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Abstract 

Microbial communities can perform biochemical activities that monocultures cannot. Controlling communities 

requires an understanding of community dynamics. Here, we mathematically predict the growth rate of an 

engineered community consisting of two S. cerevisiae strains, each releasing a metabolite required and consumed 

by the partner. Initial model parameters were based on strain phenotypes measured in batch mono-cultures with 

zero or excess metabolite, and failed to quantitatively predict experimental results. To resolve model-experiment 

discrepancy, we chemically identified the correct exchanged metabolites, but this did not improve model 

performance. We then re-measured strain phenotypes in chemostats mimicking the metabolite-limited community 

environments, while mitigating or incorporating effects of rapid evolution. Almost all phenotypes we measured 

varied significantly with the metabolite environment. Once we used parameters measured in community-like 

chemostat environments, prediction agreed with experimental results. In summary, using a simplified community, 

we uncovered, and devised means to resolve, modeling challenges that are likely general. 

Introduction 

Multi-species microbial communities are ubiquitous. In a community, member species interact in that one species 

alters the physiology of another species. Consequently, communities often display community-level properties not 

achievable by member species in isolation. For example, a community assembled from six intestinal bacterial 

species, but not any of the individual species alone, clears Clostridium difficile infection in mice 1. As another 

example, a two-species community is required for efficient industrial production of Vitamin C 2,3. Thus, even 

simplified communities of a small number of species can be useful for biotechnology applications 4–8. 

An important community-level property is community dynamics, including how species abundance changes over 

time 9. Community dynamics can be predicted using statistical correlation models. For example, community 

dynamics observed over a period of time can be used to construct a model which correlates the abundance of one 

species with the growth rate of another, and the model can then be used to predict future dynamics 10–12. However 

even for two-species communities, statistical correlation models might generate false predictions on species 

coexistence 13. 

Alternatively, mathematical models based on species interaction mechanisms should avoid the pitfalls of 

statistical correlations, but species interactions are generally difficult to identify 9. Genome-scale metabolic 

models use genome sequences, sometimes in conjunction with RNA and protein expression profiles, to predict 

metabolic fluxes within species as well as metabolic fluxes among-species (i.e. metabolic interactions) 14,15. 

However, these models face multiple challenges including unknown protein functions or metabolic fluxes 16. Even 

when interaction mechanisms are known 14,17–20, often a fraction of model parameters are “free” (unmeasured) due 

to difficulties in measuring parameters. The values assigned to free parameters are generally “guesstimates” or 

literature values “borrowed” from a different strain or even a different species, and can vary by orders of 
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magnitude 21. Using free parameters may work for qualitative modeling, but often not for quantitative modeling. If 

there are no free parameters, then model-experiment disagreements would suggest that important pieces are 

missing in either the model or the experiments. 

Previously, we have constructed and mathematically modeled an engineered yeast community CoSMO 

(Cooperation that is Synthetic and Mutually Obligatory) 17. CoSMO consists of two differentially-fluorescent, 

non-mating haploid S. cerevisiae strains (Fig 1A; Fig 1-Table Supplement 1). One strain, designated A-L+, cannot 

synthesize adenine because of a deletion mutation in the ADE8 gene, and over-activates the lysine biosynthetic 

pathway due to a feedback-resistant LYS21 mutation 22. The other strain, designated L-A+, requires lysine because 

of a deletion mutation in the LYS2 gene, and over-activates the adenine biosynthetic pathway due to a feedback-

resistant ADE4 mutation 23. Overproduced metabolites in both strains are released into the environment, which are 

consumed by the partner. In minimal medium lacking adenine and lysine supplements, the two strains engage in 

obligatory cooperation. Released metabolites are rapidly consumed and thus are present at very low 

concentrations in CoSMO. 

We have formulated a differential equation model of the CoSMO dynamics (e.g. Eq. 1-4 in Fig 1B). Population 

growth is dictated by cell birth (which in turn depends on the concentration of the required metabolite) as well as 

cell death, while metabolite concentration is dictated by release and consumption. Model parameters correspond 

to strain phenotypes including metabolite release rate, metabolite consumption per birth, and cell birth and death 

rates (Fig 1B). Even though these phenotypes reflect strain interactions (“interaction phenotypes” in Fig 1A), we 

measured them in mono-cultures to eliminate partner feedback. In our earlier studies, we quantified some of these 

phenotypes and borrowed other from literature values 17,24,25. Our models correctly predicted various properties of 

CoSMO, including the steady state strain ratio 17 as well as qualitative features of spatial patterning 24,25.  

In the current study, we aim to predict CoSMO growth rate (the rate of total population increase), a measure of 

how likely the community can survive periodic dilutions such as those in industrial fermenters 26. Our initial 

model predictions of CoSMO growth rate significantly deviated from experimental measurements. In the process 

of resolving this model-experiment discrepancy, we have uncovered and overcome multiple challenges. Since 

these challenges are likely general, our work serves as a “roadmap” that can be applied to quantitative modeling 

of other simplified microbial communities.  

Results 
Experimentally, CoSMO growth followed a reproducible pattern: after an initial lag marked by slow growth, the 

two populations and thus the entire community grew at a faster rate (Fig 1C, “Experiment”). The latter growth 

rate eventually reached a steady state (Fig 7-Figure Supplement 4A, bottom panels). We wanted to quantitatively 

predict CoSMO’s post-lag steady state growth rate (“growth rate”), with the criterion that model prediction should 

fall within experimental error bars. To predict community growth rate, we either quantified it from simulated 

community dynamics (Fig 1C, dotted lines), or calculated it from an analytical formula (Eq. 15 or 16 in Methods 

“Calculating steady state community growth rate”), with similar results (e.g. Fig 1-Figure Supplement 1). The 

analytical formula suggests that community growth rate is affected by metabolite release rate, metabolite 

consumption per birth, and death rate.  

Initial models based on batch-culture parameters poorly predict community growth rate 

Our first model (Model i) under-estimated community growth rate. Unlike the published strains of A-L+ and L-A+  

in the S288C background 17, strains in this study were constructed in the RM11 background to reduce 

mitochondrial mutation rate 27. Thus, we had to consider re-quantifying strain phenotypes. For each RM11 strain, 
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we measured death rate during starvation using a microscopy batch culture assay 28. We also quantified the 

amount of metabolite consumed per birth in batch cultures grown to saturation (see Fig 4B for details), similar to 

our earlier work 17. Since release rates were tedious to measure, we “borrowed” published release rates of L-A+ 

and A-L+ in the S288C background in batch starved cultures 17. Predicted community growth rates were much 

slower than experimental measurements (Fig 1C “Model i”; Fig 7 grey).  

A revised model (Model ii) without any borrowed parameters over-estimated community growth rate. For this 

model, we directly measured the release rates of RM11 L-A+ and A-L+ in batch starved cultures (see Fig 5A and B 

for details). The release rates of both strains in the RM11 background were ~3-fold higher than those in the 

S288C background (Fig 1-Table Supplement 2). Concomitantly, the predicted community growth rate greatly 

exceeded experiments (Fig 1C, “Model ii”; Fig 7 blue). 

Identifying interaction mediators 

One possible cause for the model-experiment discrepancy could be that cells engineered to overproduce adenine 

or lysine 22,23 might instead release derivatives of adenine or lysine. Consequently, when we quantified 

phenotypes such as metabolite consumption, we could have supplemented the wrong metabolite and been misled. 

A genome-scale metabolic model of S. cerevisiae predicted that although A-L+ likely released lysine, L-A+ likely 

released hypoxanthine or adenosine-(3,5)-biphosphate instead of adenine 29,30. Nanospray desorption electrospray 

ionization mass spectrometry imaging (nanoDESI MS) 31 performed by Julia Laskin lab revealed a lysine gradient 

emanating from A-L+ and hypoxanthine and inosine gradients emanating from L-A+, although the signals were 

noisy (data not available, but see below). 

Indeed, lysine mediates the interaction from A-L+ to L-A+. We subjected A-L+ supernatant to HPLC (high 

pressure liquid chromatography; Methods, “HPLC”) and yield bioassay (Methods, “Bioassays”). In HPLC, a 

compound in A-L+ supernatant eluted at the same time as the lysine standards (Fig 2A), and its concentration 

could be quantified by comparing the peak area against those of lysine standards (Fig 2A inset). In bioassay, we 

quantified the total lysine-equivalent compounds in an A-L+ supernatant by growing L-A+ in it and comparing the 

final turbidity with those of minimal medium supplemented with lysine standards. HPLC quantification agreed 

with the yield bioassay (Fig 2B). Thus, lysine-equivalent compounds released by A-L+ were primarily lysine.  

Hypoxanthine mediates the interaction from L-A+ to A-L+. When we subjected L-A+ supernatants to HPLC, we 

found compounds at the elution times of hypoxanthine and inosine, but not of adenine (Fig 2C). Hypoxanthine but 

not inosine supported A-L+ growth, and inosine did not affect how hypoxanthine stimulated A-L+ growth (Fig 2-

Figure Supplement 1). Hypoxanthine concentration quantified by HPLC agreed with the concentration of purines 

consumable by A-L+ in the yield bioassay (Fig 2D; Methods “Bioassays”). Thus, A-L+ primarily consumed 

hypoxanthine released by L-A+.  

Using phenotypes of A-L+ measured in hypoxanthine versus adenine happened to not affect model performance. 

Death and release rates were not affected since they were measured in the absence of purine supplements. A 

similar amount of hypoxanthine and adenine were consumed to produce a new A-L+ cell (Fig 2-Figure 

Supplement 1). Although the birth rate of A-L+ was slower in the presence of hypoxanthine compared to adenine, 

especially at low concentrations (Fig 2-Figure Supplement 2), this difference did not affect community growth 

rate. Thus, distinguishing whether hypoxanthine or adenine was the interaction mediator did not make a 

difference in predicting community growth rate (Fig 1-Figure Supplement 1). Here, we continue to use “A” to 

represent the adenine precursor hypoxanthine. 
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Rapid evolution during chemostat measurements of strain phenotypes 

Model-experiment discrepancy (Fig 1C) could be caused by phenotypes being quantitatively different when 

measured in batch cultures containing zero or excess metabolite versus in the metabolite-limited CoSMO-like 

environments. Thus, we re-measured strain phenotypes in chemostats 32 that mimicked CoSMO environments. 

Specifically in a chemostat, fresh medium containing the required metabolite (lysine or hypoxanthine) was 

pumped into the culturing vessel at a fixed rate (“dilution rate”), while cell-containing medium exited the 

culturing vessel at the same rate (Methods, “Chemostat culturing”). After an initial adjustment stage, live 

population density reached a steady state (Fig 3A) which meant that the population grew at the same rate as the 

dilution rate (Eq. 5-9 in Methods) 32. By setting chemostat dilution rate to various growth rates experienced by 

CoSMO (i.e. 5.5~8 hr doubling), we mimicked the environments experienced by CoSMO and measured strain 

phenotypes. However, as we demonstrate below, rapid evolution occurred during measurements and needed to be 

mitigated or incorporated in experiments and in modeling. 

