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Abstract

Evolutionarily conserved virulence factors can be candidate therapeutic targets or vaccine

antigens. Here, we investigated the evolutionary selective pressures on 16 pneumococcal

choline-binding cell-surface proteins since Streptococcus pneumoniae is one of the pathogen

posing the greatest threats to human health. Phylogenetic and molecular analyses revealed

that chpJ had the highest codon rates to total numbers of codons under significant negative

selection among those examined. Our in vitro and in vivo assays indicated that CbplJ

functions as a virulence factor in pneumococcal pneumonia by contributing to evasion of

neutrophil killing. Deficiency of chpL under relaxed selective pressure also caused a similar

tendency but showed no significant difference in mouse intranasal infection. Thus, molecular

evolutionary analysis is a powerful tool that reveals the importance of virulence factors in

real-world infection and transmission, since calculations are performed based on bacterial

genome diversity following transmission of infection in an uncontrolled population.
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Improper use of antibiotics creates evolutionary pressures that drive bacteria to acquire drug
resistance by natural mutation and/or horizontal transfer of resistance genes. This is a major
public health threat: it is estimated that drug-resistant infections cause 10 million deaths
annually and may result in economic losses reaching 100 trillion US dollars by 2050
However, a target-to-hit screen typically requires approximately 24 discovery projects and 94
million US dollars, and the baseline total cost is 1.8 billion US dollars over 13 years to launch
a new drug”. In fact, the number of new antibiotics developed and approved has steadily
decreased in the past three decades, leaving fewer options for treating resistant bacteria’.
Streptococcus pneumoniae is one of the pathogens posing the greatest threat to human
health™. S. pneumoniae belongs to the mitis group®’ and is a major cause of pneumonia,
sepsis, and meningitis®’. In 2015, pneumococcal pneumonia caused over 1.5 million deaths
in individuals of all ages, and this rate increased in people over 70 years old between 2005
and 2015'", which is especially problematic since the elderly population is growing in many
parts of the world. Although pneumococcal conjugate vaccines have considerable benefits,
non-vaccine pneumococcus serotypes have increased worldwide'""'%.
Conflict between the host immune system and pathogens leads to an evolutionary

13,14

arms races known as the “Red Queen” scenario ™ . Protein regions at the host—pathogen
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interface are subjected to the strongest selective pressure and thus evolve under positive
selection. Adaptive evolution has been reported in genes related to the mammalian immune
system such as pattern recognition receptors'*. Concerning negative/purifying selection,
Jordan et al. compared two whole genome sequences and showed that essential bacterial
genes appear to demonstrate substantially lower average values of synonymous and
nonsynonymous nucleotide substitution rates compared to those in nonessential genes'”.
However, to our knowledge, comprehensive evolutional analysis on codons of genes
encoding bacterial cell surface proteins has not been performed. Mutations on essential genes
directly cause host death because essential genes encode proteins to maintain basic bacterial
survival such as central metabolism, DNA replication, translation of genes into proteins, and
so on. Meanwhile, nonessential genes are under negative/purifying selection, which is
important for the survival and/or success of the species in the host and/or the environment as
non-synonymous substitution of codons can lead to lineage extinction (Fig. 1). Phylogenetic
and molecular evolutionary analyses can reveal the number of codons under
negative/purifying selection in a species. Because alterations in amino acid residues in
regions under negative selective pressure are not allowed, drugs targeting these regions

would be less likely to promote the development of resistance through natural mutation.
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We analysed pneumococcal choline-binding proteins (CBPs) localised on the bacterial
cell surface through interaction with choline-binding repeats and phosphoryl choline on the
cell wall. At least some CBPs play key roles in cell wall physiology, in pneumococcal
adhesion and invasion, and in evasion of host immunity. S. pneumoniae harbours various
CBPs including N-acetylmuramoyl L-alanine amidase (LytA), which induces

: - 16-18
pneumococcal-specific autolysis

. Pneumococcal surface protein A (PspA) is a highly
variable protein and inhibits complement activation' . Choline binding protein A (CbpA;
also called PspC) works as a major pneumococcal adhesin and contributes to evasion of host
immunity via interaction with several host proteins'"'**'. Choline binding protein L (CbpL)
contains the choline binding repeats sandwiched between the Excalibur and lipoproteins
domains and works as an anti-phagocytic factor’. Although several CBPs have been
characterised, their phylogenetic relationships remain unclear and the unclassified gene
names are confusing. We first analysed the distribution of genes encoding CBPs based on
pneumococcal genome sequences. Orthologues of genes in each strain were identified by
phylogenetic analysis. We then calculated the evolutionary selective pressure on each codon

from the phylogenetic trees and aligned sequences. We found that cbpJ contains the highest

rate of codons under negative selection. CbplJ has no known functional domains except signal
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sequences and choline-binding repeats, and its role in pneumococcal pathogenesis is unclear.

