient events and 1012	

sustained rhythms, with a larger number of transient events following stimulus onsets, in line 1013	

with the observations made for rhythmic vs. arrhythmic power (Figure 6A6). In addition, these 1014	

episodes can be further characterized in terms of their average cycle duration (Figure 14A2, 1015	

Figure 14B2) and frequency (Figure 14A3, Figure 14B3). The latter exhibits transient increases 1016	

around the response period, likely related to motor inhibition. Notably, while overall SNR 1017	

constrains the detection of sustained rhythmicity (e.g., Figure 4A, 7A), the same was not 1018	

observed for the number of transient episodes (Figure 14C), thereby suggesting differential 1019	

origins of these signal contributions. 1020	
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 1021	
Figure 15: On- and offsets of rhythmic episodes characterize ‘rhythm-evoked’ effects. (A) 1022	

Schematic alignment of data to the on- and offsets of rhythmic periods. (B) Rhythm on- and 1023	

offsets are marked by sudden power shifts at their respective frequency. Individual normalized 1024	

wavelet power shows a strong increase at the rhythmic onset (B1) and a decrease once rhythmic 1025	

episodes end (B2). The difference between on- and offset-related power summarizes the evoked 1026	

effect of rhythmic episodes on ongoing power (B3). Power was extracted within a fixed peri-1027	

onset and peri-offset window for all channels where episodes were detected and subsequently 1028	

averaged across episodes, loads and channels. Finally, the individual averages were z-1029	

normalized. The rightmost plots show the grand average across subjects. Data are from 1030	

extended periods of the Sternberg task in Session 1. 1031	

 1032	

Finally, the temporal specificity of spectral episodes also enables a characterization of 1033	

rhythm-‘evoked’ events. Whereas an assessment of evoked effects has thus far only been 1034	

possible with regard to external event markers, the indication of rhythm on- and offsets allows 1035	
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an investigation of concurrent changes that are time-locked to rhythmic events (Figure 15A). 1036	

Here, we exemplarily show that the on- and offsets of rhythmic episodes are associated with 1037	

concurrent power increases and decreases respectively (Figure 15B), adding further evidence 1038	

for the high temporal specificity of indicated on- and offsets of rhythmic episodes. 1039	

In sum, these proof-of-concept applications suggest that explicit rhythm detection may 1040	

provide tangible benefits over traditional narrowband analyses due to its specific separation of 1041	

rhythmic and arrhythmic periods, despite the high collinearity of abundance and power that we 1042	

observed in the alpha band.  1043	

 1044	

4. Discussion 1045	

 1046	

In the present manuscript, we explored the feasibility of characterizing neural rhythms 1047	

at the level of single trials. To achieve this goal, we extended a previously published rhythm 1048	

detection method, BOSC (Whitten et al., 2011). Based on simulations we demonstrate that our 1049	

extended BOSC (eBOSC) algorithm performs well and increases detection specificity. 1050	

Crucially, the reliance on robust regression in conjunction with removal of the rhythmic power 1051	

band effectively decoupled estimation of the noise background from the rhythmic signal 1052	

component (as reflected in the divergent associations with rhythmicity estimates). In real data, 1053	

we can successfully separate rhythmic and arrhythmic, sometimes transient components, and 1054	

further characterize e.g., their amplitude, duration and frequency. In total, single-trial 1055	

characterization of neural rhythms appears promising for improving a mechanistic 1056	

understanding of rhythmic processing modes during rest and task.  1057	

However, the simulations also reveal challenges for accurate rhythm characterization in 1058	

that the abundance estimates clearly depend on rhythmic power. The comparison to a phase-1059	

based rhythm detection further suggests that this a general limitation independent of the chosen 1060	

detection algorithm. Below, we will discuss the potential and challenges of single-trial rhythm 1061	

detection in more detail. 1062	

 1063	

4.1 The utility and potential of rhythm detection 1064	

 1065	

 Single-trial analyses are rapidly gaining importance (Jones, 2016; Stokes & Spaak, 1066	

2016), in part due to a debate regarding the sustained vs. transient nature of neural rhythms that 1067	

cannot be resolved at the level of data averages (Jones, 2016; van Ede et al., 2018). In short, 1068	

due to the non-negative nature of power estimates, time-varying transient power increases may 1069	