In chemostat measurements, ancestral L-A+ was rapidly overtaken by mutants with dramatically improved affinity 

for lysine 33 (Fig 3C; Fig 3-Figure Supplement 2; Methods, “Detecting evolved clones”). These mutants, likely 

being present in the inoculum at a low (~10-6) frequency, grew 3.6-fold faster than the ancestor (Fig 3-Figure 

Supplement 2). Thus, to measure ancestral L-A+ phenotypes, we terminated measurements before mutants could 

take over (<10%; before magenta dashed lines in Fig 3).  

In contrast, the evolutionary effects of A-L+ mutants on CoSMO growth were captured during phenotype 

measurements. Unlike L-A+ mutants, A-L+ mutants were constantly generated from ancestral cells at an extremely 

high rate (on the order of 0.01/cell/generation; Methods “Evolutionary dynamics of mutant A-L+”), presumably 

via frequent chromosome duplication (Fig 3-Figure Supplement 3C). Thus, these mutants were already present at 

a significant frequency (1~10%) even before our measurements started, and slowly rose to 30~40% during 

measurements due to their moderate fitness advantage over the ancestor under hypoxanthine limitation (Fig 3-

Figure Supplement 4; Fig 3-Figure Supplement 3A; Methods, “Detecting evolved clones”). Consequently, we 

actually measured the average phenotypes of an evolving mixture of ancestors and mutants. Fortunately these 

averaged phenotypes could be used to model CoSMO since mutants accumulated in similar fashions during 

phenotype measurements and during CoSMO measurements so long as the two time windows were compatible 

(Fig 3-Figure Supplement 4B).  

Metabolite consumption is sensitive to the environment 

Metabolite consumption per birth depends on the growth environment. Consistent with our previous work 17, 

consumption during exponential growth was higher than that in a culture grown to saturation (Fig 4; Methods, 

“Measuring consumption in batch cultures”), presumably due to exponential cells storing excess metabolites 34. 

Consumption in chemostats (Methods “Quantifying phenotypes in chemostats”, Eq. 10) was in-between 

exponential and saturation consumption (Fig 4C for L-A+ and Fig 4-Figure Supplement 1 for A-L+). Since 

consumption in chemostat was relatively constant across the range of doubling times usually encountered in 

CoSMO (5.5~8 hr), we used the average value in Model iii (dashed line in Fig 4C and Fig 4-Figure Supplement 1; 

Table 1).  

Live L-A+ releases hypoxanthine upon lysine limitation  

Metabolites can be released by live cells or leaked from dead cells. We want to distinguish between live versus 

dead release for the following reasons. First, if death rate were to evolve to be slower, then live release would 
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predict increased metabolite supply whereas dead release would predict the opposite. Second, dead release would 

imply non-specific release and thus cell-cell interactions may be highly complex. Finally, leakage from dead cells 

is thermodynamically inevitable, whereas active release of costly molecules would require an evolutionary 

explanation.  

Hypoxanthine is likely released by live L-A+. In the absence of lysine (Methods, “Starvation release assay”), we 

tracked the dynamics of live and dead L-A+ (Fig 5A, magenta and grey), and of hypoxanthine accumulation (Fig 

5A, lavender). If live cells released hypoxanthine, then hypoxanthine should increase linearly with live cell 

density integrated over time (i.e. the sum of live cell density*hr, Fig 5B Left), and the slope would represent the 

live release rate (fmole/cell/hr). If cells released hypoxanthine upon death, then hypoxanthine should increase 

linearly with dead cell density, and the slope would represent the amount of metabolite released per cell death 

(Fig 5B Right). Since the live release model explained our data better than the dead release model (Fig 5B), 

hypoxanthine was likely released by live cells during starvation. In lysine-limited chemostats, we could not use 

dynamics to distinguish live from dead release (note the mathematical equivalence between Eqs. 8a and 8b in 

Methods “Quantifying phenotypes in chemostats”). Instead, we harvested cells and chemically extracted 

intracellular metabolites (Methods, “Extraction of intracellular metabolites”). Each L-A+ cell on average 

contained 0.12 (+/-0.02, 95% CI) fmole of hypoxanthine (Methods, “HPLC”). If hypoxanthine was released by 

dead cells (~105 dead cells/ml, Fig 3A), we should see 0.012 µM instead of the observed ~10 µM hypoxanthine in 

the supernatant (Fig 3B). Thus, hypoxanthine was likely released by live L-A+ in chemostats.  

Hypoxanthine release rates of L-A+ are similar in lysine-limited chemostats mimicking the CoSMO environments 

(Methods “Quantifying phenotypes in chemostats” Eq. 13; Fig 5-Figure Supplement 1) versus during starvation 

(Fig 5C). Thus, we used the average hypoxanthine release rate (Fig 5C black dashed line; Table 1) in Model iii. 

Note that release rates declined in faster-growing cultures (≤3-hr doubling; Fig 5C), but we did not use these data 

since CoSMO did not grow that fast.  

A-L+ intracellular lysine content and lysine release rate vary with the environment 

Lysine is likely released by live A-L+. When we measured lysine release from starving A-L+ cells (Fig 6-Figure 

Supplement 1A), a model assuming live release and a model assuming dead release generated similar matches to 

experimental dynamics (Fig 6-Figure Supplement 1B and C). However, after measuring intracellular lysine 

content, we concluded that dead release was unlikely since each dead cell would need to release significantly 

more lysine than that measured inside a cell to account for supernatant lysine concentration, especially during the 

early stage of starvation (Fig 6-Figure Supplement 2B).  

Lysine release rate of A-L+ is highly sensitive to the growth environment (Fig 6B, details in Fig 6-Figure 

Supplement 6). Release rate in 7~8 hr chemostat were ~60% more than that during starvation. Lysine release rate 

rapidly declined as hypoxanthine became more available (i.e. as growth rate increased, Fig 6B). Variable release 

rate could be due to variable intracellular lysine content: lysine content per cell increased by several-fold upon 

removal of hypoxanthine (from 2.9 fmole/cell to ~19 fmole/cell; Fig 6A black dotted line), and leveled off at a 

higher level in 8-hr chemostats than during starvation (Fig 6A). We incorporated variable lysine release rate in 

Model iii (Table 1). 
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Parameters measured in community-like environments enable prediction of CoSMO growth rate 

Death rates, which could affect CoSMO growth rate (Methods, Eq. 16), are also sensitive to the environment. We 

measured death rates in chemostats (Methods, “Quantifying phenotypes in chemostats” Eq. 11 or Eq. 14), and 

found them to be distinct from the death rates in zero or excess metabolite (Fig 7-Figure Supplement 1). Since 

death rates were relatively constant in chemostats mimicking the CoSMO environments (Fig 7-Figure Supplement 

1, blue lines), we used the averaged values in Model iii (Table 1; Table 1-Table Supplement 3; Table 1-Table 

Supplement 4).  

Our chemostat-measured model parameters are internally consistent: Mathematical models of L-A+ in lysine-

limited chemostat (Fig 3-Code Supplement 3) and of A-L+ in hypoxanthine-limited chemostat (Fig 6-Code 

Supplement 1) captured experimental observations (Fig 3-Figure Supplement 7; Fig 6-Figure Supplement 5).  

Using parameters measured in chemostats (Table 1), model prediction quantitatively matches experimental results. 

Experimentally, since L-A+ mutants quickly took over well-mixed CoSMO (red in Fig 7-Figure Supplement 2A 
33), we grew CoSMO in a spatially-structured environment so that fast-growing mutants were spatially confined to 

their original locations and remained minority (red in Fig 7-Figure Supplement 2B). Spatial CoSMO growth rates 

measured under a variety of experimental setups (e.g. agarose geometry and initial total cell density) remained 

consistent (0.11± 0.01/hr; Fig 7 purple; Fig 7-Figure Supplement 4). In Model iii based on chemostat-measured 

parameters (Table 1), an analytical formula (Eq. 16 in Methods) and spatial CoSMO simulations both predicted 

CoSMO growth rate to be 0.10 ± 0.01/hr (Fig 7 green and brown). Thus, chemostat parameters allowed our model 

to quantitatively explain experimental CoSMO growth rate (Fig 7 green and brown versus purple).  

Discussions 

Microbial communities are often complex, and thus it is difficult to understand how community-level properties 

emerge from interactions among member species. Here, using a highly simplified community growing in a well-

controlled environment, we illustrate challenges in quantitative modeling and means to overcome them.  

Even when interactions are engineered and thus genetic determinants are known, interaction mediators can be 

non-trivial to identify. In CoSMO, we previously thought that adenine was released by L-A+, whereas in reality, 

hypoxanthine and inosine are released (Fig 2). Fortuitously, hypoxanthine but not inosine affects A-L+ growth 

(Fig 2-Figure Supplement 1). Otherwise, we might be forced to quantify how hypoxanthine and inosine, in 

isolation and in different combinations, might affect A-L+. Even though faster growth of A-L+ in adenine than in 

hypoxanthine does not affect our prediction of CoSMO growth rate (Fig 2-Figure Supplement 2; Fig 1-Figure 

Supplement 1), it could affect predictions on other community properties.  

Another obstacle for model building and testing is rapid evolution during quantification of species phenotypes and 

community properties. For L-A+, mutants pre-exist at a low frequency, but they can grow several-fold faster than 

the ancestor (Fig 3-Figure Supplement 2). Consequently, a population will remain largely (>90%) ancestral only 

for the first 24 hours in the well-mixed chemostat environment (Fig 3). A short measurement time window poses 

additional challenges if, for example, the released metabolite has not accumulated to a quantifiable level. 

Takeover by fast-growing mutants can be impeded by growing cells in a spatially-structured environment (Fig 7-

Figure Supplement 2). For A-L+, mutants are generated from ancestral cells at an extremely high rate during 

phenotype quantification (Methods, “Evolutionary dynamics of mutant A-L+”; Fig 3-Figure Supplement 4). Since 

similar levels of mutants also accumulate in CoSMO (Fig 3-Figure Supplement 4B), we can account for 
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evolutionary effects by using similar quantification time windows for A-L+ phenotypes and for CoSMO growth 

rate. Thus, unless we are extremely careful, we may not even know what we are measuring. The evolutionary 

phenomena here are likely common: Given the large population size of microbial populations, pre-existing 

mutants 35 could quickly take over upon drastic environmental shifts. Eventually, evolving communities could be 

modeled, although replicate communities could evolve divergently 33. 

Many mathematical models “borrow” parameters from a different strain or even a different species. This practice 

can work for qualitative models or even quantitative models where parameter variations do not affect predictions. 

In the case of CoSMO, release rates from two genetic backgrounds differed by several-fold (Fig 1-Table 

Supplement 2). Thus, borrowing parameters could be problematic for quantitative modeling.  