Functional analyses revealed that CbplJ contributes to evasion of host neutrophil-mediated

killing in pneumococcal pneumonia. Thus, evolutionary analysis focusing on negative

selection can reveal novel virulence factors.
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85  Results

86  Distribution of chp genes among pneumococcal strains

87  Genes encoding CBPs among pneumococcal strains were extracted by tBLASTn search

88  (Supplementary Table 1). Some genes were re-annotated since the search results showed that

89  certain homologous regions were not matched to annotated open reading frames (ORFs). In

90  strain SPNA45, SPNA_ 01670 contains both predicted promoter regions and intact ORF

91  structures of chpF and cbpJ. On the other hand, chpG-homologous regions in strains R6, D39,

92 SPN034183, SPN994038, and SPN994039 did not contain promoters (Supplementary Table 1

93  and Supplementary Table 2). Orthologous relationships of each gene were analysed. The

94  distribution of chp genes was not correspondent with capsular serotypes (Fig. 2A). Four

95  genes—i.c., lytA, IytB, cbpD, and chpE—were conserved as intact ORFs in all 28

96  pneumococcal strains (Fig. 2A). Other chp genes contained frameshift mutations in the

97  orthologues or were absent in some strains.

98

99  Phylogenetic relationships in pneumococcal CBPs

100 Phylogenetic relationships of genes encoding CBPs in pneumococcal species are confusing

101  since some genes in the same cluster show high similarity to each other. To clarify the
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102 relationships, we compared common nucleotide sequences among genes encoding CBPs in

103 the strain TIGR4. Maximum likelihood and Bayesian phylogenetic analyses revealed two

104  common clusters: one comprising cbpF, chpG, cbpJ, cbpK, and cbpC, and the other

105  comprising /ytA, lytB, IytC, cbpL, and cbpE (Fig. 2B and Supplementary Fig. 1). The names

106 of some CBP genes were not consistent with those of phylogenetically related genes. In

107  particular, cbpF, cbpG, cbpJ, and cbpK were located close to each other in pneumococcal

108  genomes and showed high similarity. We thus defined orthologous genes in each

109  pneumococcal strain based on maximum likelihood and Bayesian phylogenetic analyses (Fig.

110 3 and Supplementary Fig. 2). The gene locus tag numbers in orthologous relationships are

111  shown in Supplementary Table 1. The sequence similarity of cbpF, cbpG, cbpJ, and cbpK

112 and their close proximity within genomes indicated that a common ancestral S. pneumoniae

113 acquired the genes by duplication. Phylogenetic trees showed well-separated clusters of each

114 gene. These independent relationships indicated that horizontal gene transfer did not

115  contribute to the spread of chpF, cbpG, cbpJ, and cbpK in S. pneumoniae species, despite

116  their ability to take up exogenous DNA. The genetic diversity of these genes may have been

117  established by accumulation of natural mutations during pneumococcal transmission.

118
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119  Evolutionary selective pressures on each of the CBP codons

120 To evaluate the significance of CBPs in real-life infection and transmission, we performed

121  molecular evolutionary calculations based on bacterial genome diversity established after

122 transmission of infection in an uncontrolled population. The nucleotide sequences of each

123 CBP were aligned by codon, and conserved common codons were used for phylogenetic

124 analysis (Supplementary Fig. 3). The selective pressure on each gene was calculated based on

125  the phylogenetic trees and aligned sequences (Table 1). The rates of codons under negative

126  selection are visualised in Supplementary Figure 4. Over 13% of total codons in chpJ and

127 IytA were under negative selection compared to less than 5% for other chp genes, indicating

128  that these genes play an important role in the success of S. pneumoniae species. On the other

129  hand, pspA encoding the genetically divergent virulence factor PspA, contained fewer

130 evolutionarily conserved codons, but had the highest numbers of codons under positive

131  pressure. Additionally, there were no evolutionarily conserved codons in chpG, cbpC, and

132 c¢bpL. The latter two had no common codons as few genes had frameshift mutations. When

133 we re-calculated selective pressure without these genes, we found a low rate of codons under

134 negative selection among CBP-encoding genes (Supplementary Table 3).