RUNNING	HEAD:	SINGLE-TRIAL	CHARACTERIZATION	OF	NEURAL	RHYTHMS	

	 44	

be represented as sustained power upon averaging, indicating an ambiguity between the 1070	

duration and power of rhythmic events (cf., Figure 3B). Importantly, sustained and transient 1071	

events may differ in their neurobiological origin (Sherman et al., 2016), indicating high 1072	

theoretical relevance for their differentiation. Moreover, many analysis procedures, such as 1073	

phase-based functional connectivity, assume that estimates are directly linked to the presence 1074	

of rhythmicity, therefore leading to interpretational difficulties when it is unclear whether this 1075	

condition is met (Aru et al., 2015; Muthukumaraswamy & Singh, 2011). Clear identification of 1076	

rhythmic time periods in single trials is necessary to resolve these issues. In the current study, 1077	

we extended a state-of-the-art rhythm detection algorithm, and systematically investigated its 1078	

ability to characterize the power and duration of neural alpha rhythms at the single-trial level 1079	

in scalp EEG recordings. 1080	

While the standard BOSC method provides a sensible detection of rhythmic activity in 1081	

empirical data (Caplan et al., 2015; Whitten et al., 2011), its’ ability to detect rhythmicity and 1082	

disambiguate rhythmic power and duration has not yet been investigated systematically. 1083	

Furthermore, we introduced multiple changes that aimed to create rhythmic episodes with a 1084	

time-point-wise indication of rhythmicity. For these reasons, we assessed the performance of 1085	

both algorithms in simulations. We observed that both algorithms were able to approximate the 1086	

duration of rhythmicity across a large range of simulated amplitudes and durations. However, 1087	

standard BOSC systematically overestimated rhythmic duration (Figure 4A). Furthermore, we 1088	

observed a bias of rhythmicity on the estimated background (Figure 4C) as also noted by Haller 1089	

et al. (2018). In contrast, eBOSC accounts for these problems by introducing multiple changes: 1090	

First, by excluding the rhythmic peak prior to fitting the arrhythmic background, eBOSC 1091	

decreased the bias of narrow-band rhythmicity on the background fit (Figure 4C), thereby 1092	

effectively uncoupling the estimated background amplitude from the indicated rhythmicity 1093	

(Figure 7C, 8B). Second, the post-processing of detected segments provided a more specific 1094	

characterization of neural rhythms compared to standard BOSC (Figures 4). In particular, 1095	

accounting for the temporal extension of the wavelet (Figure 2) increased the temporal 1096	

specificity of rhythm detection as indicated by a better adherence to the a priori duration 1097	

threshold along with more precise duration estimates. In contrast to the high specificity, the 1098	

algorithm did trade off sensitivity, leading to sensitivity losses especially at low SNR. The 1099	

dependence on accurate duration estimation on sufficient SNR more generally caused problems 1100	

for empirically disentangling rhythmic power and duration that we discuss in more detail in 1101	

section 4.2. In sum, the simulations highlight that eBOSC provides a sensible differentiation of 1102	

rhythmic and arrhythmic time points as well as accurate duration estimates, but also highlight 1103	
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challenges that arise from sensitivity problems when the magnitude of rhythms is low. In 1104	

empirical data, eBOSC likewise led to a sensible separation of rhythmic from arrhythmic 1105	

topographies (Figure 5A, Figure 11, Supplementary Figure 4) and time courses, both at the 1106	

average (Figure 6A) and the single-trial level (Figure 6B). This suggests a sensible separation 1107	

of rhythmic and arrhythmic time points also in empirical scenarios. 1108	

The specific separation of rhythmic and arrhythmic time points has multiple immediate 1109	

benefits that we validated using empirical data from resting and task states. First, eBOSC 1110	

separates the scale-free background from superimposed rhythmicity in a principled manner. 1111	

The theoretical importance of such separation has previously been highlighted (Haller et al., 1112	

