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ABSTRACT AND KEYWORDS 
 

Purpose 

Biomedical databases combining electronic medical records, phenotypic and genomic data constitute a powerful 

resource for the personalization of treatment. To leverage the wealth of information provided, algorithms are 

required that systematically translate the contained information into treatment recommendations based on 

existing genotype-phenotype associations.  

Methods 

We developed and tested algorithms for translation of pre-existing genotype data of over 44,000 participants of 

the Estonian biobank into pharmacogenetic recommendations. We compared the results obtained by whole 

genome sequencing, whole exome sequencing and genotyping using microarrays, and evaluated the impact of 

pharmacogenetic reporting based on drug prescription statistics in the Nordic countries and Estonia.  

Results 

Our most striking result was that the performance of genotyping arrays is similar to that of whole genome 

sequencing, whereas exome sequencing is not suitable for pharmacogenetic predictions. Interestingly, 99.8% of 

all assessed individuals had a genotype associated with increased risks to at least one medication, and thereby 

the implementation of pharmacogenetic recommendations based on genotyping affects at least 50 daily drug 

doses per 1000 inhabitants. 

Conclusion 

We find that microarrays are a cost-effective solution for creating pre-emptive pharmacogenetic reports, and 

with slight modifications, existing databases can be applied for automated pharmacogenetic decision support for 

clinicians.  
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Pharmacogenetics, Pharmacogenomics, Biobank participants, Pre-emptive pharmacogenetic testing, whole 
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INTRODUCTION 
Genetic variation causing interindividual differences in drug response poses major problems for 

pharmacological therapy and drug development. In the recent decades a plethora of associations between genetic 

variants and treatment efficacy or adverse drug reactions has been identified1. However, the implementation of 

clinical pharmacogenomics is lagging far behind these discoveries2. Fast, accurate and cost-effective genotyping 

of genes involved in drug response is a crucial first step for the implementation of pharmacogenomics in clinical 

care. Ideally, the genotype data should already exist in an individual’s health record at the time when 

personalized treatment is necessary. The currently most widely used genotyping method is the array-based 

interrogation of (candidate) variants. However, due to recent progress in sequencing technologies, Next 

Generation Sequencing (NGS)-based methods, such as whole exome sequencing (WES) and whole genome 

sequencing (WGS) are becoming more prevalent. The advantage of the latter is that sequencing-based methods 

detect rare variants, which have been estimated to account for 30-40% of the functional variability in 

pharmacogenes3. Currently, multiple trials that evaluate the patient benefits of preemptive pharmacogenetic 

genotyping using the different methodologies are being conducted4–6.  

 

For the translation of genetic testing results into treatment recommendations concerted efforts have led to the 

publication of genotype-based guidelines, for which strong evidence links genetic polymorphisms to variability 

in efficacy or risk for adverse reactions7. To account for the effect of allelic variation and haplotypes of genes 

relevant in drug response, the “star” (*) nomenclature system is most widely used8. For most genes covered by 

guidelines from the Clinical Pharmacogenomics Consortium (CPIC), comprehensive information tables have 

been prepared on how to define alleles on the basis of genetic variation, which facilitates the association of 

diplotypes with predicted phenotypes and thus their functional interpretation8,9. A collaborative effort is 

underway to develop a software tool (PharmCAT) for automated conversion of genotype information into CPIC 

guideline recommendations10. 