Most mathematical models assume invariant parameters. As we have demonstrated here, phenotypes (e.g. 

metabolite consumption per birth, metabolite release rate, and death rate) measured in zero or excess metabolite 

can differ dramatically from those measured under metabolite limitation (Fig 4; Fig 4-Figure Supplement 1; Fig 

5C; Fig 6B; Fig 7-Figure Supplement 1). Furthermore, even within the range of metabolite limitation experienced 

by CoSMO (doubling times of 5.4~8 hrs), lysine release rate varies by as much as two-fold (Fig 6B), which could 

be caused by variable intracellular metabolite concentrations (Fig 6A). Based on parameters measured in 

chemostats (including variable lysine release rate), Model iii prediction quantitatively agrees with experimental 

results (Fig 7).  

Our work illustrates how a mathematical model can synergize with quantitative measurements. A model suggests 

which parameters need to be carefully measured. For example for spatial CoSMO growth rate, parameters such as 

diffusion coefficients are not critical (Fig 7-Figure Supplement 3), but release rates and consumption are 

(Methods, Eq. 15). Once key parameters have been measured, model-experiment discrepancy suggests important 

missing pieces. When predicting CoSMO growth rate, a missing piece is how phenotype parameters are affected 

by the growth environment.  

Physiology, ecology, and evolution are clearly intertwined. Physiology impacts not only organisms’ evolutionary 

success, but also their ecological interactions with other community members. For example in quorum sensing, 

bacteria at a high cell density enter a different physiological state and release new chemical compounds or 

enzymes 37. As another example, computational work suggests that metabolite secretion can be costly or costless 

to the secretors depending on the environmental context 36. Thus, it is not surprising that quantitative differences 

in physiology (e.g. growth rate) can impact the strength of an ecological interaction (metabolite release and 

consumption). Moreover, evolutionary changes and ecology affect organismal physiology. Thus, extending the 

“ecology-evolution feedback” concept 38–44, we advocate an integrated view of evolution, ecology, and physiology. 
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Methods 

Strains and growth medium 

We constructed CoSMO in the RM11 background due to its lower rate of mitochondrial mutations 27 compared to 

the S288C background used in our earlier studies 45. Thus, phenotypes measured here differed from those 

measured in strains of the S288C background 17,24. We introduced desired genetic modifications into the ancestral 

RM11 background via transformation 46,47 (Fig 1-Table Supplement 1). Strains were stored at -80oC in 15% 

glycerol.  

We used rich medium YPD (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose) in 2% agar plates for isolating 

single colonies. Saturated YPD overnight liquid cultures from these colonies were then used as inocula to grow 

exponential cultures. To prevent purines from being yield-limiting, we supplemented YPD with 100 M 

hypoxanthine for A-L+ cells. We sterilized YPD media by autoclaving. YPD overnights were stored at room 

temperature for no more than 4~5 days prior to experiments. 

We used defined minimal medium SD (6.7 g/L DifcoTM yeast nitrogen base w/o amino acids, 20 g/L glucose) for 

all experiments 48, with supplemental metabolites as noted 48. To achieve higher reproducibility, we sterilized SD 

media by filtering through 0.22 m filters. To make SD plates, we autoclaved 20 g/L BactoTM agar or agarose in 

H2O, and after autoclaving, supplemented equal volume of sterile-filtered 2XSD. CoSMO steady state growth 

rates on agar (which contains trace contaminants of metabolites) and agarose generate similar results.   

Strain culturing and preconditioning 

All culturing, unless otherwise noted, was performed at 30oC in a well-mixed environment where culture tubes 

were inserted side-ways into a roller drum (New Brunswick Scientific, Model TC-7). L-A+ cells were pre-grown 

to exponential phase (OD600  generally less than 0.4 in 13mm culture tubes, or < 2.8x107 cells/ml) in SD 

supplemented with excess (164 µM) lysine and washed 3~5 times with SD. In microscopy assays, when noted, we 

starved L-A+ cells for 4 hours to deplete intracellular lysine storage. Otherwise, we did not prestarve L-A+. A-L+ 

cells were pre-grown to exponential phase in SD supplemented with excess hypoxanthine (100 µM) or excess 

adenine (108 µM) as noted, washed 3~5 times with SD, and pre-starved in SD for 24 hours to deplete cellular 

purine storage. We pre-starved A-L+ to reduce CoSMO growth lag (Fig 1-Figure Supplement 2), thus facilitating 

quantification of CoSMO growth rate. To be consistent, we also pre-starved A-L+ during phenotype quantification. 

Flow cytometry 

We prepared fluorescent bead stocks (ThermoFisher Cat R0300, 3 μm red fluorescent beads). Beads were 

autoclaved in a factory-clean glass tube, diluted into sterile 0.9% NaCl, and supplemented with sterile-filtered 

Triton X-100 to a final 0.05% (to prevent beads from clumping). We sonicated beads and kept them in constant 

rotation to prevent settling. We quantified bead concentrations by counting beads via hemacytometer and Coulter 

counter. Final bead stock was generally 4~8x106/ml.    

Culture samples were diluted to OD 0.01~0.1 (7x105~7x106/ml) in Milli-Q H2O in unautoclaved 1.6ml 

Eppendorf tubes. 90 l of the diluted culture sample was supplemented with 10 µl bead stock and 2 µl of 1 µM 

ToPro 3 (Molecular Probes T-3605), a nucleic acid dye that only permeates compromised cell membranes (dead 

cells). Sample preparation was done in a 96-well format for high-throughput processing.  

Flow cytometry of the samples was performed on Cytek DxP Cytometer equipped with four lasers, ten detectors, 

and an autosampler. Fluorescent proteins GFP, Citrine, mCherry, TagBFP-AS-N (Evrogen), and ToPro are 
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respectively detected by 50 mW 488 nm laser with 505/10 (i.e. 500~515nm) detector, 50 mW 488nm laser with 

530/30 detector, 75 mW 561nm Laser with 615/25 detector, 50 mW 408nm laser with 450/50 detector, and 

25mW 637nm laser with 660/20 detector. Each sample was run in triplicates and individually analyzed using 

FlowJo® software to identify numbers of events of beads, dead cells, and various live fluorescent cells. Densities 

of various populations were calculated from the cell:bead ratios. We then calculated the mean cell density from 

triplicate measurements, with the coefficient of variation generally within 5%~10%.  

HPLC 

All HPLC measurements were done on a Shimadzu Nexera X2 series Ultra High Performance Liquid 

Chromatography (UHPLC) system. All supernatant samples were filtered (0.22 µm filter). For standards, we 

made a high-concentration solution, filtered it, and stored it at -80 oC. Prior to an HPLC run, we diluted the stock 

to various concentrations in filtered H2O. 

To quantify lysine, 100 µl sample was loaded into an Agilent 250 µl pulled point glass small volume insert (Part 

No: 5183-2085), which was then placed inside a Shimadzu 1.5 ml 12x 32 mm autosampler vial (Part No:  228-

45450-91). This vial was then placed into an autosampler (Nexera X2 SIL-30AC). Prior to injection into the 

column, samples were derivatized at 25oC with freshly-made derivatization reagents in the autosampler using a 

programmed mixing method as following. 7.5 µl of sample was removed and placed into a separate reaction small 

volume insert and vial. Next, 45 µl of mercaptopropionic acid (10 µl per 10 ml 0.1 M sodium borate buffer, pH 

9.2) and 22 µl of o-phthaladehyde (10 mg per 5 ml  0.1 M sodium borate buffer, pH 9.2) were added to this vial, 

mixed, and incubated for 1 minute. 10 µl of 9-fluorenyl methyl chloroformate (4 mg per 20 ml acetonitrile, HPLC 

grade) was then added and the sample was re-mixed and incubated for 2 minutes. Finally, 10 µl of the reaction 

mixture was injected onto Phenomenex Kinetex® 2.6 µm EVO C18 100 Å LC Column (150 x 3.0 mm, Part No: 

00F-4725-Y0) fitted with a  SecurityGuard™ ULTRA Holder for UHPLC Columns (2.1 to 4.6 mm, Part No AJ0-

9000) and a SecurityGuard™ ULTRA cartridge (3.0 mm internal diameter, Part No: AJ0-9297). SecurityGuard™ 

ULTRA cartridge (pre-column) was periodically replaced in the event of pressure reading exceeding the 

manufacturer’s specifications.  

Compounds were eluted from the column using a gradient of HPLC-grade Solution A (73 mM Potassium 

Phosphate, pH 7.2) and Solution B (50:50 acetonitrile/methanol).  Solution A was filtered through a 0.2 µm filter 

prior to use. The % solution B follows the following program: 0-2 minutes 11%, 2-4 minutes 17%, 4-5.5 minutes 

31%, 5.5 -10 minutes 32.5%, 10-12 minutes 46.5%, and 12 – 15.5 minutes 55%. The flow rate is maintained at 

0.1 ml/minute. The column was then flushed with 100% solution B for 5 minutes, and re-equilibrated for 5 

minutes with 11% solution B at 0.8 ml/min. The column was maintained at a running temperature of 35 oC in a 

Nexera X2 CTO-20A oven. Absorbance measurements at 338 nm were measured using a high sensitivity flow 

cell for a SPD-M30A UV-Vis detector.  

For purines, we used the above protocol without the derivatization steps. Instead, 5~10 l sample was directly 

injected onto the column. 

Bioassays 

We used a yield bioassay for relatively high metabolite concentrations (≥ 5 µM for lysine and ≥2 µM for 

hypoxanthine). For lower concentrations, we used a rate bioassay with a sensitivity of 0.1 µM for both lysine and 

hypoxanthine (Fig 3-Figure Supplement 1). When necessary, we diluted the sample to get into the assay linear 

range. 
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In the yield bioassay, 75 µl sample filtered through a 0.2 µm filter was mixed with an equal volume of a master 

mix containing 2x SD (to provide fresh medium) as well as tester cells auxotrophic for the metabolite of interest 

(~1x104 cells/ml, WY1335 for lysine or WY1340 for hypoxanthine) in a flat-bottom 96-well plate. We then 

wrapped the plate with parafilm and allowed cells to grow to saturation at 30oC for 48 hrs. We re-suspended cells 

using a Thermo Scientific Teleshake (setting #5 for ~1 min) and read culture turbidity using a BioTek Synergy 

MX plate reader. Within each assay, SD supplemented with various known concentrations of metabolite were 

used to establish a standard curve that related metabolite concentration to final turbidity (e.g. Fig 2-Figure 

Supplement 1A). From this standard curve, the metabolite concentration of an unknown sample could be inferred.  