2018), as narrow-band estimates traditionally confound the two signals. Here, we show that 1113	

such a separation empirically produces different topographies for the arrhythmic background 1114	

and the superimposed rhythmicity (Figure 11 and Supplementary Figure 4). In line with these 1115	

findings, Caplan et al. (2015) described a rhythmic occipital alpha topography, whereas overall 1116	

power included an additional anterior component across multiple lower frequencies. While that 1117	

study did not plot topographies for the background estimates, our study suggests that this frontal 1118	

component is captured by the background magnitude. This provides convergent evidence for a 1119	

principled separation of rhythmic and arrhythmic spectral content which may be treated as a 1120	

signal of interest in itself (Buzsáki & Mizuseki, 2014; He et al., 2010). 1121	

The separation of these signal sources at single time points can further be used to 1122	

summarize the rhythmic single-trial content via rhythm-conditional spectra (Figure 12). 1123	

Crucially, such a focus on rhythmic periods resolves biases from arrhythmic periods in the 1124	

segments of interest. In line with our hypotheses, simulations (Figure 3B) and empirical data 1125	

(Figure 13) indicate that arrhythmic episodes in the analysed segment bias overall power 1126	

estimates relative to the extent of their duration. Conversely, a focus on rhythmic periods 1127	

induces the most pronounced amplitude gains when rhythmic periods are sparse. This is in line 1128	

with previous observations by Cole & Voytek (2018), showing dissociations between power 1129	

and frequency estimates when considering ‘rhythmic’ vs. unspecific periods and extend those 1130	

observations by showing a strong linear dependence between the rhythm-specific change in 1131	

estimates and the duration of arrhythmic bias (Figure 13). 1132	

Moreover, by allowing a post-hoc duration threshold, eBOSC can disentangle transient 1133	

and sustained events in a principled manner (Figure 14). This may provide new insights into 1134	

the contribution of different biophysical signal generators (Sherman et al., 2016) to observed 1135	

neural dynamics and aid the characterization of these processes. Such characterization includes 1136	

multiple parameters, such as the frequency of rhythmic episodes, their duration, their amplitude 1137	
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and other indices that we did not consider here (e.g., instantaneous phase, time domain shape). 1138	

Here, we observed an increased number of alpha transients following stimulus onsets, and more 1139	

sustained rhythms when no stimulus was presented (Figure 6A, Figure 14). In line with these 1140	

observations, Peterson & Voytek (2017) recently proposed alpha ‘bursts’ to increase visual gain 1141	

during stimulus onsets and contrasted this role with decreased cortical processing during 1142	

sustained alpha rhythms. Our data supports such a distinction between sustained and transient 1143	

events, although it should be noted that the present transients likely reflect time-domain 1144	

deflections that are resolved at alpha frequency and may therefore not directly relate to the 1145	

‘rhythmic bursts’ proposed by Peterson & Voytek (2017). Note that the reported duration of 1146	

‘burst’ events in the literature is still diverse, often exceeding the 3-cycle threshold used here 1147	

(Peterson & Voytek, 2017). In contrast to eBOSC however, previous work has not accounted 1148	

for the impact of wavelet duration. It is thus conceivable that power transients that were 1149	

previously characterized as 3 cycles or longer are actually shorter after correcting for the impact 1150	

of wavelet convolution, as is done in the current eBOSC implementation (Figure 2). This 1151	

temporal specificity also allows an indication of rhythm-evoked changes, here exemplified with 1152	

respect to rhythm-evoked power changes (Figure 15). We observed a precise and systematic 1153	

time-locking of power changes to the on- and offset of detected rhythmic episodes. This further 1154	

validates the detection assumptions of the eBOSC method (i.e. significant power increases from 1155	

the background), and highlights the temporal specificity of eBOSC’s rhythmic episodes.  1156	

In total, eBOSC’s single-trial characterization of neural rhythms provides multiple 1157	

immediate benefits over traditional average-based analyses temporally precise indication of 1158	

rhythmic and arrhythmic periods. It thus appears promising for improving a mechanistic 1159	

understanding of rhythmic processing modes during rest and task.  1160	

 1161	

4.2 Single-trial detection of rhythms: rhythmic SNR as a central challenge 1162	

 1163	

The aforementioned examples highlight the utility of differentiating rhythmic and 1164	

arrhythmic periods in the ongoing signal. However, the simulations also indicated problems to 1165	

accurately do so when rhythmic power is low. That is, the recognition of rhythms was more 1166	

difficult at low levels of SNR, leading to problems with their further characterization. In 1167	

particular, our simulations suggest that estimates of the duration (Figure 7A) and frequency 1168	

stationarity (Figure 10) increasingly deviate from the simulated parameters as the SNR 1169	

decreases. Changes in instantaneous alpha frequency as a function of cognitive demands have 1170	

been theorized and reported in the literature (Haegens, Cousijn, Wallis, Harrison, & Nobre, 1171	
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2014; Herrmann, Murray, Ionta, Hutt, & Lefebvre, 2016; Mierau, Klimesch, & Lefebvre, 2017; 1172	