  

Here, we provide an overview of the challenges and solutions for the translation of genotype and sequence data 

of 11 genes into pharmacogenetic diplotypes and recommendations for drug prescription. We leveraged 

genomic information of 44,448 Estonian Biobank participants genotyped by high density microarrays, WES or 

WGS and derived pharmacogenetic recommendations based on preexisting CPIC guidelines for 32 commonly 

prescribed medications. We find drastic differences in the predicted outcomes across genotyping platforms and 

demonstrate that WGS currently does not provide substantial additional actionable information regarding 

common pharmacogenetic alleles compared to the latest genotyping arrays. Importantly, these recommendations 

can be returned to biobank participants, or incorporated into their health records for the personalization of future 

treatment decisions. Furthermore, our analyses provide guidance for the optimal choice of clinical genotyping 

strategies. 
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MATERIALS AND METHODS 

Overview of genetic data 
The Estonian Biobank is a research-oriented biobank containing longitudinal data and biological samples, 

including DNA, for 5% of the adult population of Estonia. Participants of the biobank have signed a broad 

informed consent which allows the Estonian Genome Center to continuously update their records through 

periodical linking to central electronic health record databases and local hospital information systems11. Of the 

biobank participants, 8,132 have been genotyped using the HumanOmniExpress beadchip (OMNI) and 33,157 

using the Global Screening Array (GSA) from Illumina. Furthermore, WES and WGS data is available for 2,445 

and 2,420 participants, respectively (Figure 1A). Only 1,661 samples (3.7%) had been genotyped on more than 

one platform. 

 

 
Figure 1. Pipeline for extracting pharmacogenetically relevant alleles from existing genotyping data. Panel A 

illustrates the different datasets, their overlap (Venn diagram) and how the data was processed. Panel B zooms into the 

detection of star alleles according to specific definition tables.  
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For whole genome sequencing, DNA samples were prepared using the TruSeq PCR-free kit, and sequenced on 

the Illumina HiSeq X using 150 bp paired-end reads at a mean coverage of 30x. WES samples were prepared 

using the Agilent SureSelect Human All Exon V5+UTRs target capture Kit according to the manufacturer’s 

recommendations, and sequenced on the HiSeq2500 at a mean target coverage of 67x. Sequenced reads were 

aligned against the GRCh37/hg19 version of the human genome reference using BWA-MEM12 v0.7.7; PCR 

duplicates were marked using Picard (http://broadinstitute.github.io/picard) v1.136, and the Genome Analysis 

Toolkit (GATK)13,14 v3.4-46 applied for further processing of BAM files and genotype calling. All insertion-

deletions (indels) in the Variant Call Format (VCF)15 were normalized and multiallelic sites split using bcftools 

(https://samtools.github.io/bcftools/bcftools.html). 

 

Samples were filtered based on high contamination (>5%), high proportion of chimeric alignment (>5%), low 

coverage (<20× for WGS and below mean – 3SD for WES), low call rate for SNVs (<95%), discordance with 

genome-wide array data (>5%) and mismatch between phenotypic and genotypic sex. The following genotypes 

were set to missing: genotype quality <20, read depth >200 for WGS and <8 for WES, allele balance <0.2 or 

>0.8 for heterozygous calls. The GATK’s Variant Quality Score Recalibration (VQSR) metric was used to filter 

variants with a truth sensitivity of 99.8% for SNVs and of 99.9% for indels. Furthermore, variants with 

inbreeding coefficient <-0.3, quality by depth <2 for SNVs and <3 for indels, call rate < 95%, or Hardy-

Weinberg equilibrium (HWE) P-value <1×10-6 were excluded. 

 

A population-specific imputation reference panel16 contains the same subset of WGS individuals, but slightly 

different quality control parameters were used: only unrelated individuals were considered (IBD proportion 

<0.1); we excluded variants with call rate <90%, HWE P-value <1×10-9, multi-allelic variants, and low-

complexity regions17. Finally, WGS data of 2279 Estonians and 1856 Finns were merged, where quality control 

was performed independently for each study. 

 

The genotype calling for the GSA and OMNI arrays was performed using Illumina’s GenomeStudio V2010.3 

software. The genotype calls for rare variants on the GSA array were corrected using the zCall software (version 

May 8th, 2012). After variant calling, the data was filtered using PLINK (v.1.90)18 by sample (call rate >95%, 

no sex mismatches between phenotype and genotype data, heterozygosity < mean +-3 SE) and marker-wise 

(HWE p-value >1×10-6, call rate >95%, and for the GSA array additionally by Illumina GenomeStudio 

GenTrain score >0.6, Cluster Separation Score >0.4). Before the imputation, variants with MAF <1% and C/G 

or T/A polymorphisms as well as indels were removed, as these genotype calls do not allow precise phasing and 

imputation. 