135
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136 CbpJ acts as a virulence factor in pneumococcal pneumonia

137 While CbpJ had the highest rate of codons under negative selection among pneumococcal
138  CBPs, it has no known functional domains except a choline-binding repeat in its amino acid
139 sequence. Moreover, its role in pneumococcal pathogenesis is unknown. In contrast, CbpL
140 had no common comparable codons and showed limited numbers of evolutionarily conserved
141  codons even after the above-described adjustment. The domain structures and codons of CbpJ
142 and CbpL under negative selection are shown in Figure 4A. The domains were searched
143 using MOTIF Libraries including PROSITE, NCBI-CDD, and P-fam™°. To assess the roles
144 of CbpJ and CbpL in pneumococcal pathogenesis, we generated mutant strains deficient in
145  the corresponding genes. The mutant strains showed a slightly steeper growth curve in THY
146  medium (Supplementary Fig. 5A). There were no differences among the strains in minimum
147  inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for
148  penicillin G, and bacterial morphology (Supplementary Table 4 and Supplementary Fig. 5B).
149  WT and mutant strains in stationary phase showed that most cells were stained violet,
150  whereas almost all cells of strains in the decline phase were stained pink probably due to
151  autolysis (Supplementary Fig. 5B). The lyt4A gene expression was slightly increased in the

152 AcbpJ strain compared to that in the WT strain at the log and decline phases (Supplementary

10
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153 Fig. 5C). However, as described above, the difference did not seem to affect pneumococcal

154  autolysis substantially. We first performed a mouse intranasal infection assay to investigate

155  the role of CbpJ and CbpL in pneumonia. Mice intranasally infected with strain AchpJ

156  showed an improved survival rate compared to those infected with WT S. pneumoniae;

157  although a similar tendency was observed for AchpL-infected relative to WT mice; the

158  difference was not statistically significant (Fig. 4B). The number of bacteria in the

159  bronchoalveolar lavage fluid (BALF) from AcbpJ-infected mice was lower than that in the

160  BALF from AcbpL- and WT-infected mice (Fig. 4C). We also performed competitive assay

161 by intranasal co-infection with the WT and AcbpJ strains. The BALF at 24 h after infection

162 showed fewer bacterial CFUs of AchpJ compared to those of the WT (Fig. 4D). We also

163 examined whether CbpL or CbpJ contributes to the association of S. pneumoniae with

164  alveolar epithelial cells and found that WT S. pneumoniae as well as AcbpL and AcbpJ

165  mutant strains did not differ in their ability to adhere to A549 human alveolar epithelial cells

166  (Fig. 4E).

167 However, the S. pneumoniae WT strain exhibited extensive inflammatory cell

168 infiltration and bleeding compared to that with the AchpJ strain. Histological examination of

169  lung tissue from intranasally-infected mice showed that AchpJ induced milder inflammation

11
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170 compared to the WT strain. Lung tissue from AchpL-infected mice showed moderate

171  inflammation (Fig. 5A). We also measured the bacterial survival rate after incubation with

172 human neutrophils in the absence of serum. Strains AcbpJ and AcbpL had a lower survival

173 rate than that of the WT, whereas AcbpJ showed a slightly increased growth rate compared to

174 that of the WT and AcbpL strains in RPMI 1640 medium without neutrophils (Fig. 5B and

175  Supplementary Fig. SD). We also generated recombinant CbpJ using a codon-optimized chpJ

176  sequence for expression in E. coli and measured the bacterial survival rate after incubation

177  with neutrophils and the recombinant protein. In the presence of recombinant CbpJ, the

178  survival rate of the AchpJ strain was recovered (Supplementary Fig. 6). These results suggest

179  that CbpJ contributes to the evasion of neutrophil-mediated killing. Next, we performed a

180  mouse intravenous infection assay to investigate the role of CbpJ and CbpL in sepsis. In the

181 infection model, the survival rates of AcbpL- and AcbpJ-infected mice did not differ

182  significantly from those of mice infected with WT S. pneumoniae (Fig. 5C). We also

183  performed a blood bactericidal assay. The survival rates of AchpJ and AcbpL strains in mouse

184  blood were comparable to those of the WT strain (Fig. 5D). We also found that incubation of

185  S. pneumoniae in human plasma for 3 h inhibited the expression of cbpL and cbpJ, as

186  determined by quantitative real-time (q)PCR (Fig. 5E). These results indicate that CbpJ acts

12
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187  as a pneumococcal virulence factor in lung infection by contributing to the evasion of

188  neutrophil-mediated killing, whereas CbpJ has no role in bacterial survival in blood. In

189  addition, chpL deficiency in strain TIGR4 did not significantly attenuate pathogenesis in the

190  mouse lung and blood infection.
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Discussion

In this study, we investigated the evolutionarily conserved rates of CBP codons since these
cell surface proteins directly interact with the external environment, which induces rapid rates
of evolution in genes involved in genetic conflicts'*. Evolutionary analysis based on
phylogenetic relationships can reveal regions in which the encoded amino acids are not
allowed to change even under selective pressure. The genetic diversity of S. pneumoniae
isolated from patients was the result of transmission in a real population. Thus, the
evolutionary conservation rate is a parameter that reflects the importance of the protein in
human infection. Although so-called arms races involve both the host and bacteria, most

14,27-29 .
272 For example, evolutionary

studies on genetic diversity have focused on the former
studies based on inter-species comparisons have shown that most of the positive selection
targets in host receptors are located in regions that are responsible for direct interactions with
pathogens. Our study focused on negative selection targets in bacterial surface proteins
through an evolutionary analysis based on intra-species comparisons. This approach enabled
us to estimate the contribution of bacterial proteins to species success throughout the life

cycle, including inside the host and during the transmission phase.