Samaha & Postle, 2015; Wutz, Melcher, & Samaha, 2018), with varying degrees of control for 1173	

power differences between conditions and individuals. Our empirical analyses suggest an 1174	

increased trial-by-trial variability of individual alpha frequency estimates as SNR decreases 1175	

(Figure 10). Meanwhile, simulations suggest that such increased variance - both estimated 1176	

within indicated rhythmic periods and across whole trials – may result from lower SNR. While 1177	

our results do not negate the possibility of real frequency variations of the alpha rhythm with 1178	

changes in task load, they emphasize the importance of controlling for the presence of rhythms, 1179	

mirroring considerations for the interpretation of phase estimates (Muthukumaraswamy & 1180	

Singh, 2011) and amplitudes. This exemplifies how stable inter-individual differences in 1181	

rhythmicity (whether due to a real absence of rhythms or prevalent measurement noise; e.g., 1182	

distance between source and sensor; head shape; skull thickness) can affect a variety of ‘meta‘-1183	

indices (like phase, frequency, duration) whose estimation accuracy relies on apparent 1184	

rhythmicity.  1185	

The challenges for characterizing rhythms with low rhythmic power also apply to the 1186	

estimated rhythmic duration, where the issue is particularly challenging in the face of legitimate 1187	

interest regarding the relationship between the power and duration of rhythmic events. In 1188	

particular, sensitivity problems at low rhythmic magnitudes challenge the ability to empirically 1189	

disambiguate rhythmic duration and power, as it makes the former dependent on the latter in 1190	

the presence of noise (e.g., Figure 3B). Crucially, a tight link between these parameters was 1191	

also observed in the empirical data. During both rest and task states, we observed gradual and 1192	

stable inter-individual differences in the estimated extent of rhythmicity that were most strongly 1193	

related to the overall SNR in ranges with a pronounced sensitivity loss in simulations (see 1194	

Figure 5A black line). Given the observed detection problems in our simulations, this 1195	

ambiguates whether low empirical duration estimates indicate temporally constrained rhythms 1196	

or estimation problems. Conceptually, this relates to the difference between lower SNR subjects 1197	

having (A) low power, transient alpha engagement or (B) low power, sustained alpha 1198	

engagement that was too faint to be detected (i.e., sensitivity problems). While the second was 1199	

the case in the simulations, the absence of a ground truth does not allow us to resolve this 1200	

ambiguity in empirical data. 1201	

Empirically, multiple results suggest that the low duration estimates at low SNRs did 1202	

not exclusively arise from idiosyncrasies of our algorithm. Notably, inter-individual differences 1203	

in eBOSC’s abundance measure were strongly correlated with standard BOSC’s Pepisode 1204	

measure (Whitten et al., 2011) as well as the phase-based lagged coherence index (Fransen et 1205	
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al., 2015), thus showing high convergence with different state-of-the-art techniques (Figure 1206	

7D). Furthermore, detection performance was visually satisfying in single trials given 1207	

observable task-locked rhythm dynamics for rhythmic, but not arrhythmic periods (Figure 6B). 1208	

Moreover, the observed relationship between amplitude gain and abundance suggests a 1209	

successful exclusion of (low-power) arrhythmic episodes at the individual level (Figure 13). 1210	

These observations indicate that low SNR conditions present a fundamental challenge to single-1211	

trial characterization across different methods. The convergence between power- and phase-1212	

based definitions of rhythmicity also indicates that rhythmicity can exhaustively be described 1213	

by the spectral peak above the background, in line with our observations regarding rhythm-1214	

conditional spectra (Figure 12). 1215	

The observation of strong between-person coupling as a function of SNR suggests that 1216	

such sensitivity limitations may account for the inter-individual amplitude-abundance 1217	

associations. However, we also observed a positive association between subjects with high 1218	

alpha SNR. Likewise, we observed positive associations between abundance and rhythmic 1219	