 

The genotype data obtained on both arrays were separately phased using Eagle2 (v. 2.3)19,20 and imputed using 

the BEAGLE (v. 4.1)21 software implementing a joint Estonian and Finnish reference panel described above. 

Imputed genotypes with probabilities lower than 90% were filtered out. To call pharmacogenetic star alleles 

based on the microarray data we used genotyped variants together with imputed variants. In cases where the 

variant was both directly genotyped and imputed, the original genotype call was preferred. As a result of 
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processing the genetic data, genetic information of all samples was converted into a joint VCF, where variant 

positions are aligned against the GRCh37/hg19 human genome reference. 

Pruning of Allele Definition Tables 
To detect star alleles, we initially set out to use entire gene-specific Allele Definition Tables that have been 

prepared by the curators of PharmGKB and the Clinical Pharmacogenetics Implementation Consortium (CPIC) 

(https://www.pharmgkb.org/page/pgxGeneRef). We focused on the 11 clinically important pharmacogenes 

CYP2C19, CYP2C9, CYP2D6, CYP3A5, CYP4F2, DPYD, IFNL3, SLCO1B1, TPMT, UGT1A1 and VKORC1. 

CPIC gene-specific tables of allele definitions, functionality, phenotype and frequency (downloaded on 17 Sep 

2017) were used to first detect the pair of particular alleles for each gene and sample, and then estimate the 

corresponding phenotype. Out of the 356 variants in the CPIC tables used for defining the star alleles of these 

genes, 356 (100%), 307 (86%), 101 (28%) and 31 (9%) could potentially be detected by the WGS, WES, GSA 

and OMNI platforms, correspondingly, if the datasets contained individuals carrying the variants. However, as 

the allele definition tables are extremely large in some cases and are not accompanied with clear rules (e.g. 

decision trees) for prioritizing variants, direct application of the existing tables would result in a high proportion 

of ambiguous calls or no matches. Therefore, we first pruned the allele definition tables manually based on 

scientific evidence for functional effects of the variants. 

 

First, we removed star alleles with unknown function or with unnecessary proxies (mostly suballeles) from 

CYP2C19 (*35), CYP2D6 (68 alleles, mostly suballeles), DPYD (*9A and *9B combined into *9) and 

SLCO1B1 (32 alleles with unknown function), see Table S1 for details. For CYP2C19*2, which is defined by 2 

variants that are in complete LD (r2=1.0), we found that a single variant (rs4244285) is sufficient for its 

detection. Finally, we disregarded CYP2D6 star alleles requiring gene deletions (*5) or duplications (star alleles 

with suffix “xN”) in the genotype and whole exome datasets, because detection of copy numbers of CYP genes 

is limited on these platforms. These filtering steps resulted in 239 variants remaining in the Allele Definition 

Tables. The final number of candidate star alleles that remained for each gene and data source after filtering is 

summarized in Table S1. 

 

As there is no specific Allele Definition Table for typing of HLA alleles, we could not use the same pipeline for 

this region. However, to provide an overview of the relevant functional variability of the HLA region in the 

studied population, we used the SNP2HLA tool22 in the major histocompatibility complex region for the 

detection of HLA variants among individuals with WGS data.   