We previously detected bacterial virulence factors by function prediction — e.g., by

14
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208  searching for conserved motifs/domains, constructing random transposon libraries, or

209  analysing the biochemical properties of the pathogen®®>*. Although these laboratory-based
210  approaches are valuable, they are time-consuming and costly, and may not yield the expected
211 results. It is useful to examine the correlation between a target molecule and clinical features
212 as this can minimise the time and cost required for analysis. Furthermore, in basic studies on
213  bacterial pathogens, animal infection models are often used to determine whether a bacterial
214 molecule acts as a virulence factor. Although this is the best means of obtaining in vivo

215  information, it is unclear how accurately it reflects the clinical condition in humans.

216  Combining an evolutionary analysis and an animal model would thus be highly effective for
217  evaluating the functional significance of a putative virulence factor.

218 Genome-wide association study (GWAS) is a powerful tool for identifying the

219  relationship between genetic variants — mainly single nucleotide polymorphisms (SNPs) —
220  and phenotype, such as in diseases. As GWAS has become more prevalent, various programs
221  and software packages have been developed for this purpose®~°. On the other hand, this
222 approach has certain limitations including the requirement for an appropriate control group
223  and detailed information regarding phenotype. In infectious diseases, it can be difficult to

224 quantify clinical features recorded at different medical centres. Furthermore, in the case of

15
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225  most pathogens, there are no natural attenuated or avirulent strains that can serve as a control

226  group. Our evolutionary analysis has the advantage that it can be performed with genomic

227  information of pathogenic strains only by assuming the presence of pathogens as a phenotype

228  evading natural selection. Since synonymous and non-synonymous substitutions are

229  estimated to occur with equal probability under no selective pressure, a population in which

230  the latter has resulted in extinction by natural selection can serve as a control group. While

231  we have shown in the current study that evolutionary analysis with a small population has the

232 power to detect evolutionarily conserved proteins, a larger population would allow a

233 higher-resolution analysis, including detection of conserved regions in some pathogenic

234  strains isolated from a specific site of infection or pathological condition. Since this analysis

235  involves simultaneous processing of aligned nucleotide and amino acid sequences, more

236  information is obtained from only SNPs extracted from nucleotide sequences. In addition,

237  automated phylogenetic and evolutionary analyses are needed to analyse a large population.

238  Therefore, the development of software packages for meta-data is expected to aid the

239  widespread application of this analytical approach.

240 There are some limitations to our evolutionary analysis. Firstly, although it can detect

241  evolutionarily conserved proteins, it cannot identify diverse virulence factors such as PspA

16
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and CbpA within species'®~"®. Similarly, virulence factors recently acquired by horizontal
gene transfer have not been under selective pressure for a sufficiently long period to perform
this analysis. In addition, the high rate of codons under negative selection indicate their
universal importance in bacterial species. In other words, a molecule under relaxed selective
pressure could contribute to the virulence of some populations of the species. However, these
features of molecular evolutionary analysis can be advantages when screening for therapeutic
target sites or vaccine antigens with a low frequency of missense mutations, which could
reduce the virulence or survivability of the pathogen. Evolutionary analysis could also be an
effective alternative strategy for overcoming drug resistance through antigen replacement,
and could reduce costs associated with drug discovery and development.

The /ytA gene, which was conserved among virtually all pneumococcal strains,
showed the highest rates of codons under negative selection, except for chp.J that was only
present in some strains. LytA is known to induce pneumococcal-specific autolysis®” and
contributes to pneumococcal virulence'®*. Our evolutionary analysis supports previous
reports that [ytA is a suitable genetic marker*"** due to its evolutionary conservation. We also
showed that pspA4 and cbpA show relatively high rates of codons under positive selection, and

17,19,37

both encode polymorphic virulent proteins that are candidate vaccine antigens, even

17
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259  though these genes are not universally present within a global serotype 1 collection’®. In

260  addition, selective pressure by vaccines can easily cause differentiation or deficiency of these
261  proteins as the corresponding genes contain few codons under negative selection. A

262 multivalent system would be required for vaccines prepared using these antigens.

263 An in vivo competition assay in mice indicated that deficiency of chpJ is a

264  disadvantage for pneumococcal survival in vivo. On the other hand, co-infection showed a
265  smaller difference in bacterial CFUs between WT and AcbpJ as compared to each single

266  infection. In the single infection of the AcbpJ strain, the bacteria could not be protected by
267  CbplJ. However, in co-infection, the interaction of neutrophils and CbpJ in the WT strain

268  could suppress neutrophil killing activity. In addition, some CbpJ may be released from the
269  WT strain by autolysis. As a result, some of the AchpJ strain could have been protected

270  similar to the WT strain. Concerning selection, it was previously reported that a single cell
271  bottleneck effect in pneumococcal infection occurs during bloodstream invasion and in

272 transmission between hosts****. Our finding also suggests that a bottleneck effect occurs in a
273  limited situation. The difference in bacterial burden of BALF between single and competitive
274  infections suggested a possibility that the bottleneck effect plays a more important role for the

275  selection of chpJ-lacking cells compared to the competition in the lung.