The rate bioassay was used for samples with low metabolite concentrations. For example, to measure lysine 

concentration in a lysine-limited chemostat, we mixed 150μl  filtered sample with an equal volume of master mix 

containing 2x SD and L-A+ tester cells (~1x104 cells/ml) in a flat-bottom 96-well plate. As our tester strain for 

lysine, we used an evolved clone (WY 2270) isolated after L-A+ had grown for tens of generations under lysine 

limitation. This clone displayed increased affinity for lysine due to an ecm21 mutation and duplication of 

Chromosome 14. Growth rates of the tester strain in SD supplemented with various known concentrations of 

lysine and in the unknown sample were measured using a microscopy assay (Methods, “Microscopy 

quantification of growth phenotypes”). The growth rate of WY 2270 tester cells scaled linearly with lysine 

concentrations up to 1 µM (Fig 3-Figure Supplement 1A). Similarly, for hypoxanthine, we used an evolved A-L+ 

strain (WY1600) as the tester strain. The linear range was up to ~0.3 µM (Fig 3-Figure Supplement 1B). From the 

standard curve, we could infer the metabolite concentration of a sample.  

Extraction of intracellular metabolites 

To extract intracellular metabolites, we poured a cell culture onto a 0.45 µm nitrocellulose membrane filter 

(BioRad, Cat# 162-0115) in a reusable filtration device (Southern Labware Product FHMA25, glass 

microanalysis 25mm vacuum filter holder with 15mL funnel), applied vacuum to drain the supernatant, 

transferred the filter into extraction solution (40% acetonitrile, 40% methanol, 20% water), vortexed to dislodged 

cells, and then removed the filter. This sequence was carried out as rapidly as possible (<10 seconds). We then 

flash-froze the extraction solution in liquid nitrogen, and allowed it to thaw at -20˚C. After thawing, we subjected 

the solution through 5 rounds of the following: vortexing for 1 minute, and incubating on ice for 5 minutes 

between each vortexing. We then spun down the solution in a refrigerated centrifuge for 10 min at 14,000 rpm to 

pellet ghost cells as well as any membrane filter bits that may have disintegrated into the extraction solution. We 

transferred the supernatant containing soluble cell extract to a new tube. In order to make sure that all soluble 

components were extracted, we re-suspended the cell pellet in a half-volume of fresh extraction solution and 

subjected cells through another round of the same procedure (flash-freezing, five rounds of vortexing-ice 

incubation, and centrifugation). We then removed the supernatant, and added it to the original supernatant. We 

then dried off the extraction solution in a centrifugal evaporator and re-suspended soluble components in water. 

This resultant solution could then be assayed for metabolite concentrations. When properly dried, extracts did not 

contain inhibitors that might interfere with bioassays (Fig 2-Figure Supplement 3).   

For L-A+, cells from 19 ml cultures (4x105 ~ 4x106 cells/ml) were re-suspended in 3 ml extraction buffer. One 

third of the sample was further processed, and extracted metabolites were re-suspended in 0.5 ml water. For A-L+, 

metabolites from 1~5 ml cultures (1~6x106 cells/ml) were extracted and re-suspended in 1 ml water.  
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Microscopy quantification of growth phenotypes  

See 28 for details on microscopy and experimental setup, method validation, and data analysis. Briefly, cells were 

diluted to low densities to minimize metabolite depletion during measurements. Dilutions were estimated from 

culture OD measurement to result in 1000~5000 cells inoculated in 300 µl SD medium supplemented with 

different metabolite concentrations in wells of a transparent flat-bottom microtiter plate (e.g. Costar 3370). We 

filled the outermost wells with water to reduce evaporation. 

Microtiter plates were imaged periodically (every 0.5~2 hrs) under a 10x objective in a Nikon Eclipse TE-2000U 

inverted fluorescence microscope. The microscope was connected to a cooled CCD camera for fluorescence and 

transmitted light imaging. The microscope was enclosed in a temperature-controlled chamber set to 30oC. The 

microscope was equipped with motorized stages to allow z-autofocusing and systematic xy-scanning of locations 

in microplate wells, as well as motorized switchable filter cubes capable of detecting a variety of fluorophores. 

Image acquisition was done with an in-house LabVIEW program, incorporating bright-field autofocusing 28 and 

automatic exposure adjustment during fluorescence imaging to avoid saturation. Condensation on the plate lid 

sometimes interfered with autofocusing. Thus, we added a transparent “lid warmer” on top of our plate lid 28, and 

set it to be 0.5oC warmer than the plate bottom, which eliminated condensation. We used an ET DsRed filter cube 

(Exciter: ET545/30x, Emitter: ET620/60m, Dichroic: T570LP) for mCherry-expressing strains, and an ET GFP 

filter cube (Exciter: ET470/40x, Emitter: ET525/50m, Dichroic: T495LP) for GFP-expressing strains. 

Time-lapse images were analyzed using an ImageJ plugin Bioact2 28. Bioact2 measured the total fluorescence 

intensity of all cells in an image frame after subtracting the background fluorescence from the total fluorescence. 

A script plotted background-subtracted fluorescence intensity over time for each well to allow visual inspection. 

If the dynamics of four positions looked similar, we randomly selected one to inspect. In rare occasions, all four 

positions were out-of-focus and were not used. In a small subset of experiments, a discontinuous jump in data 

appeared in all four positions for unknown reasons. We did not calculate rates across the jump. Occasionally, one 

or two positions deviated from the rest. This could be due to a number of reasons, including shift of focal plane, 

shift of field of view, black dust particles, or bright dust spots in the field of view. The outlier positions were 

excluded after inspecting the images for probable causes. If the dynamics of four positions differed due to cell 

growth heterogeneity at low concentrations of metabolites, all positions were retained.  

We normalized total intensity against that at time zero, and averaged across positions. We calculated growth rate 

over three to four consecutive time points, and plotted the maximal net growth rate against metabolite 

concentration (e.g. Fig 2-Figure Supplement 2). If maximal growth rate occurred at the end of an experiment, then 

the experimental duration was too short and data were not used. For L-A+, the initial stage (3~4 hrs) residual 

growth was excluded from analysis. For A-L+, since cells had already been pre-starved, fluorescence intensity did 

not continue to increase in the absence of supplements. 

For longer A-L+ imaging (30+ hr), we observed two maximal growth rates at low hypoxanthine concentrations 

(e.g. ~0.4 M) possibly due to mutant clones (Fig 3-Figure Supplement 3). We used the earlier maximal growth 

rate even if it was lower than the later maximal growth rate, since the latter was probably caused by faster-

growing mutants. 

Chemostat culturing 

We have constructed an eight-vessel chemostat with a design modified from 49. For details of construction, 

modification, calibration, and operation, see 50.  
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For L-A+, due to rapid evolution, we tried to devise experiments so that live and dead populations quickly reached 

steady state. Two conditions seemed to work well. In both, we first calculated the expected steady state cell 

density by dividing the concentration of lysine in the reservoir (20 µM) by fmole lysine consumed per new cell.  

Condition 1: Wash exponentially-growing cells to completely remove any extracellular lysine and inoculate the 

full volume (19 ml) at 100% of expected steady state density. Start chemostat to drip in lysine at the pre-specified 

flow rate. Condition 2: Wash exponentially growing cells to remove extracellular lysine and inoculate 50%~75% 

of the volume at 1/3 of the expected steady state density. Fill the rest of the 19ml vessel with reservoir media 

(resulting in less than the full 20 µM of starting lysine, but more than enough for maximal initial growth rate, 

~10-15 µM). The two conditions yielded similar results (Fig 3). We predominantly used Condition 2. 

We set the pump flow rate to achieve the desired doubling time T (19ml*ln(2)/T). We collected and weighed 

waste media for each individual culturing vessel to ensure that the flow rate was correct (i.e. total waste 

accumulated over time t was equal to the expected flow rate*t). We sampled cultures periodically to track 

population dynamics using flow cytometry (Methods, “Flow cytometry”), and filtered supernatant through a 0.45 

µm nitrocellulose filter and froze the supernatant for metabolite quantification at the conclusion of an experiment 

(Methods, “Bioassays”). At the conclusion of an experiment, we also tested input media for each individual 

culturing vessel to ensure sterility by plating a 300 µl aliquot on an YPD plate and checking for growth after two 

days of growth at 300C. If a substantial number of colonies grew (>5 colonies), the input line was considered 

contaminated and data from that vessel was not used. 

A-L+ cells exponentially growing in SD+100 M hypoxanthine were washed and prestarved for 24 hrs. We then 

filled the chemostat culturing vessel with starved cells in SD at 100% of the expected starting density and pumped 

in fresh medium (SD+ 20 M hypoxanthine) to achieve the desired doubling time. Cultures were otherwise 

treated as described above for L-A+. 

For most experiments, we isolated colonies from end time point and checked percent evolved (Methods, 

“Detecting evolved clones”). For L-A+, we only analyzed time courses where >90% of population remained 

ancestral. For A-L+, significant levels of mutants were generated before and throughout quantification (Fig 3-

Figure Supplement 4). Since quantified phenotypes did not correlate strongly with % mutants (Fig 3-Figure 

Supplement 6) and since mutants accumulated similarly during chemostat measurements and during CoSMO 

growth rate measurements (Fig 3-Figure Supplement 4B), we used the time window for CoSMO growth rate 

quantification (~96 hrs) in A-L+ chemostat experiments. 

Quantifying phenotypes in chemostats 

We illustrate how we quantify release rate, consumption amount per birth, and death rate in chemostats, using L-

A+ as an example. In a lysine-limited chemostat, live cell density [ ]liveL A  is increased by birth (at a rate 𝑏𝐿), and 

decreased by death (at a rate 𝑑𝐿) and dilution (at a rate dil):  

[ ] ( )[ ]live L L lived L A dt b d dil L A           (Eq. 5). 

Dead cell density [ ]deadL A 
 is increased by death and decreased by dilution 

[ ] [ ] [ ]dead L live deadd L A dt d L A dil L A           (Eq. 6). 

L, lysine concentration in the culturing vessel, is increased by the supply of fresh medium (at concentration L0), 

and decreased by dilution and consumption (with each birth consuming Lc  amount of lysine). 
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0 [ ]L L livedL dt L dil L dil c b L A          (Eq. 7). 

Finally, hypoxanthine concentration A is increased by release (either from live cells at Ar  per live cell per hr or 

from dead cells at ,A dr  per death), and decreased by dilution. 

[ ]A livedA dt r L A dil A           (Eq. 8a, if live release) 

or 

, [ ]A d L livedA dt r d L A dil A          (Eq. 8b, if dead release). 

 

Note that at the steady state (denoted by subscript “ss”), net growth rate is equal to dilution rate (setting Eq. 5 to 

zero):  

 L Lb d dil            (Eq. 9). 

To measure metabolite consumed per cell at steady state, we set Eq. 7 to zero 

   0 , 0 ,[ ] ~ [ ]      L L live ss live ssc L dil L dil b L A L L A      (Eq. 10). 

Here, the approximation holds because the concentration of lysine in chemostat (L) is much smaller than that in 

reservoir (L0) and because birth rate bL is similar to dilution rate dil. 