Pipeline for star allele and phenotype detection and analysis 
For all of the samples we detected their possible star alleles by checking each star allele given in the Allele 

Definition Tables one by one and testing for the presence of defining variants for each allele. As this could 

result in several matching alleles due to missing data at certain positions, we found it reasonable to allow non-

functional alleles to override other alleles. Therefore, we first check for the presence of variants defining non-

functional star alleles only, and if none of these match, we test the remaining star alleles. In ideal cases, only a 

single star allele matched (“single match”) (Figure 1B). In some complex cases, the detected variants 
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correspond to several star alleles (“ambiguous call”). Again, we reasoned that if one of the matching alleles was 

defined as “decreased function”, we let this override “normal function” alleles. Cases where an individual 

carried a combination of variants that did not have any corresponding star allele in the reference table were 

defined as “no match”. 

 

For detection of CYP2D6 large deletions, large duplications, and multiallelic copy number variants (CNV) in 

WGS data we used the Genome STRiP CNV discovery pipeline (version 2.00.1611)23 for 2269 deeply 

sequenced whole genomes. We used estimated information of CYP2D6 CNVs together with our developed 

pipeline for star allele detection to assign CYP2D6 star-allele diplotypes. For detected duplications, we assumed 

an allele of the following order to be duplicated: *2>*1>*4, based on previous duplication frequencies in 

Europeans24.  

 

For each sample, all possible diplotypes were constructed based on detected star alleles. The subsequent 

phenotype calling was based on PharmGKB’s diplotype-to-phenotype mapping tables. 

 

The described pipeline was written as a custom Python script. The calculation part of the haplotype and 

diplotype detection was run in the High Performance Computing Center of the University of Tartu. The results 

of the allele, effect and phenotype detection were analyzed in R25 version 3.2.3 using the following packages: 

dplyr26, reshape227 and ggplot228. 

 

Finally, we compared the obtained phenotype predictions to previously reported allele and phenotype 

frequencies of Caucasians (Europeans + North Americans). For this comparison, each sample was used once – 

WGS data was preferred over WES, GSA and OMNI. As a result, 2,420, 2,356, 33,086 and 6,586 samples were 

used from WGS, WES, GSA and OMNI data correspondingly. The results of 1,661 samples that had been 

sequenced/genotyped by more than a single method are compared in Note S1. For the WGS data, we also 

validated the non-structural star alleles and diplotypes of CYP2D6 using an external tool Astrolabe (previously 

called Constellation)29. Furthermore, we estimated the potential clinical impact of the variants based on drug 

consumption statistics in Estonia (Annual statistical reports of the state agency of medicines), Finland (The 

Social Insurance Institution of Finland), Sweden (The National Board of Health and Welfare of Sweden), 

Denmark (statistics on the total sales of medicines in Denmark) and Norway (Drug Consumption in Norway 

2012-2016). 
 

RESULTS 

Comparison of allele calls across four different genotyping platforms 
We compared the pharmacogenomic predictions for biobank participants genotyped with any of four different 

microarray or sequencing platforms (Figure 1). Using the existing datasets combined with genotype imputation 

and phasing, we identified 100, 64, 61 and 43 different variants using GSA, OMNI, WGS and WES, 

respectively. Note that the larger number of variants in the microarray data is driven by more samples having 
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been genotyped than sequenced. We assessed the imputation accuracy to be extremely high (99.96% matching 

genotype calls), which is described in further detail in Note S1. 

 

Overall, the proportion of calls with no matches is very low (<0.05%) in all datasets. Ambiguous calls were 

slightly more problematic, ranging from 1.60% to 1.77%, except for WGS where 4.78% of the calls were 

ambiguous. This was caused by the co-occurrence of two star alleles of UGT1A1 - *28 (defined by g.175490 

CAT>CATAT, that is not covered by the microarrays and did not pass QC in WES) and *80 (defined by 

rs887829, detected in all datasets). While the variants are defined as separate star alleles in the Allele Definition 

Tables, WGS highlights the high LD between these two variants by detecting both of them in 34.4% cases for 

this gene, resulting in a new *28+80 allele. All remaining ambiguous calls are mainly found in CYP4F2, where 

in addition to *2 and *3 (both defined by single variants) both variants *2+3 are detected in 15.5% of the 

samples. Therefore, an ambiguous call does not necessarily mean a weakness of a genotyping method, but may 

indicate a novel allele instead. 