18
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276 In this study, cbpL and cbpJ were downregulated in the presence of plasma. Although
277  regulation of CBPs is still largely unknown, one possible hypothesis is that the genes are
278  regulated by a pneumococcal two component system (TCS). S. pneumoniae interplays with

279  its environment by using 13 TCSs and one orphan response regulator**°

. TCSs typically
280  consist of a membrane-associated sensory protein called a histidine kinase and a cognate
281  cytosolic DNA-binding response regulator, which acts as a transcriptional regulator. Although
282 specific stimuli to histidine kinases still remain unclear, there is a possibility that a histidine
283  kinase sensor protein of the TCSs can respond to some plasma components.

284 Although the difference was not statistically significant, mice intranasally infected
285  with TIGR4 AcbpL strain showed a trend towards improved survival relative to the

286  WT-infected mice. In a previous study, a D39/ux chpL-deficient strain showed reduced

287  virulence compared to the WT strain®”. Since CbpL sequences in TIGR4 and D39 strains are
288  similar, the discrepancy between the previous study and our findings is likely due to

289  differences in other surface proteins in each strain. For example, the absence of CbpJ, which
290  contributes to the evasion of neutrophil killing, could affect the survivability of D39.

291 Frolet et al. reported that both CbpJ and CbpL are considered as possible adhesins

292  because they display interaction with C-reactive protein (CRP), and CRP, elastin, and
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293 collagen in solid phase assay, respectively”’. Meanwhile, Gosink et al. showed no significant
294  differences in Detroit nasopharyngeal cells adhesion, rat nasopharynx colonization, and

295  pathogenesis in the sepsis model between the WT and the chpJ mutant strains™. Their results
296  are mostly consistent with our data. We also showed that there were no significant differences
297  in the A549 cells adhesion assay and in intravenous infection as a sepsis model. On the other
298  hand, we found a difference in the lethal intranasal mouse infection that is completely

299  different from the non-lethal colonization model. We consider that CbpJ contributes to

300  pneumococcal evasion of host immunity rather than colonization. Concerning CbpL, elastin
301  and collagen are extracellular matrix proteins and binding activity to these proteins could
302 contribute to bacterial adhesion, whereas CRP is found in blood plasma and is used as a

303  marker of inflammation. However, CbpL did not contribute at least to pneumococcal

304  adhesion to A549 cells. There is a discrepancy between protein-protein interactions in the
305  solid phase and host cell-bacteria interactions.

306 Recently, anti-virulence drugs have been developed as an additional strategy to treat
307  or prevent bacterial infections. Drugs targeting bacterial virulence factors are expected to
308  reduce the selective pressure of conventional antibiotics since they would not affect the

309  natural survival of targeted bacteria®. Furthermore, the abundance of candidate targets is a
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310  major advantage of antivirulence strategies. Effective design of vaccines and antivirulence

311  drugs requires a thorough understanding of virulence factors; combining our evolutionary

312 analysis and traditional molecular microbiological approaches can improve the detection of

313  potential drug targets. In this study, we identified CbpJ as a novel evolutionarily conserved

314 virulence factor. Thus, molecular evolutionary analysis is a powerful system that can reveal

315  the importance of virulence factors in real-world infections and transmission.
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316  Methods

317  Phylogenetic and evolutionary analyses

318 Phylogenetic and evolutionary analyses were performed as described previously **',
319  with minor modifications. Homologues and orthologues of chp genes were searched using the
320  tBLASTn function of NCBI BLAST. Domain structures of CbpJ and CbpL were searched by
321  MOTIF Search® with PROSITE, NCBI-CDD, and P-fam®**°. Bacterial ORFs and promoters
322 were predicted by FGENESB (Bacterial Operon and Gene Prediction) and BPROM,

323 respectively’>. To prevent node density artefacts, sequences with 100% identity were treated
324  as the same sequence in Phylogears2>*”*. The sequences were aligned using MAFFT v.7.221
325  with an L-INS-i strategy™", and ambiguously aligned regions were removed using Jalview™*’.
326  Calculated orthologous regions were used for further phylogenetic analysis, and edited codon
327  sequences were re-aligned using MAFFT with an L-INS-i strategy. The best-fitting codon

328  evolutionary models for MrBayes and RAXML analyses were determined using Kakusan4™®.
329  Bayesian Markov chain Monte Carlo analyses were performed with MrBayes v.3.2.5>, and 2
330  x 10° generations were sampled after confirming that the standard deviation of split

331  frequencies was < 0.01 for up to 8 x 10° generations. To validate phylogenetic inferences,

332  maximum likelihood phylogenetic trees with bootstrap values were generated with RAXML
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333 v.8.1.20%. Phylogenetic trees were generated using FigTree v.1.4.2°' based on the calculated
334  data.