To measure death rate at steady state, we set Eq. 6 to zero, and get 

, ,[ ] [ ]L dead ss live ssd dil L A L A                                                (Eq. 11). 

Thus, we can measure death rate by measuring the steady state dead and live population densities averaged over 

time. 

To measure release rate at steady state, we can set Eq. 8a to zero and obtain: 

,[ ]A ss live ssr dil A L A            (Eq. 12). 

Alternatively, we can use both the pre-steady state and steady state chemostat dynamics to quantify release rate 

and death rate if these rates are constant. For release rate, we multiply both sides of Eq. 8a with 
dil te 

 

[ ]dil t dil t dil t
A livedA dt dil r L eA Ae e         or   [ ]dil t dil

l v
t

A i ed A dt r Le A e    . 

We have 
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0

[ ]

t

A live
dil t dile e dA r L A              (Eq. 13). 

How do we calculate 

0

( )

t

f d   from experimental data? The value of integral is always zero at t=0. For each time 

point t t  , the integral is the integral at the previous time point t (i.e. 

0

( )

t

f d  ) plus 
( ) ( )

2

f t f t t
t

  
 . If 

we plot 
dil tAe 

 against 

0

[ ] dil
t

livee dL A   
 , since the initial A is zero, we should get a straight line through 

origin with a slope of Ar  (Fig 5-Figure Supplement 1, blue). 

Similarly from Eq. 6, if death rate is constant, we have 

0

[ ] [ ] ( 0) [ ]

t

dead dead L live
dil t dilL A L A te dA ed L               (Eq. 14). 

If we plot [ ]dea
dil t

d eL A  
 against 

0

[ ] dil
t

live e dL A   
 , we should get a straight line with a slope of Ld  (Fig 

5-Figure Supplement 1, grey). 

The two methods (using only the steady state data versus performing linear regression on the entire data range) 

yielded similar results. We have opted for the latter method since it takes advantage of pre-steady-state data.  

Detecting evolved clones 

To detect evolved clones in an L-A+ culture, we diluted it to <1000 cells/ml and plated 300 µl on YPD plate and 

allowed colonies to grow for 2~3 days. We randomly picked 20~50 colonies to inoculate into YPD and grow 

saturated overnights. We diluted each saturated overnight 1:6000 into SD+164 M lysine, and allowed cultures to 

grow overnight at 30oC to exponential phase. We washed cells 3x with SD, starved them for 4-6 hours to deplete 

vacuolar lysine stores, and diluted each culture so that a 50 l spot had several hundred cells. We spotted 50 l on 

SD plate supplemented with 1.5 M lysine (10 spots/plate), and allowed these plates to grow overnight. When 

observed under a microscope, evolved cells with increased lysine affinity would grow into “microcolonies” of 

~20~100 cells, while the ancestral genotype failed to grow (Fig 3-Figure Supplement 2C). Occasionally an 

intermediate phenotype was observed where smaller microcolonies with variable sizes formed, and this phenotype 

was counted as evolved as well. For a high-throughput version of this assay, we diluted YPD saturated culture 

10,000x into SD and waited for 3 hrs at room temperature. We then directly spotted 50 l on SD plates 

supplemented with 1.5 M lysine. Ancestral cells formed  10 cell-clusters, but we could still clearly distinguish 

ancestor versus evolved clones.  
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To detect evolved clones in an A-L+ culture, we took advantage of the observation that evolved clones with 

improved affinity for hypoxanthine grew slowly when hypoxanthine concentration was high (Fig 3-Figure 

Supplement 3A). Similar fitness tradeoff has been observed for L-A+ 33 and in many other examples 51–54. From an 

A-L+ culture, we randomly picked colonies and made individual YPD overnights in a 96-well plate. We diluted 

YPD overnights 1:3,600 fold into SD+100 M hypoxanthine or 108 M adenine, and grew for 16~24 hr. Some of 

these cultures were not turbid while other cultures and the ancestor reached near saturation (Fig 3-Figure 

Supplement 3B). We considered these low-turbidity cultures as evolved, and they generally grew faster than the 

ancestor in low (0.4 M) hypoxanthine (Fig 3-Figure Supplement 3A, compare blue, grey, and green against 

magenta). 

Starvation release assay 

For L-A+, we washed exponential phase cells and diluted each sample to OD~0.1 to roughly normalize cell density. 

We took an initial cell density reading of each sample by flow cytometry, wrapped tube caps in parafilm to limit 

evaporation, and incubated in a rotator at 300C. Prep time (from the start of washing to the initial cell density 

reading) took approximately two hours, during which time the majority of residual growth had taken place. At 

each time point we measured live and dead cell densities by flow cytometry, and froze an aliquot of supernatant 

where supernatant had been separated from cells by filtering through sterile nitrocellulose membrane. We 

concluded the assay after approximately 24 hours, generally aiming for time points every six hours. At the 

conclusion of the assay, we quantified hypoxanthine concentration for each sample using the yield bioassay 

(Methods, “Bioassays”). The slope of the linear regression of integrated live cell density over time (cells/ml*hr) 

versus hypoxanthine concentration (µM) gave us the release rate.  

For A-L+, the starvation release assay was similar, except that the assay lasted longer with less frequent time 

points to accommodate the longer assay. Pre-growth in 108 µM Ade versus 100 µM hypoxanthine generated 

similar release rates, and thus we pooled the data.  

Evolutionary dynamics of mutant A-L+   

Mutant A-L+ clones were alike, and they grew ~50% slower than the ancestor in excess hypoxanthine (Fig 3-

Figure Supplement 3A). This has allowed us to rapidly quantify mutant abundance (Fig 3-Figure Supplement 3B; 

Methods, “Detecting evolved clones”). The high abundance of mutants during exponential growth is surprising, 

especially given the large (~50%) fitness disadvantage of mutants (Fig 3-Figure Supplement 3A). Whole-genome 

sequencing of a randomly-chosen evolved A-L+ clone (WY2447) revealed evidence for aneuploidy (Fig 3-Figure 

Supplement 3C; Methods “Genomic Analysis”). Assuming a chromosomal mis-segregation rate of 

0.01/generation/cell and incorporating the fitness difference between ancestor and mutant in various hypoxanthine 

concentrations (Fig 3-Figure Supplement 5A), our mathematical models (Fig 3-Code Supplements 1 and 2) 

qualitatively captured experimental observations (Fig 3-Figure Supplement 5B and C). This extraordinarily high 

mutation rate is possibly due to an imbalance in purine intermediates in a purine auxotroph, and is in-line with the 

highest chromosomal mis-segregation rate observed in chromosome transmission fidelity mutants (up to 

0.015/generation/cell) 55. In low concentrations of hypoxanthine (<1 µM), the fitness difference between mutant 

and ancestral A-L+ varied from -30% to 70% (right panel of Fig 3-Figure Supplement 5A), consistent with the 

dynamics of mutant A-L+ in chemostats. 

Ancestral and evolved clones exhibited distinct phenotypes (Fig 3-Figure Supplement 3A and D). However, 

measured phenotype values were not significantly correlated with % mutants at the end of an experiment. This 
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was due to the relatively narrow spread in % mutants and the relatively large measurement errors (Fig 3-Figure 

Supplement 6).  

Measuring consumption in batch cultures 

To measure consumption in exponential cultures, we diluted exponentially growing cells to ~1x106 cell/ml in SD 

supplemented with ~100µM metabolite, and measured cell density (Methods, “Flow cytometry”) and metabolite 

concentration (Methods, yield assay in “Bioassays”) every hour over six hours. For an exponential culture of size 

N(t) growing at a rate g while consuming metabolite M, we have 

dN dt gN

dM dt cgN



 
. 

Thus, dM dN
c

dt dt
  . Integrating both sides, we have M(t)-M(0)=-c(N(t)-N(0)). Thus, if we plot M(t) against N(t), 

the slope is consumption per birth. We disregarded time points after which M had declined to less than 10 µM 

even though cells could still grow at the maximal growth rate. 

We also measured consumption after cells fully “saturated” the culture and used intracellular stores for residual 

growth. We starved exponentially-growing cells (3-6 hours for L-A+, 24 hours for A-L+) to deplete initial 

intracellular stores and inoculated ~1x105 cells/ml into various concentrations of the cognate metabolite up to 25 

µM. We incubated for 48 hours and then measured cell densities by flow cytometry. We performed linear 

regression between input metabolite concentrations and final total cell densities within the linear range, forcing 

the regression line through origin. Consumption per birth in a saturated culture was quantified from 1/slope. 

Measuring the upper bound of release rate in excess metabolites 

To measure release rate in an exponentially-growing population in excess metabolites, we note that 

dM
rN

dt
  

where M is metabolite concentration, r is the release rate, and N is live population density. Let g be growth rate, 

then after integration, we have 

0

0 0

( ) (0) (0) ( )

T T
gt gt Tr r

M T rNdt rN e dt N e N T
g g

     . 

The approximation holds when N(T)>>N(0), which is true experimentally. 

We grew cells in excess metabolite (lysine or hypoxanthine) exponentially to time T when OD600 < 0.5 (i.e. 

<1.6x107/ml). Supernatants were assayed for released metabolite using the rate bioassay (Methods, “Bioassays”). 

Since M(T) was below the sensitivity of detection (~0.1 µM; Fig 3-Figure Supplement 1) for both strains, we used 

0.1 µM as M(T), growth rate (0.47~0.48/hr for L-A+ and 0.43~0.44/hr for A-L+), and N(T) (1.4~1.6x107/ml) to 

calculate the upper bound for release rate r.  
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Genomic Analysis  

High-quality genomic DNA was extracted using the QIAGEN Genomic-tip 20G kit (CAT No. 10223) or the 

Zymo Research YeaStar Genomic DNA Kit (CAT No. D2002). DNA fragmentation and libraries were prepared 56 

using a Nextera DNA Sample Preparation Kit with 96-custom barcode indices 57 and TruSeq Dual Index 

Sequencing Primers. Libraries were pooled and multiplexed on a HiSeq2000 lane (Illumina) for 150 cycle paired-

end reading. A custom analysis pipeline written in Perl incorporated the bwa aligner 58 and samtools 59 for 

alignment file generation, GATK for SNP/indel calling 60, and cn.MOPs for local copy-number variant calling 61. 

Finally, a custom Perl script using vcftools 62 was used to automate the comparison of an evolved clone with its 

ancestor. All called mutations were validated by visual inspection in the IGV environment 63. 

Ploidy was calculated using custom python and R scripts. Read depth was counted for each base, and averaged 

within consecutive 1000-bp windows. Then, the average coverage of each 1000-bp window was normalized 

against the median of these values from the entire genome, and log2 transformed.  Transformed data were plotted 

as box-plots for each chromosome/supercontig. All code is publically available at 

https://github.com/robingreen525/ShouLab_NGS_CloneSeq. 