 

For the remaining 98.0% of the samples, star alleles for each gene were unambiguously detected. Figure 2 A-E 

and Figure 3 A-F show the frequencies of the detected star alleles by genotyping method. The full table of the 

frequencies of the detected alleles, including ambiguous calls and no matches, is provided in Table S2. 

 
 
The figures clearly illustrate that the microarray based methods combined with imputation produce results that 

are very similar to WGS (except for UGT1A1, due to the reason described above). However, WES clearly 

underperforms. This is mostly caused by 11 star alleles that remain undetected due to variants falling outside the 

coding regions (see Table S1 for details), but additionally, CYP2C9*2 and CYP2D6*4 could not be detected 

either, because the defining variants rs1799853 and rs3892097 did not pass QC. 

 

To illustrate the proportion of rare variants detected in the 11 pharmacogenes under study, we assessed the 

frequencies of loss of function (LoF) and missense variants detected by WGS and WES in these genes 

(summary Table S3, full list given in Table S4). Altogether 89% (n=198) of the variants that we identified as 

putatively LoF or missense in the 11 pharmacogenes were rare with MAF <1% and 52% (n=102) of the variants 

were novel.  

Pharmacogenetic phenotype frequencies  
Next, we used the called star alleles to derive actionable phenotypic predictions for all 11 analyzed genes 

(Figure 2 F-J, Figure 3 G-L). All diplotype frequencies are listed in Table S5 and phenotype frequencies in 

Table S6. Similarly to the star allele calling the results are very similar for the different methods, with the 

exception of WES. From the perspective of implementing pharmacogenomics in the clinic, it is most crucial to 

accurately predict high risk phenotypes, i.e. individuals with other than normal drug metabolizing phenotypes 

and therefore require higher or lower dosing of a medication. The fraction of detected high-risk phenotypes for 

each gene and method are illustrated in Figure 4. Again, we observe that WES data is least suitable for 

pharmacogenomics, as a high proportion of high risk phenotypes remain undetected, except for CYP4F2, 

DPYD, SLCO1B1 and TPMT. For CYP3A5, all phenotypes are detected as high-risk by WES, which is 
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obviously incorrect. Therefore, we excluded WES results from the following analyses where we evaluated the 

presence of high risk phenotypes in 42,092 individuals, and found that non-standard dosing information is 

required based on at least one gene for 99.8% of the individuals. 

 

 
Figure 2. Frequencies of predicted alleles and phenotypes by CYP-gene and method. Alleles and phenotypes with 

frequencies below 2% are marked as “Other” for better visualization. 
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Figure 3. Frequencies of predicted alleles and phenotypes by gene and method for non-CYP genes. Alleles and 

phenotypes with frequencies below 2% are marked as “Other” for better visualization. 
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Figure 4. Fraction of high risk phenotypic predictions by gene and method. High risk phenotypes are defined as those 

that differ from normal and unknown phenotypes and would require a different drug dosing or recommendation. 

 

The SNP2HLA tool allowed us to call 6-digit HLA haplotypes in the WGS dataset. Of the four high-risk 

phenotypes of the HLA region covered with CPIC guidelines30–32 we detected HLA-B*57:01, HLA-B*58:01 and 

HLA-A*31:01 alleles with carrier frequencies of  4.7% , 1.4% and 4.7%, respectively (Table S3). Since we were 

only able to call HLA alleles in the WGS data we could not compare the results between the different platforms.  