SNR, but not the background estimate at the within-subject level (Figure 6). While trial-wise 1220	

coupling was also present in our simulations, the magnitude of these relationships were lower 1221	

at high SNR (Figure 3E). Conversely, in empirical data, the within-subject association did not 1222	

vary in magnitude as a function of the individual SNR. Hence, separate sources may contribute 1223	

to a coupling of rhythmic amplitude and abundance: a methods-induced association in low SNR 1224	

ranges and an intrinsic coupling between rhythmic strength and duration as a joint 1225	

representation of rhythmic synchrony. Notably, empirical within-subject coupling between 1226	

rhythmic amplitude and duration was previously described for LFP beta bursts in the 1227	

subthalamic nucleus (Tinkhauser et al., 2017), with both parameters being sensitive to a drug 1228	

manipulation. This association was interpreted as a “progressive synchronization of inputs over 1229	

time” (Tinkhauser et al., 2017; p. 2978). Due to the absence of a dissociation of these 1230	

parameters, it remains unclear whether the two measures make independent contributions or 1231	

whether they can be conceptualized as a single underlying latent ‘rhythmicity’ index. To resolve 1232	

this ambiguity, clear dissociations of amplitude and duration estimates in data with high 1233	

rhythmic SNR are necessary. Notably, potential dissociations between the individual power and 1234	

duration of beta events has been suggested by Shin et al. (2017), who described differential 1235	

relationships between event number, power and duration to mean power and behaviour.  1236	

The high collinearity between overall amplitude and abundance may be surprising given 1237	

evidence of their potential dissociation in the case of beta bursts (where overall abundance is 1238	

low, but burst amplitudes are high) (Lundqvist et al., 2016; Sherman et al., 2016; Shin et al., 1239	
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2017). In line with this notion, Fransen et al. (2015) reported an increased sensitivity for central 1240	

beta rhythmicity using the lagged coherence duration index compared with overall power. It 1241	

may thus be that the alpha range is an outlier in this regard due to the presence of relatively 1242	

sustained rhythmicity. A frequency-wise comparison of the between- and within-subject 1243	

collinearity between amplitude and abundance collinearity indicated a particularly high overlap 1244	

for the alpha range (Supplementary Figure 5) with relatively lower coupling for delta, theta and 1245	

beta. Whether this is due to their lower rhythmicity in the current data or due to systematic 1246	

differences between frequencies remains an open question and requires data with more 1247	

prominent rhythmicity in these bands. 1248	

The strong collinearity of amplitude and duration estimates also questions the successful 1249	

disambiguation of the two indices in empirical data and more generally the interpretation of 1250	

duration as an independent index. In cases where such metrics only serve as a sensitive and/or 1251	

specific replacement for power (Caplan et al., 2015; Fransen et al., 2015) this may not be 1252	

problematic, but care has to be taken in interpreting available duration indices as power-1253	

independent characteristics of rhythmic episodes. An independent duration index becomes 1254	

increasingly important however to assess whether rhythms are stationary or transient. For this 1255	

purpose, both amplitude thresholding and phase-progression criteria have been proposed (Cole 1256	

& Voytek, 2018; Peterson & Voytek, 2017; Sherman et al., 2016; van Ede et al., 2018; Vidaurre, 1257	

Myers, Stokes, Nobre, & Woolrich, 2018). Here, we show that both methods arrive at similar 1258	

conclusions regarding individual rhythmic duration and that the mentioned challenges are 1259	

therefore applicable to both approaches. As an alternative to threshold-based methods, Van Ede 1260	

et al. (2018) propose methods based on e.g., Hidden Markov Models (Vidaurre et al., 2018; 1261	

2016) for the estimation of rhythmic duration. These approaches are interesting as the definition 1262	

of states to be inferred in single trials is based on individual (or group) averages, while the 1263	

multivariate nature of the signals across channels is also taken into account. It is a viable 1264	

question for future investigations whether such approaches can adequately characterize the 1265	

duration of rhythmic states in scenarios where the present methods fail.  1266	

Likewise, single-trial properties are gaining relevance in decoding analyses that 1267	

traditionally operate with few if any trial averages. Depending on whether the relevant feature 1268	

vectors include neural rhythms, differences in rhythmicity may therefore also affect decoding 1269	

feasibility. Recently, large inter-individual differences in decoding performance have been 1270	

observed (Westner, Dalal, Hanslmayr, & Staudigl, 2018), and it remains an intriguing question 1271	

whether such decoding efficacy covaries with the extent of rhythmicity. By characterizing a 1272	

recording’s rhythmicity, eBOSC provides a tool to investigate such putative links.  1273	
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 1274	