Calculating death rate in non-limited batch culture 

We grew cells to exponential phase in SD + excess supplements. While still at a low density (<107 

cells/ml), we measured live and dead cell densities using flow cytometry to yield dead/live ratio. Since 

the percentage of dead cells was small, we analyzed a large volume of sample via flow cytometry to 

ensure that at least 400 ToPro3-stained dead cells were counted so that the sampling error ( 2 N N ) 

was no more than 10%. We also calculated growth rates using optical density readings for the two hours 

before and after flow cytometry measurement to yield net growth rate g. In exponentially-growing cells,  

( )
dLive

b d Live
dt

dDead
d Live

dt

  

 

 

where b and d are respectively birth and death rates of cells. 

Thus, 

( )

( )

( 0)

( 0)





 

 
 

 

b d t

b d t

Live Live t e

d Live t d
Dead e Live

b d b d

, or: 

( ) /d b d Dead Live   . 

Thus, the ratio of dead to live cells is the ratio of death rate to net growth rate. The death rate of lys2- 

cells in excess lysine ranged from 10-4 to 10-3/hr. This large variability persisted despite our using the 

same culture master mix to grow independent cultures. 
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Quantifying spatial CoSMO growth dynamics 

In all experiments, L-A+ cells were grown to exponential phase in SD plus lysine, and washed free of lysine. A-L+ 

cells were grown to exponential phase in SD plus hypoxanthine, washed, pre-starved in SD for 24 hrs, and 

washed again. Pre-starvation was intended to deplete cellular hypoxanthine storage and to shorten CoSMO 

growth lag (Fig 1-Figure Supplement 2). We grew spatial CoSMO in two configurations: “column” versus 

“spotting”. 

In the column setting, to prevent potential metabolite cross-contamination, we over-filled non-neighboring wells 

(i.e. 24 wells per deep 96-well plate) with 2xSD+2% agar, and covered the surface with a sterile glass plate to 

form a flat agar surface with no air bubbles. After solidification, we removed the glass plate and removed extra 

agar between filled wells using sterile tweezers. This results in agar depth of 3 cm. For the rest of the experiment, 

when not setting up or sampling, we covered the plate with a sterile lid, suspended above wells by thick 

toothpicks. We wrapped plates with parafilm to reduce agar drying. We mixed strains at a 1:1 ratio and filtered 

them through MF membrane (HAWP04700 from Millipore, Billerica, MA) to achieve 3000 cells/mm2 density on 

the filter (see 24 for details). We then punched 8 mm diameter disks and transferred one disk to each agarose well, 

resulting in ~1.5x105 cells/disk. For each time point, we used tweezers (ethanol-flame sterilized between samples) 

to pick 2~3 disks, and suspended each in water prior to flow cytometry measurements.  

In the spotting setting, in an 85 mm petri dish we poured ~25ml 2xSD + 2% agarose + a small amount of lysine 

(generally 0.7 µM to minimize the lag phase during CoSMO growth) to achieve an agar/agarose depth of 5mm. 

After solidification, we used a sterile blade to cut and remove ~2mm strips out of the agar to create six similarly 

sized sectors on the plate with no agarose connections between them (Fig 7-Figure Supplement 4A). We 

inoculated plates by spotting 15µl of strains at a 1:1 ratio onto plates to result in ~4x104 cells/patch (4 mm 

inoculum radius). Cells were grown and sampled as in the column setting, except that we cut out the agarose 

patch containing cells, submerged it in water, vortexed for a few seconds, and discarded agarose.  

For both setups, we used 9x107 total cells as a cutoff for CoSMO growth rate calculation. We used this cut-off 

because exponential CoSMO growth rate was observed beyond 9x107 total cells, suggesting that no other 

metabolites were limiting by then. 

Simulating spatial CoSMO growth 

We modified our previous individual-based spatial CoSMO model 24 so that in each time step, metabolite 

consumption and release of each cell scaled linearly with cell’s biomass to reflect exponential growth. The model 

used parameters in Table 1. The release rate of lysine for each A-L+ cell at each time-step was linearly 

interpolated based on the local concentration of hypoxanthine (Table 1-Table Supplement 4). We simulated 

CoSMO growth in two different settings: (1) cells were initially uniformly distributed on the surface of an agar 

column; (2) cells were initially spotted in the middle of an agar pad according to the experimental setup. The 

simulation domain used for setting (1) was 500 μm × 500 μm in the lateral x and y dimensions; for setting (2), the 

agarose domain was 800~960 µm on each side (5 µm/grid), and the size of the inoculation spot was ¼x¼=1/16 of 

the agarose domain. In both (1) and (2) settings, the z dimension in simulation varied according to the 

experimental setup (5 mm ~3 cm). For metabolite diffusion within the community, we used either a single 

diffusion coefficient (D = 360 μm2/s; Fig 7-Code Supplement 1) or  two diffusion coefficients (D = 360 μm2/s 

measured in agarose and D = 20 μm2/s measured in yeast community 24; Fig 7-Code Supplement 2). Both codes 

are for spotting inoculation, but the inoculation spot can be increased to cover the entire surface. Regardless of the 

simulation setup, we obtained a similar steady state community growth rate. 
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Calculating steady state community growth rate 

When CoSMO achieves the steady state growth rate, both strains will grow at the same rate as the community 

(gcomm). This means that L and A concentrations do not change, and Eqs 1-4 (Fig 1) become: 

[ ] [ ] ( )[ ]

[ ] [ ] ( )[ ]

L L comm

A A comm

L L L L comm L

A A A A comm A

b d g

b d g

r A L c b L A c g d L A

r L A c b A L c g d A L

     

     

 

 

  

  

 

Combine the last two equations, we get 

( )( )A L A L comm L comm Ar r c c g d g d   . 

Solving this, we get 

2( ) ( )

2 4

A L A L A L
comm

A L

d d r r d d
g

c c

 
    .   (Eq. 15).   

For Model iii, given our parameter values (Table 1),  
(𝑑𝐴−𝑑𝐿)

2

4
≪

𝑟𝐴𝑟𝐿

𝑐𝐴𝑐𝐿
 . Thus, we obtain 

( )

2

A L A L
comm

A L

d d r r
g

c c


           (Eq. 16). 

rL, lysine release rate of A-L+, varies with growth rate (Fig 7). When we focus on doubling times between 5.5 to 8 

hrs, a range experienced by CoSMO, then we arrive at the following correlation (Fig 6B green dotted line): 

 1.853 11.388L Ar g   where gA is the net growth rate of A-L+. 

Since at steady state growth rate gA = gcomm, we have 

0.27(1.853 11.388* )0.015 0.0024

2 2 3.1*5.4

commA L A L
comm

A L

gd d r r
g

c c

 
      . 

 
2

(1.853 11.388*0.0087 0.0161 0.0298 0.1) 833comm comm commg g g     . That is, 

2 0.200 0.030 0comm commg g   .  

Thus, gcomm=0.10 /hr         (Eq. 17) 

corresponding to a doubling time of 6.9 hrs. 

To estimate the uncertainty in our prediction of gcomm, we use the variance formula for error propagation. 

Specifically, let f be a function of 𝑥𝑖 (i=1, 2,…, n). Then, the error of f, 𝑠𝑓, can be expressed as 

𝑠𝑓
2 =∑(

𝜕𝑓

𝜕𝑥𝑖
𝑠𝑥𝑖)

2
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where 𝑠𝑥𝑖 is the uncertainty of xi. 

Thus, for each of the six parameters in Eq. 16, we divide its 95% confidence interval (Table 1) by 2 to obtain error 

s. For lysine release rate rL, we use the value measured in chemostats with a 7-hr doubling time which closely 

corresponds to CoSMO doubling time.  

2
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2
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Summing all terms and taking the square root, we have an error of 0.004 for gcomm. Thus, the 95% confidence 

interval is +/- 0.01.  

We did not calculate the uncertainty of our spatial simulation prediction, since we did not solve the spatial model 

analytically. However, given that predicted community growth rates with or without diffusion are similar (Fig 7), 

we expect that the two predictions should share similar uncertainty. 
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Figures 

Fig 1. Model-experiment discrepancy in CoSMO growth dynamics 

Fig 1: (A) CoSMO comprises two non-mating, cross-feeding yeast strains expressing different fluorescent 

proteins. Here, we use the lysine-mediated interaction as an example to illustrate interaction-initiating and 

interaction-responding phenotypes. (B) A mathematical model of well-mixed CoSMO. For example, [L-A+], the 

density of L-A+, increases due to cell birth (which is a function of lysine concentration L) and decreases due to 

cell death. Lysine concentration L increases due to release by A-L+, and decreases due to consumption coupled to 

L-A+ birth. (C) Model-experiment discrepancy. In experiments (squares; data listed in Fig 1-Table Supplement 2),  

L-A+ and A-L+ growing exponentially in excess lysine or adenine were washed and preconditioned (“Strain 

culturing and preconditioning” in Methods). They were mixed at 1:1 in SD at time zero to form CoSMO, which 

was then cultured in a well-mixed environment and diluted as needed to ensure that no other nutrients were 

limiting. Population dynamics were tracked using flow cytometry (“Flow cytometry” in Methods), and dilutions 

were taken into account when calculating accumulative cell densities. CoSMO initially grew slowly (prior to grey 

dotted line), and then grew faster. We simulated CoSMO population dynamics (dotted lines; Fig 1-Code 

Supplement 1) using Eq. 1-4 (B) where parameters were measured in batch cultures (Fig 1-Table Supplement 2). 

Models i and ii differed in that the release rates of the two strains were “borrowed” from our previous 

measurements in the S288C background (Model i) or directly measured in the RM11 background (Model ii).  
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Fig 2. Lysine and hypoxanthine mediate interactions in CoSMO  

Fig 2: (A, B) Lysine mediates the interaction from A-L+ to L-A+. (A) A-L+ releases lysine. Supernatants of A-L+ 

(magenta), as well as SD supplemented with various concentrations of lysine standards (black) were derivatized 

and run on HPLC (Methods, “HPLC”). Inset: standard curve where the peak areas between 12.9 min and 13.2 min 

(arrows) were plotted against lysine concentrations. (B) In A-L+ supernatants, lysine concentrations quantified by 

HPLC agreed with concentrations of lysine-equivalents that supported L-A+ in a yield bioassay (Methods, 

“Bioassays”). Circles indicate average values, and bars represent the spread of two measurements. (C, D) 

Hypoxanthine mediates the interaction from L-A+ to A-L+. (C) L-A+ releases hypoxanthine and inosine. HPLC 

traces of L-A+ supernatants (magenta) and standards of SD supplemented with two different concentrations of 

hypoxanthine (black), inosine (orange), adenine (grey), or a mixture of hypoxanthine and inosine (olive). Inset: 

standard curve where the peak areas in the window between 1.6 min and 1.732 min (arrows) were plotted against 

hypoxanthine concentrations and used to quantify hypoxanthine. Since the HPLC elution profile could vary 

between independent runs (e.g. compare the two olive curves), quantification windows were adjusted accordingly. 