 
We compared the results with frequencies reported in PharmGKB and by Muir et al 33 (see Table S6 for 

details). In general, the frequencies of the detected alleles and phenotypes correspond to what has been reported 

previously. However, slight differences appear. For instance, there are significantly more CYP2C19 rapid and 

ultrarapid metabolizers among Estonians (30.8% and 7.3%, respectively) compared to other Europeans (26.9% 

and 4.6%, respectively, p-values of one-proportion z-test 1.64x10-72 and 1.53x10-155). In addition, we compared 

the results we obtained for CYP2D6 using our approach vs. a published tool Astrolabe. The same WGS data was 

used as input (2420 samples) for both methods, no structural variant information included. In 98% of the 

samples the detected alleles were identical, the discrepancies were mostly caused by CYP2D6*59, which is 

included in Astrolabe. We excluded this star allele from our candidate list due to sparse information about its 

suggested decreased function24. The overview of the comparison is illustrated in Figure S1. 

Relevance of detected phenotypes 
Based on the dosing guidelines of CPIC, genetic variation in the 11 genes under study are associated with 

response to at least 32 currently prescribed medications (Table S7). CYP2C19 affects the metabolism of drugs 

frequently used in the clinic34, and CPIC dosing guidelines are currently available for 10 active substances of 

these drugs. For this gene, we found that 2.2% of individuals in the studied cohort were poor metabolizers and 

30.8 % and 7.3% rapid or ultrarapid metabolizers, respectively (Table 1). Thus, in total, 40.4% of the 

individuals in the Estonian population may be at risk for unwanted outcome or may need dosing adjustments 

when prescribed any of these 10 drugs. As shown in Table 1, the combined intake of medications associated 

with CYP2C19 ranges from 17.62 - 66.83 DDD/1000 inhabitants per day in the Nordic countries and Estonia 

(Data from the Annual statistical reports, 2016). 
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Table 1. Frequencies of predicted high risk phenotypes within the studied cohort (WGS, GSA and OMNI data 

combined) and gene-related drug consumption statistics in European Nordic countries.  

Gene Phenotype % of individuals 

(phenotype, source) 

% of 

individuals 

(gene total) 

Number of 

drug active 

substances 

affected 

DDDa/1000 

inhabitants, 

(min-max)b 

  WGS GSA OMNI    

CYP2C19 Intermediate Metabolizer 23.6 23.2 24.0 63.7 

 

10 17.62 - 66.83 

Poor Metabolizer 2.44 2.16 2.34 

Rapid Metabolizer 31.2 30.7 31.2 

Ultrarapid Metabolizer 6.86 7.40 7.23 

CYP2C9 Intermediate Metabolizer 25.8 26.1 25.1 28.4 

 

2 7.08 - 16.26 

Poor Metabolizer 2.40 2.49 2.32 

CYP2D6 Intermediate Metabolizer 3.93 3.23 2.96 7.32 

 

16 9.16 - 15.92 

Poor Metabolizer 4.96 3.93 3.67 

Ultrarapid Metabolizer 2.36 0 0 

CYP3A5 Intermediate Metabolizer 13.5 12.8 11.9 13.2 

 

1 0 - 0.5 

Normal Metabolizer 0.62 0.51 0.55 

CYP4F2 Higher dose phenotype 0.29 0.36 0.33 70.5 

 

1 7.02 - 16.04 

Increased CYP4F2 activity 0.04 0.02 0.03 

Lower dose phenotype 71.3 69.8 71.3 

DPYD Intermediate Metabolizer 1.36 0.90 0.87 0.92 

 

3 0 

Poor Metabolizer 0 0.006 0 

IFNL3 Unfavorable response 58.5 56.7 56.7 56.8 3 0 - 0.23 

SLCO1B1 Decreased Function 34.0 34.9 35.2 40.1 

 

1 6.13 - 62.9 

Poor Function 4.38 5.24 5.47 

TPMT Intermediate Metabolizer 5.54 6.37 6.33 6.40 

 

3 0.32 - 1.41 

Poor Metabolizer 0.21 0.07 0.08 

UGT1A1 Intermediate Metabolizer 45.9 46.2 45.3 59.0 

 