4.3 Comparison to other single-trial detection algorithms & limitations 1275	

 1276	

The BOSC-family of methods is conceptually similar to other methods that are currently 1277	

used to identify and describe spectral events in single trials. These methods share the underlying 1278	

principle of identifying rhythmic events based on momentary power increases relative to an 1279	

average baseline. Such detection is most common regarding transient beta bursts, for which a 1280	

beta-specific power threshold is often defined. For example, Sherman et al. (2016) identified 1281	

transient beta events based on the highest power within the beta range, i.e., without an explicit 1282	

threshold. Shin et al. (2017) introduced a beta-specific power threshold based on average pre-1283	

stimulus power. Similarly, Feingold et al. (2015) defined beta events as exceeding 1.5/3 times 1284	

the median beta power of that channel, while Tinkhauser et al. (2017) applied a 75th percentile 1285	

threshold to beta amplitudes. These approaches therefore use a spectrally local power criterion, 1286	

but no duration threshold. Most closely related to the BOSC-family is the MODAL method by 1287	

Watrous et al. (2018), which similarly uses a robust fit of the 1/f spectrum to detect rhythmic 1288	

events in continuous data and then further derives frequency and phase estimates for those 1289	

rhythmic periods. This is conceptually similar to eBOSC’s definition as ‘statistically 1290	

significant’ deviations in power from the 1/f background spectrum, except for the absence of a 1291	

dedicated power or duration threshold. However, all of the above methods share the 1292	

fundamental assumption of a momentary power deviation from a frequency-specific 1293	

‘background’, with varying implementations of a 1/f model assumption. Such assumption can 1294	

be useful to avoid a bias of rhythmic content on the power threshold (as a spectrally local power 1295	

threshold depends on the average magnitude of band-limited rhythmicity, i.e., arrhythmic + 1296	

rhythmic power). Removing the rhythmic peak prior to background modelling helps to avoid 1297	

such bias (Figure 4C). The eBOSC method thereby provides a principled approach for the 1298	

detection of single-trial events across frequencies (as shown in Figure 12). 1299	

A systematic and general removal of spectral peaks remains a challenge for adequate 1300	

background estimates. In the current application, we exclusively removed alpha-band power 1301	

prior to performing the background fit. While the alpha rhythm produced the largest spectral 1302	

peak in our data (see Supplementary Figure 2), this should not be understood as a fixed 1303	

parameter of the eBOSC approach, as other rhythmic peaks may bias the estimation of the 1304	

background spectrum depending on the recording’s specifics (e.g., type, location etc.). We 1305	
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perceive the need to remove rhythmic peaks prior to background fitting as a general one4, as 1306	

residual spectral peaks bias detection efficacy across the entire spectrum via misfits of the 1307	

background intercept and/or slope. In particular, rhythmic peaks at higher frequencies 1308	

disproportionally increase the background estimate at lower frequencies due to the fitting in 1309	

logarithmic space. Thus, a principled removal of any spectral peaks in the average spectrum is 1310	

necessary. Recently, Haller et al. (2018) proposed a principled approach for the removal of 1311	

rhythmic spectral peaks, which may afford rhythm-unbiased background estimates without 1312	

requiring priors regarding the location of spectral peaks. It may thus represent a useful pre-1313	

processing step for further applications. Regarding the present data, we anticipate no qualitative 1314	

changes compared to our alpha exclusion approach as (a) we did not observe an association 1315	

between background and rhythmicity estimates (Figure 7, 8), and the signal was dominated by 1316	

an alpha frequency peak, which consistently exceeded eBOSC’s power threshold 1317	