(D) In L-A+ supernatants, hypoxanthine concentrations quantified by HPLC agreed with concentrations of purines 

that supported A-L+ growth as quantified by the yield bioassay. In B and D, dotted lines have a slope of 1.  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356519doi: bioRxiv preprint 

https://doi.org/10.1101/356519
http://creativecommons.org/licenses/by/4.0/


23 
 

Fig 3. Chemostat dynamics reveals rapid evolution 

Fig 3: L-A+ (WY1335) cells growing exponentially in excess lysine were washed free of lysine and inoculated 

into the culturing vessel (triangles: inoculation at near steady state density in the absence of lysine; circles: 

inoculation at 1/3 steady state density in the presence of 5~10 M lysine). Minimal medium containing 20 M 

lysine was dripped into the culturing vessel (19 ml) to achieve an 8-hr doubling time (19 ml*ln(2)/8 hr = 1.646 

ml/hr; “Chemostat culturing” in Methods). (A) Live and dead cell densities (Methods, “Flow cytometry”) and (B) 

released hypoxanthine (Methods, “Bioassays”) reached steady state by ~10 hr and ~20 hr, respectively. Error bars 

represent two standard deviations. (C) Lysine concentrations in culturing vessels failed to maintain a steady state 

due to rapid evolution (Methods, “Detecting evolved clones”). Instead, lysine concentrations rapidly declined to a 

level similar to that in a chemostat inoculated with an evolved L-A+ mutant with improved affinity for lysine 64,65 

(“ecm21”, magenta). Indeed, when we tested chemostat samples (triangles), 8 out of 20 tested clones were 

evolved by 32 hours (~4 generations). For each sample, two measurements of lysine concentrations and their 

average were plotted. Magenta dashed lines mark the time before which >90% of population remained ancestral.  
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Fig 4. Metabolite consumption is sensitive to the environment 

Fig 4 : (A) Consumption in excess lysine. L-A+ population density and lysine concentration remaining in the 

medium were measured over time (Methods, “Measuring consumption in batch cultures”). Consumption per birth 

was calculated from the slope of the lavender line. (B) Consumption in cultures grown to saturation. L-A+ cells 

were inoculated into SD supplemented with various concentrations of lysine. After cultures had reached saturation, 

total cell densities were measured by flow cytometry. Lysine consumed per birth was quantified from 1/(slope of 

the orange line). This value was used in Models i and ii. (C) Consumption per birth in different environments. 

Lysine consumption was measured in lysine-limited chemostats at various doubling times (Methods, “Quantifying 

phenotypes in chemostats” and Eq. 10), and data were jittered slightly along the x-axis to facilitate visualization. 

For chemostat measurements, error bars represent 2 standard deviations caused by fluctuations in steady state 

population density. For exponential and saturation consumption, error bars mark 2 standard error of mean for 

slope estimation. The black dashed line marks the average lysine consumption per L-A+ birth in chemostats 

(Table 1; Table 1-Table Supplement 1), which we used in Model iii. 
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Fig 5. Hypoxanthine is released by live L-A+ upon limitation for lysine 

Fig 5: (A) Hypoxanthine release during lysine starvation. Exponential L-A+ cells were washed free of lysine, and 

diluted into SD without lysine. Live and dead population densities and supernatant hypoxanthine concentrations 

were measured over time (Methods, “Flow cytometry”; the yield bioassay in “Bioassays”). (B) The “live release” 

model fits data better than the “dead release” model. (Left) If hypoxanthine was released by live cells at a constant 

rate, then hypoxanthine concentration should scale linearly against live cell density integrated over time. (Right) 

If hypoxanthine was released upon cell death, then hypoxanthine concentration should scale linearly against dead 

cell density. Live release model has better linearity than dead release model, and therefore hypoxanthine is likely 

released by live cells. The release rate measured in the left panel of B was used in Models i and ii. (C) 

Hypoxanthine release rate as a function of growth rate. Hypoxanthine release rates were plotted for L-A+ in the 

presence of excess lysine (black circle on the right), in lysine-limited chemostats with doubling times ranging 

from 3 hr to 8hr (blue; Fig 5-Figure Supplement 1 blue), and during lysine starvation (plotted at <0 net growth 

rate, different colors indicating experiments on different days). The black dashed line marks the average release 

rate measured from starvation up to 5.5 hr chemostats (Table 1) which was used in Model iii. Hypoxanthine 

release rate in excess lysine was lower than the detection limit (i.e. <0.003 fmole/cell/hr marked by the red dotted 

line; Methods “Measuring the upper bound of release rate in excess metabolites”). Release rates of L-A+ are in 

Table 1-Table Supplement 3. 
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Fig 6. Intracellular lysine content and lysine release rate of A-L+ vary with environment. 

Fig 6: (A) Intracellular lysine content increases upon hypoxanthine limitation. A-L+ cells grown to exponential 

phase in SD plus excess hypoxanthine were washed and diluted into SD at time zero. Cells were either starved 

further (“starve batch”, dashed lines) or inoculated into hypoxanthine-limited chemostats after 24 hrs of pre-

starvation (“8-hr chemo.”, solid lines). At various times, cells were harvested, and intracellular lysine was 

extracted (Methods “Extraction of intracellular metabolites”) and measured via yield bioassay (Methods 

“Bioassays”). Intracellular lysine content increased by six-fold during the 24-hour pre-starvation, even though the 

average cell size increased by only ~20% (Fig 6-Figure Supplement 3). Intracellular lysine content continued to 

increase, reaching a higher level in 8-hr chemostats than in starvation. Different colors represent different 

experiments. (B) Lysine release rate varies with the environment. Lysine release rates were quantified for cells at 

different growth rates (e.g. Fig 6-Figure Supplement 1; doubling times of chemostats marked above) and during 

starvation. Phenotypes were measured over a similar time window as for CoSMO growth rate measurement to 

ensure similar evolutionary effects (Fig 3-Figure Supplement 4). Means and their 2 SEM (standard error of mean) 

were plotted. Lysine release rate in an exponential batch culture was below the level of detection (red dotted line 

= 0.003 fmole/cell/hr; Methods “Measuring the upper bound of release rate in excess metabolites”). The green 

dotted regression line was used in analytical calculation (Eq. 16 in Methods “Calculating steady state community 

growth rate”), while both the black and the green dotted regression lines were used in spatial simulations. Lysine 

release rates were summarized in Table 1-Table Supplement 4, and plotted in greater detail in Fig 6-Figure 

Supplement 6.  
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Fig 7. Steady state CoSMO growth rate can be predicted from parameters measured in chemostats. 

Fig 7: Steady state growth rate of well-mixed CoSMO was calculated from Eq. 15 or Eq. 16 (with nearly identical 

results) when we “borrowed” release rates from a different strain background in starved batch culture (grey; 

Model i in Fig 1C), when all parameters were measured from the correct strain background in starved batch 

cultures (blue; Model ii in Fig 1C), and when all parameters were measured from the correct strain background in 

chemostats (green; Model iii). A partial differential equation model (i.e. the spatial version of Model iii) was 

simulated for spatial CoSMO under various experimental configurations, yielding similar predictions on spatial 

CoSMO growth rate (Fig 7-Figure Supplement 3). The average value was plotted here (brown). In simulations, 

CoSMO grew at a similar rate in a spatially-structured environment as in a well-mixed environment. This is 

because in spatial CoSMO, concentrations of metabolites eventually became uniform in the agarose and in the 

community (Fig 7-Figure Supplement 5), and because the two strains formed small (tens of microns) patches that 

were inter-mixed 24. The green error bar (95% confidence interval) was calculated from uncertainties in parameter 

estimations (i.e. two standard errors of mean in Table 1) via the method of error propagation (Method 

“Calculating steady state community growth rate”). Under various experimental configurations (Methods, 

“Quantifying spatial CoSMO growth dynamics”), steady state CoSMO growth rates were similar, and the average 

value and two standard deviations from 11 independent experiments were plotted (purple).   
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Table 1 Experimentally-measured strain phenotypes 

Table 1. The upper and lower bounds of consumption amount per birth, release rate, and death rate in chemostats 

were calculated from the mean value plus and minus two standard errors of mean, respectively. Birth rates b at 

various concentrations s of a limiting metabolite were measured using a high-throughput microscopy batch-

culture assay, and then fitted into the Moser’s growth model 66 𝑏(𝑠) = 𝑏𝑚𝑎𝑥𝑠
𝑛 (𝑠𝑛 + 𝐾𝑛)⁄ , where bmax is the 

maximal birth rate, K is the s at which bmax/2 is achieved, and n is the growth cooperativity (akin to Hill’s 

coefficient). The averages from four independent experiments were fitted into Moser’s model to infer birth 

parameters (bmax, K, and n) and their confidence intervals (for details, see 28). Birth parameters were used in 

simulations.  

 

Table 1-Table Supplement 1.  L-A+ consumption 

Table 1-Table Supplement 2.  A-L+ consumption 

Table 1-Table Supplement 3.  L-A+ death and release 

Table 1-Table Supplement 4.  A-L+ death and release 

Strain Phenotype Symbol Value Lower Upper Unit Ref n

1335 max birth rate b maxL 0.51 0.48 0.54 per hr
28

4

1335

Lys for half max 

birth K L 2.1 1.7 2.4 M 28
4

1335 birth cooperativity n L 3.2 2.5 3.9
28

4

1335 chemo death rate d L 0.0024 0.0018 0.0030 per hr T1-TableSup3 9

1335 Lys consumption c L 5.4 5.1 5.7 fmole/cell T1-TableSup1 12

1335 hyp release rate r A 0.27 0.25 0.29 fmole/cell/hr T1-TableSup3 24

1340 max birth rate b maxA 0.44 0.43 0.45 per hr
28

4

1340

Hyp for half max 

birth K A 1.3 1.2 1.4 M 28
4

1340 birth cooperativity n A 1.5 1.4 1.7
28

4

1340 chemo death rate d A 0.015 0.014 0.016 per hr T1-TableSup4 29

1340 Hyp consumption c A 3.1 3.0 3.2 fmole/cell T1-TableSup2 32

1340

lys release rate, 

Starvation r L (H =0) 0.52 0.42 0.62 fmole/cell/hr T1-TableSup4 7

1340

lys release rate, 

T2=8 hr r L (H =0.58) 0.83 0.70 0.96 fmole/cell/hr T1-TableSup4 11

1340

lys release rate,  

T2=7 hr r L (H =0.65) 0.78 0.70 0.86 fmole/cell/hr T1-TableSup4 6

1340

lys release rate, 

T2=6 hr r L (H =0.73) 0.53 0.45 0.61 fmole/cell/hr T1-TableSup4 8

1340

lys release rate, 

T2=5.4hr r L (H =0.80) 0.38 0.32 0.45 fmole/cell/hr T1-TableSup4 4

1340

lys release rate, 

T2=4 hr r L (H =1.07) 0.08 0.05 0.11 fmole/cell/hr T1-TableSup4 3
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Fig 1-Figure Supplement 1. Using A-L+ phenotypes measured in batch monocultures supplemented with 

adenine versus hypoxanthine did not affect model performance.  