2 0 - 0.09 

Poor Metabolizer 12.3 13.1 12.6 

VKORC1 Decreased dose phenotype 56.5 57.5 57.5 57.4 1 7.02 - 16.04 
a Drug daily dosage 
b Min-max among Estonia, Finland, Sweden, Denmark, Norway  
c Frequency calculated based on WGS only, as this was the only platform that detected CYP2D6 ultrarapid metabolizers 

 
Further, we also investigated the number of individuals with high risk variants that had been prescribed drugs 

associated with the specific genes. As seen in Table S7, as many as 12,254 individuals in the Estonian Biobank 

have actually had a prescription of at least one drug linked to CYP2C19. Out of these, 9,977 were analyzed in 

our study (WGS, GSA and OMNI) and 40.7% of them (n=4,059) are CYP2C19 poor, rapid or ultrarapid 

metabolizers, and therefore may have needed dosing adjustments to improve treatment outcome. Based on the 
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annual statistics of the Estonian Agency of Medicines, on average almost 5.5% (55 DDD/1000 inhabitants/day) 

of individuals in the population use at least one of the 32 drugs associated with the studied genes on a daily 

basis. For several Nordic countries, the numbers are even higher, the highest for Denmark with on average 

15.8% of individuals in the population (158.2 DDD/1000 inhabitants/day) (Table 1, Table S7). Thus, existing 

data of biobank participants can be an untapped resource for improved and more cost-effective 

recommendations for drug treatment by translating existing genotype/phenotype data of pharmacogenes into 

guiding prescription recommendations. This illustrates the enormous innovative potential of biobanks in the 

whole process of the implementation of pharmacogenomics.  

DISCUSSION 
In this study, we assessed the systematic detection of pharmacogenetic star alleles for Biobank participants 

genotyped on different microarray or sequencing platforms. As most of the pharmacogenes have star alleles 

defined by several variants that all need to be on the same parental allele, a crucial step in the process was 

genotype phasing prior to analysis. Although the PharmGKB tables for defining star alleles have been 

thoroughly curated, prefiltering of the Allele Definition Tables, as described in the Methods section, was 

essential for reasonable detection of star alleles. Many of the allele definitions include additional variants 

beyond the variant(s) causing the functional effects, which can compromise allele calling when searching for 

perfect matches. For example, in the original SLCO1B1 star allele definition table, 20 alleles out of 37 require 

the occurrence of several mutations on the same allele, but in our dataset of 44,448 individuals, only a subset of 

these were actually detected on the same alleles, ruling out all possible star alleles and subsequently leading to 

“no matches” without prior filtering. The same applies for CYP2D6, where less than half of the alleles are 

currently of relevance35 and including too many unvalidated alleles would only result in unknown phenotypes. 

Challenges with these definition tables have been observed by others as well with an additional remark that the 

tables do not contain all of the alleles that are common in respective populations24,36. 

 

We identified that 89% of the variants assessed in whole genome and exome sequencing data predicted to have 

functionally deleterious effects, are rare with MAF <1%. The proportion of rare variants detected in 

pharmacogenes has increased with the growing numbers of NGS studies3,37–43. Including rare variants with 

unknown function in pharmacogenetic reporting is objectionable, as their function and relevance are generally 

not well validated2,9 and care must be taken when including these in clinical implementation44. However, 

including rare variants in test panels and collecting data on these variants is still valuable for further research 

and development projects. In the absence of experimental characterization data, the functional impact of variants 

can be predicted using computational methods which are getting more and more precise with the increase in data 

that can be used for validation45,46.   

 

With these prior filtering steps and by allowing non-functional star alleles to override other alleles, we were able 

to call star alleles of the genes under study for 98% of the individuals (Figure 2 and 3). The issue we faced with 

ambiguous calls (2%) due to the co-occurrence of two star alleles for UGT1A1 and CYP4F2 resulting in new 

“merged” star alleles, *28+80 and *2+3, respectively, has been corrected for UGT1A1 in the current updated 

version of PharmGKB (May 2018). The detection of several alleles on the same haplotype is not unexpected for 
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such common variants, and combined with the challenges raised above, a functional variant driven approach 

might be more effective for calling of star alleles in general. 