(Supplementary Figure 2). 1318	

Our results further question the adequacy of a stationary power threshold (as 1319	

traditionally employed and used here) for assessing the amplitude-duration relationship 1320	

between individual rhythmic episodes. In our empirical analyses, the rhythmic SNR, reflecting 1321	

the deviation of amplitudes during rhythmic periods from the stationary background, was 1322	

consistently most strongly associated with the estimated duration (Figure 7 & 8). While keeping 1323	

the background (and thus the power threshold) stable conforms with the common assumption 1324	

of rhythmicity being captured within a spectral peak deviating from a stationary background 1325	

(Figure 12), it may also exacerbate an amplitude-abundance coupling on a trial-by-trial basis 1326	

(see Figure 9 for a schematic of the assumed association) as ongoing power fluctuations can 1327	

only be explained by changes in the rhythmic and not the arrhythmic power term. Further 1328	

research on dynamic thresholds may shed further light on this issue.  1329	

Another point worth highlighting is that eBOSC operates on wavelet-derived power 1330	

estimates. The specific need for wavelet estimates results from model-based assumptions about 1331	

the time-frequency extension of the wavelet that are used for refining detected rhythmic time 1332	

points (see Figure 2 and section 2.6). Naturally, the choice of wavelet parameters, specifically 1333	

their center frequency and duration, influences the time-frequency representations upon which 1334	

eBOSC operates. Here, we used 6 cycles as the duration parameter, in line with previous work 1335	

with standard BOSC (Caplan et al., 2015; Whitten et al., 2011). In a supplementary analysis, 1336	

																																																								
4	A potential bias is less likely in the case of sporadic rhythmicity that does not produce a 
peak in the average spectrum. In this case, the power of the single-trial events would exceed 
the background estimate that is decreased due to the prevalence of arrhythmic periods.	
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we compared detection performance using a 3 cycle wavelet and found increased accuracy only 1337	

for short rhythmicity, whereas the sensitivity to longer rhythmicity was decreased 1338	

(Supplementary Figure 6). This is consistent with the assumption that wavelet duration 1339	

regulates the trade-off between temporal and spectral specificity, with longer wavelets allowing 1340	

for a finer separation of nearby frequencies at the cost of temporal specificity. Another free 1341	

parameter concerns the choice of center frequencies. In the post-processing procedures, we 1342	

perform a sort of spectral filtering based on the pass-band of the wavelet (Figure 2), which is 1343	

determined by its duration. Resolving rhythms at nearby frequencies thus requires the use of 1344	

wavelets with sufficient frequency resolution, not only with regard to the sampled frequencies, 1345	

but also a sufficient duration of the wavelet. This highlights the dependence of eBOSC outputs 1346	

on the specifics of the wavelet-based transformation from the time into the frequency domain. 1347	

An alternative, parallel approach to characterize ongoing rhythmicity is based on 1348	

characterizing the waveform shape in the time domain, thereby circumventing power analyses 1349	

entirely (Cole & Voytek, 2018). While such an approach is intriguing, further work is needed 1350	

to show which analysis sequence is more fruitful: (a) identifying events in the frequency domain 1351	

and then describing the associated waveform shape in the time domain (e.g., eBOSC) or (b) 1352	

identifying events and characterizing them based on time domain features (e.g., cycle-by-cycle 1353	

analysis). As both procedures operate on the basis of single trials, similar challenges (i.e., 1354	

especially rhythmic SNR) are likely to apply to both approaches. 1355	

 1356	

5. Conclusion 1357	

 1358	

We extended a state-of-the-art rhythm detection method and characterized alpha 1359	

rhythms in simulated, resting and task data at the single trial level. By using simulations, we 1360	

show that rhythm detection can be employed to derive specific estimates of rhythmicity, with 1361	

fine-grained control over its definition, and to reduce the bias of rhythm duration on amplitude 1362	

estimates that commonly exists in standard analysis procedures. However, we also observe 1363	

striking inter-individual differences in the indicated duration of rhythmicity, which for subjects 1364	

with low alpha power may be due to insufficient single-trial rhythmicity. We further show that 1365	

low rhythmicity can lead to biased estimates, in particular underestimated duration and 1366	

increased variability of rhythmic frequency. Given these constraints, we have provided 1367	

examples of eBOSC’s efficacy to characterize rhythms that may prove useful for investigating 1368	

the origin and functional role of neural rhythms in health and disease, and in turn, the current 1369	

study works to establish the foundation for ideographic analyses of neural rhythms. 1370	
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