335 Evolutionary analyses were performed based on aligned orthologous regions of chp
336  genes and Bayesian phylogenetic trees. Whole-gene non-synonymous/synonymous ratio
337  calculations as well as statistical tests for negative or positive selection of individual codons
338  were performed using the two-rate fixed-effects likelihood function in HyPhy software

339  package®.

340

341  Bacterial strains and construction of mutant strains

342 Streptococcus pneumoniae strains were cultured in Todd-Hewitt broth (BD Biosciences,
343  Franklin Lakes, NJ, USA) supplemented with 0.2% yeast extract (BD Biosciences) (THY
344  medium) at 37°C. For mutant selection and maintenance, spectinomycin (Wako Pure

345  Chemical Industries, Osaka, Japan) was added to the medium at a concentration of 120

346  ug/ml.

347 S. pneumoniae TIGR4 isogenic cbpJ (AcbpJ) and cbpL (AcbpL) mutant strains were
348  generated as previously described™. Briefly, the upstream region of cbpJ or cbpL, an aad9

349  cassette, and the downstream region of chp.J or cbpL were combined by PCR using the
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350  primers shown in Supplementary Table 4. The products were used to construct the mutant
351  strains by double-crossover recombination with the synthesised CSP2%°. All mutations were
352  confirmed by PCR amplification of genomic DNA isolated from the mutant strains. For

353  growth measurements, pneumococci were cultured until the optical density at 600 nm

354 (ODggo) reached 0.4, and the exponential phase cultures of each strain were back-diluted into
355  fresh THY and grown at 37°C. Growth was monitored by measuring the values of ODgo

356  every 0.5-1 hour. For the following assays, S. pneumoniae strains were grown to exponential
357  growth phase (ODgoo = ~0.4) unless otherwise indicated, and then resuspended in PBS or the
358  appropriate buffer.

359

360  Preparation of recombinant CbpJ

361  The cbpJ sequence without codons encoding the signal peptide sequence was optimized for .
362 coli using GENEius software, and the optimized sequence was synthesized (Eurofins

363  Genomics, Brussel, Belgium). Optimized cbpJ and pQE-30 vector (Qiagen, Valencia, CA,
364  USA) were amplified with the specific primers listed in Supplementary Table 5 and

365  PrimeSTAR® MAX DNA Polymerase (TaKaRa Bio, Shiga, Japan). The DNA fragments were

366  assembled using the GeneArt” Seamless Cloning and Assembly Kit (Thermo Fisher
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367  Scientific, Waltham, MA, USA). The constructed plasmid was transformed into E. coli
368  XL-10 Gold (Agilent, Santa Clara, CA, USA), and recombinant CbpJ was purified as
369  described previously’ !>+,

370

371  Blood and neutrophil bactericidal assays

372 Ablood bactericidal assay was performed as previously described’'”**". Mouse blood was
373  obtained via cardiac puncture from healthy female CD-1 mice (Slc:ICR, 6 weeks old; Japan
374  SLC, Hamamatsu, Japan). For human neutrophil isolation, blood was collected via

375  venepuncture from healthy donors after obtaining written, informed consent according to a
376  protocol approved by the institutional review board of Osaka University Graduate School of
377  Dentistry (H26-E43). Neutrophils were isolated from fresh human blood by density gradient
378  centrifugation using Polymorphprep (Alere Technologies, Jena, Germany). Pneumococcal
379  cells grown to the mid-log phase were washed and resuspended in phosphate-buffered saline
380  (PBS). Bacterial cells (1 x 10* CFU/20 pl) were combined with fresh mouse blood (180 pl)
381  or human neutrophils (2 x 10° cells/180 pl) in RPMI 1640 medium, and the mixture was

382  incubated at 37°C with 5% CO, for 1, 2, and 3 h. Viable cell counts were determined by

383  seeding diluted samples onto THY blood agar. The percent of the original inoculum was
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calculated as the number of CFU at the specified time point divided by the number of CFU in

the initial inoculum.

MIC and MBC assays

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
assays were performed as previously described’"®®. For MIC and MBC assays, 0.5-1.0 x 10*
bacteria were added into THY broth supplemented with 2-fold serial dilutions of penicillin G.
Bacterial growth after 24 hours at 37°C in anaerobic conditions was spectrophotometrically
measured at ODgoo. We defined the ODggg values less than 0.06 as complete inhibition of
bacterial growth. To determine MBCs, we inoculated 5 uL of the bacterial cultures onto TS
blood agar and incubate them at 37°C in anaerobic conditions. The antimicrobial

concentration at which no growth was detectable was defined as the MBC.