 

Our comparison of different genotyping and sequencing platforms highlights a known major shortcoming of 

WES for pharmacogenetic applications. Important alleles defined by variants in introns or promoters, such as 

CYP2C19*17, CYP3A5*3 or UGT1A1*28+80 are not interrogated by WES and thus lead to drastically different 

pharmacogenetic recommendations that affect 13 medications according to CPIC guidelines. Unlike microarray 

data, WES data cannot be subjected to classical imputation due to large gaps in the data. These problems could 

be overcome by combining WES with customized capture probes to provide a comprehensive cost-effective 

implementation of pharmacogenomics compared to WGS47. However, when the focus is exclusively on pre-

defined alleles, genotyping arrays, which are currently at least 10 times cheaper than WES or WGS, are clearly a 

more cost-effective alternative that can generate results surprisingly similar to that of WGS. The versions of the 

arrays used in our study unfortunately do not allow the detection of CYP2D6 copy number, which is the greatest 

but still limited drawback when compared to WGS (Table 1). As cost-effectiveness is still considered a major 

barrier for the clinical implementation of pharmacogenetics48, we suggest that current genotyping microarrays 

constitute the most cost-effective technology with acceptable accuracy. Several studies have found pre-emptive 

pharmacogenetic testing cost-efficient with per-patient savings ranging from 5,962-10,667 USD49–51, despite the 

reported costs of pharmacogenetic testing to be over 2,000 USD49. Thus, both genotyping and developing tools 

for translating pre-existing genome-wide genotype data into clinical recommendations can be considered very 

reasonable healthcare investments.  

 

In conclusion, as the number of sequenced and genotyped participants in biobanks and clinical settings is 

growing rapidly in several countries, we now have a large amount of genetic information that could be 

translated into clinically actionable decisions tailoring medical therapy in the near future. By leveraging the 

existing genotype data of 44,448 individuals in the Estonian Biobank, we were able to determine that 

microarrays with imputed variants are a highly cost-effective tool for identifying thousands of individuals who 

need dosing adjustments for commonly prescribed drugs. In total, we found that as many as 99.8% of the 

individuals have a high risk phenotype requiring a non-standard dosing of a medication based on at least one 

gene, which is even larger than shown before44,52. Our approach of trying to define all possible star alleles in the 

majority of genes with CPIC guidelines allowed us to reveal the many challenges that arise in this process. The 

most crucial next steps we suggest are further revision of star allele definition tables based on existing 

haplotypes in different populations, an additional level of decision trees to prioritize variants causing non-

functional alleles, and restricting the inclusion of rare alleles to functionally validated variants. We are confident 

that such developments built into automated decision support for clinicians will allow the implementation of 

pharmacogenomics at the point of care in a multidisciplinary manner53 and with greater impact. 
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Table S1. Size of star allele definition tables 

Note S1. Variant calls were highly accurate 

Table S2. Frequencies of the detected alleles 

Table S3. The frequencies of predicted functional variants in 12 pharmacogenes (incl. HLA) identified in 

whole genome and exome sequencing data.  The table covers the frequencies of putative loss of function 

(LoF) and missense variants detected by sequencing. For HLA we evaluated the frequencies of well-known 

functional haplotypes included in CPIC dosing guidelines. 

Table S4. List of 198 putative loss of function (LoF) and missense variants detected in whole genome and 

exome sequencing data of 4,776 participants of the Estonian Biobank. 

Table S5. Frequencies of the detected diplotypes 

Table S6. Frequencies of the detected phenotypes 

Table S7. Drug usage in Northern European countries 

 

 
Figure S1. CYP2D6 allele and phenotype frequencies in WGS derived by two methods (our method, Astrolabe) 
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