Mouse infection assays
All mouse experiments were conducted in accordance with animal protocols approved by the
Animal Care and Use Committee of Osaka University Graduate School of Dentistry

(28-002-0). Female CD-1 mice (Slc:ICR, 6 weeks old) were intranasally infected with 5 x
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107 or 2 x 10° CFU of S. pneumoniae via the tail vein. Mouse survival was monitored for 14
days. At 24 h after intranasal infection, animals were euthanized by lethal intraperitoneal
injection of sodium pentobarbital and lung tissue or BALF samples were collected. Bacterial
counts in BALF were determined by plating serial dilutions. Lung tissue specimens were
fixed with 4% formaldehyde, embedded in paraffin, and cut into sections that were stained
with haematoxylin and eosin solution (Applied Medical Research, Osaka, Japan) and
visualized with a BZ-X710 microscope (Keyence, Osaka, Japan). For the competition assay,
CD-1 mice were intranasally infected with 20 pL of the mixture of wild-type (1.0 x 10’ CFU)
and AcbpJ (1.5 x 10" CFU) strains resuspended in PBS, in total, ~2.5 x 10’ CFU. BALF
samples were collected at 24 h after infection and bacterial counts in BALF were determined.
Total and mutant strain CFUs were determined by serial dilution plating on TS blood agar
with or without spectinomycin. The CFU number for the wild-type strain was calculated by

subtracting that of the mutant strain from the total CFUs.

qPCR

50,51
d B

qPCR was performed as previously describe , with minor modifications. Primers are

listed in Supplementary Table 4. Total RNA of pneumococcal strains grown to the mid-log
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418  phase (ODgo = 0.4-0.5) was isolated with an RNeasy Mini kit (Qiagen) and RQ1 RNase-Free

419  DNase (Promega, Madison, WI, USA), and cDNA was synthesised with SuperScript IV

420  VILO Master Mix (Life Technologies, Carlsbad, CA, USA). gPCR analysis was performed

421  on a StepOnePlus Real-Time PCR system using Power SYBR Green Master PCR mix

422  (Thermo Fisher Scientific). 16S rRNA was used as a normalising control.

423

424  Statistical analysis

425  Statistical analysis of in vitro and in vivo data was performed with Mann-Whitney test,

426  Kruskal-Wallis test with Dunn’s multiple comparisons test, Wilcoxon matched-paired signed

427  rank test, and ordinary one-way ANOVA with Tukey’s multiple comparisons test. Mouse

428  survival curves were compared with the log-rank test. P < 0.05 was considered statistically

429  significant. The tests were performed on Prism v.6.0h or v.7.0d software (GraphPad Inc., La

430  Jolla, CA, USA). All experiments were repeated at least three times. In the evolutionary

431  analyses, P <0.1 was regarded as a significant difference with the HyPhy default setting.
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A. Phylogenetic relationship before natural selection
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Figure 1. Scheme for intra-species molecular evolutionary analysis. A. Random genetic drift induces

synonymous and non-synonymous mutations with equal probability. However, non-synonymous mutations

in the essential region cause host selection. B. As a result of natural selection, synonymous substitutions are

concentrated in important genes. Phylogenetic and molecular evolutionary analyses can detect significant

accumulation of synonymous substitutions in codons of host proteins. Codon-based analysis yields much

more information than nucleotide- or amino acid-based analyses.
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Figure 2. Distribution of chp genes and phylogenetic relationship in TIGR4. A. Distribution of
genes encoding CBPs among pneumococcal strains. The gene locus tag numbers are shown in
Supplementary Table 1. Blue, yellow, and gray show the presence, pseudogenisation, and absence of
genes, respectively. *These genes are annotated as one gene, but our bioinformatic analysis indicates
that they are independent genes. B. Nucleotide-based Bayesian phylogenetic tree of chp genes of S.
pneumoniae strain TIGR4. The tree is unrooted and posterior probabilities are shown near the nodes.

The scale bar indicates nucleotide substitutions per site.
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Figure 3: Phylogenetic analyses of chp genes with high similarity. A, B. Nucleotide-based Bayesian
phylogenetic tree of the lytA, IytB, IytC, cbpE, and cbpL genes (A) and the cbpF, cbpG, cbpJ, and cbpK
genes (B) in S. pneumoniae. The trees are unrooted although they are presented as midpoint-rooted for

clarity. Strains with identical sequences are listed on the same branch. Posterior probabilities are shown

near the nodes. The scale bar indicates nucleotide substitutions per site.
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Figure 4: Deficiency of chpJ decreased pneumococcal virulence in mouse pneumonia model.
A. Amino acid sequences and domain structures of CbpL and CbplJ in strain TIGR4. Bold, black
underlined, and magenta underlined characters represent comparable codons and those under
purifying or positive selection, respectively. B. Mouse pneumonia model. Mice were intranasally
infected with 5 x 107 CFU of S. pneumoniae TIGR4 WT, AcbpL, or AcbpJ strains, and survival was
monitored for 14 days. C. Pneumococcal CFU in BALF collected at 24 h after intranasal infection.
The difference between groups was analysed using the Kruskal-Wallis test with Dunn’ s multiple
comparisons test. D. S. pneumoniae TIGR4 WT and AcbpJ strains were examined for their
competitive infection activities. BALF was collected at 24 h after intranasal infection. The
difference between groups was analysed with the Wilcoxon matched-paired signed rank test. E. S.
pneumoniae TIGR4 WT, AcbpL, and AcbpJ strains were examined for their ability to associate with
A549 cells. Differences between groups were analysed using ordinary one-way ANOVA with
Tukey’ s multiple comparisons test. Data are presented as the mean of six samples with standard
error (C, D, E).
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Figure S: cbpJ and chpL are downregulated in the presence of plasma, and do not affect pneumococ-
cal survival in mouse blood. A. Haematoxylin and eosin staining of infected mouse lung tissue collected 24
h after intranasal infection with 5 x 107 CFU of S. pneumoniae TIGR4 WT, AcbpL, or AcbpJ strains. Scale
bars, 200 um (upper panels), 50 um (middle panels), and 20 um (lower panels). B. Growth of pneumococcal
strains in the presence of human neutrophils. Bacterial cells were incubated with neutrophils for 1, 2, and 3
h at 37°C and 5% CO,, then serially diluted and plated on TS blood agar. The number of CFUs was deter-
mined following incubation. Growth index was calculated by dividing CFU after incubation by the CFU of
the original inoculum. Data are presented as the mean of six samples with standard error. C. Mouse sepsis
model. Mice were intravenously infected with 2 x 10¢ CFU of S. preumoniae TIGR4 WT, AcbpL, or AcbpJ,
and survival was monitored for 14 days. Differences between infected mouse groups were analysed with the
log-rank test. D. Growth of pneumococcal strains in mouse blood. Bacterial cells were incubated in blood
for 1,2, and 3 h at 37°C and 5% CO,. Data are presented as the mean of six samples with standard error. E.
Fold transcript levels of cbpL and cbpJ in TIGR4 WT S. pneumoniae cells in the presence or absence of
human plasma. 16S rRNA was used as an internal standard. Data were pooled and normalised from three
independent experiments, each performed in quadruplicate.
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639  Table 1. Evolutionary analyses of genes encoding choline-binding proteins*

Number of Coverage of comparable codons Codons evolving under  Codons evolving under % Of codons under purifying

640

Genes sequences’ dN/ds relative to whole protein in TIGR4 positive selection purifying selection selection relative to total codons
cbpA 19 0.864 22.334% (155/694) 3.226% (5/155) 7.742% (12/155) 1.729%
cbpC 13 - 0% (0/93) - - 0.000%
cbpD 19 0.359 75.278% (338/449) 0.296% (1/338) 3.550% (12/338) 2.672%
cbpE 18 0.325 99.363% (624/628) 0.160% (1/624) 4.968% (31/624) 4.936%
cbpF 19 0.395 60.411% (206/341) 0.485% (1/206) 3.398% (7/206) 2.053%
cbpG 21 - 0% (0/286) - - 0.000%
cbpl 2 - - - - -
cbpJ 15 0.346 84.084% (280/333) 1.429% (4/280) 18.571% (52/280) 15.616%
cbpK 11 0.353 85.630% (292/341) 0.342% (1/292) 3.082% (9/292) 2.639%
cbpL 20 - 0% (0/333) - - 0.000%
cbpM 10 0.642 98.462% (128/130)’ 0% (0/128) 0% (0/128) 0.000%
Iyt4 14 0.141 80.564% (257/319) 0% (0/257) 17.121% (44/257) 13.793%
IytB 22 0.185 92.868% (612/659) 0% (0/612) 4.739% (29/612) 4.401%
ytC 23 0.400 19.348% (95/491) 0% (0/95) 5.263% (5/95) 1.018%
pcpA 18 0.261 77.010% (479/622) 0% (0/479) 0.418% (2/479) 0.322%
pspA 24 0.857 19.060% (142/745) 6.338% (9/142) 12.676% (18/142) 2.416%

1Sequences with 100% identity were treated as the same sequence; 2cornpared to D39.

641 *Evolutionary analysis was performed by Bayesian inference of aligned cbp sequences from complete genomes of S. pneumoniae with the two-rate fixed-effects
642  likelihood function in HyPhy software package. dN/dS is the ratio of non-synonymous to synonymous changes in overall analysed genes. Individual codons with a

643  statistically significant signature were also calculated and are expressed as a percentage of the total number of codons included in the analysis.
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