Fig 1-Figure Supplement 1: “Exp”: community growth rates were calculated from seven independent experiments 

in a well-mixed environment (from ~30 hr to 70~80 hr) and averaged, with the error bar representing two standard 

deviations. “Model ii”: all model parameters were derived from RM11 L-A+ and A-L+ phenotypes measured in 

batch mono-cultures. We predicted steady state community growth rate either via quantifying the simulated post-

lag dynamics (e.g. Fig 1C “Model ii”) (“Sim”) or via an analytical formula (Eq. 15 in Methods) (“Cal”). The 

experimental and predicted doubling times were 6.5 hr and 4.3 hr, respectively. Experimental data and model 

parameters are listed in Fig 1-Table Supplement 2. 
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Fig 1-Figure Supplement 2. Prestarving A-L+ reduces the lag phase of community growth.  

Fig 1-Figure Supplement 2: Exponential A-L+ (WY1340) cells were washed free of hypoxanthine, and either 

prestarved for 24 hrs in SD (solid lines) or not pre-starved (dotted lines) before being mixed with exponentially-

grown and washed L-A+ (WY1335) to form CoSMO. Pre-starvation of A-L+ leads to less growth lag compared to 

no pre-starvation. 

 

 

 

Fig 1-Table Supplement 1. Strain table 

Fig 1-Table Supplement 2. Experimental measurements of well-mixed CoSMO population dynamics and initial 

model parameters  

Fig 1-Code Supplement 1. Initial model for well-mixed CoSMO  
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Fig 2-Figure Supplement 1. Inosine does not mediate the interaction from L-A+ to A-L+. 

Fig 2-Figure Supplement 1: (A) Hypoxanthine but not inosine is consumed by A-L+. The final turbidity of an 

ade8- (WY1340) tester strain increases with increasing concentrations of hypoxanthine (blue) and adenine (grey) 

but not inosine (brown). The slopes of the blue and grey lines are similar, suggesting that a similar amount of 

hypoxanthine and adenine are consumed to produce one new A-L+ cell. (B) Stimulation of A-L+ (WY1340) 

growth rate by hypoxanthine (blue) is not affected by the presence of inosine at 1x (orange) or 10x (brown) 

concentration.  
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Fig 2-Figure Supplement 2. Hypoxanthine and adenine lead to quantitatively different growth phenotypes in 

A-L+. 

Fig 2-Figure Supplement 2: A-L+ cells grow faster when fed with adenine (red) than when fed with hypoxanthine 

(blue) when metabolite concentration is low (inset). A-L+ (WY1340) cells pre-grown in SD + adenine or SD + 

hypoxanthine were washed into SD and pre-starved for 24 hrs to deplete intracellular storage. Subsequently, 

adenine or hypoxanthine was supplemented at various concentrations, and the net growth rate was measured via 

fluorescence microscopy (Methods, “Microscopy quantification of growth parameters”). Red circles and squares: 

pre-grown in adenine, and incubated in adenine; red crosses: pre-grown in hypoxanthine, and incubated in 

adenine; blue circles and squares: pre-grown in hypoxanthine, and incubated in hypoxanthine; blue crosses: pre-

grown in adenine, and incubated in hypoxanthine. Pre-growth in cognate metabolite versus non-cognate 

metabolite does not make a difference (e.g. compare red circles with red crosses, and blue circles with blue 

crosses, all of which were measured in the same experiment).  
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Fig 2-Figure Supplement 3. Cell extracts do not interfere with bioassays. 

Fig 2-Figure Supplement 3: Exponential L-A+ (WY1335) cells were starved in SD for 4 hrs to deplete 

intracellular storage of lysine. 2.5 ml of starved culture at OD~0.2 were used to extract intracellular metabolites 

(“Extraction of intracellular metabolites” in Methods). The dried pellet was re-suspended in ~1 ml H2O. In a 

separate experiment, exponential L-A+ were washed and pre-starved in SD for 4 hours. We then quantified the 

growth rates of L-A+ in SD supplemented with 1/3 volume of extracts (orange and blue) or water (black) as well 

as various concentrations of lysine (“Microscopy quantification of growth phenotypes” in Methods). The 

inclusion of extracts did not affect growth rates.  
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Fig 3-Figure Supplement 1. Using evolved clones to measure low concentrations of metabolites. 

Fig 3-Figure Supplement 1: (A) WY2270, an evolved L-A+ clone with significantly improved affinity for lysine, 

could detect sub-1 µM Lys. (B) WY1600, an evolved A-L+ clone with significantly improved affinity for 

hypoxanthine, could detect sub-1 M hypoxanthine. Vertical dotted blue lines mark detection limits. Circles and 

diamonds mark two independent replicates. 
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Fig 3-Figure Supplement 2. Characterization of evolved L-A+ clones 

Fig 3-Figure Supplement 2: Whole-genome sequencing revealed that evolved L-A+ clones harbor mutations in 

genes such as RSP5 (an E3 ubiquitin ligase) and ECM21 (an arrestin-like adaptor for Rsp5) 65. In a stressful 

environment, wild-type Ecm21 and Rsp5 proteins target cell-surface permeases (including the high-affinity lysine 

permease Lyp1) for ubiquitination 64. Ubiquitinated permeases are then endocytosed and degraded in the vacuole 
64. The resulting amino acids are then transported to the cytoplasm for protein synthesis to help cells cope with 

stress 67. In evolved cells with mutant ecm21 or rsp5, lysine permease is stabilized. (A) Evolved L-A+ grows faster 

than the ancestor in lysine-limited chemostats. L-A+ with or without an ecm21 deletion (WY2226 and WY1657, 

respectively) expressing different fluorescent proteins were competed in 8-hr doubling time chemostats. The 

initial lysine concentrations in culturing vessels was 0 (black triangles) or 10~15M (brown circles). In all four 

chemostats, ecm21 overtook ancestor. The fitness difference between the two strains can be estimated: Let E(t) 

and A(t) be population densities of ecm21 and ancestor at time t, respectively, and rE and rA be the growth rates of 

the two strains. Then, ( )
( ) ( ) (0) (0)


  E Ar r t

E t A t E A e , and we have    ln ( ) ( ) ln (0) (0) ( )  E AE t A t E A r r t . 

We quantified ( )E Ar r , the fitness advantage of ecm21 over ancestor, as 0.31/hr (computed up to 32 hrs), 

compared to ancestor growth rate of 0.087/hr (8-hr doubling). Thus, ecm21 grows ~3.6x faster than the ancestor. 

This fitness advantage is qualitatively consistent with what we observed in chemostats initiated with pure ancestor, 

since evolved clones increased from ~4% to ~40% within 5.7 hrs (from 26.3 to 32 hrs in Fig 3C), translating to a 

0.49/hr fitness difference. We infer that evolved clones are initially present at a frequency on the order of 

~0.04/exp(0.4/hr*26.3hr)=10-6. This is in-line with the phenotypic mutation rate of 0.5~30 x 10-7 per cell per 

generation 68 in the following sense. Since the inoculum population size is on the order of 4x106 cells/ml x 19 ml= 

8x107 cells, we expect 2x8x107*(0.5~30 x 10-7)=8~480 preexisting evolved cells (the coefficient of 2 results from 

(1 + 2 + 22 +⋯+ 2𝑛)/2𝑛~2 where the numerator represents total mutation opportunity in a culture starting 

from a single cell, and the denominator represents the final size of chemostat inoculum). Thus, the early 

evolutionary dynamics in chemostats can be explained by pre-existing mutants outcompeting ancestral cells. (B) 

Percent evolved clones in ~26-hr samples from chemostats inoculated with ancestral L-A+ (WY1335). (C) A 

visual assay that distinguishes ancestral versus evolved L-A+ clones. L-A+ cells from an ancestral clone and two 

evolved clones were plated on SD plates supplemented with 1.5 M lysine. Ancestral cells (WY1335, left) failed 

to divide (arrows). Cells from a mildly-adapted evolved clone (harboring duplication of Chromosome 14, center) 

showed heterogeneous phenotypes: some cells remained undivided (arrow), while other cells formed 

microcolonies of various sizes. Cells from a strongly-adapted evolved clone (harboring an ecm21 mutation, right) 

formed microcolonies of a uniform and large size. These images were taken using a cell phone camera and thus 

do not have a scale bar. For reference, an average yeast cell has a diameter of ~5 µm. 
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Fig 3-Figure Supplement 3. Characterization of evolved A-L+ clones  

Fig 3-Figure Supplement 3: (A)  A fitness tradeoff in A-L+. (Left) Growth rates of ancestral (magenta) and 

evolved (blue and green) A-L+ clones (pre-starved overnight) in various concentrations of hypoxanthine (Methods, 

“Microscopy quantification of growth parameters”) were plotted. Brown dotted lines mark 6-hr and 8-hr doubling 

time, a range experienced by CoSMO. In CoSMO, hypoxanthine concentrations were low (~1 µM). Evolved 

clones grew faster than the ancestor under low hypoxanthine concentrations, but grew slower than the ancestor 

under high hypoxanthine concentrations (e.g. 20~100 µM). Clones marked by crosses were isolated from 

Generation 4 (hour 31) of chemostat culturing. (Right) A negative correlation between growth rate at low 

hypoxanthine (~0.4 µM) versus turbidity in high adenine after overnight growth. Error bars on growth rate 

indicate 95% confidence interval on slope (rate) estimation. Grey line indicates the threshold by which we 

differentiated evolved clones (left of grey line) from ancestral clones (right of grey line), according to the growth 

rate assay in the left panel. In both panels, grey crosses represent Gen 4 clones assigned to be evolved, while 

black crosses represent Gen 4 clones assigned to be ancestral. (B) A high-throughput assay that distinguishes 

ancestral from evolved A-L+ clones. We used turbidity after overnight growth in high Ade (108 M) to classify A-

L+ clones as ancestral (no blue stars) or evolved (blue stars). The ancestral clone (WY1340) and an evolved clone 

(WY1598) are shown as controls. (C) Aneuploidy in the evolved clone WY2447. Whole-genome sequencing 

revealed that in addition to a synonymous nucleotide change, two nucleotide changes in non-coding regions, and a 

point mutation from Cys102 to Ser in OAR1 (Fig 3-Table Supplement 1),  Chromosomes I, III, and VI are likely 

duplicated. For Chromosome III, read depth was not fully twice that of other chromosomes, which could be 

caused by cells losing the extra copy of Chromosome III during culturing prior to sequencing. (D) Evolved A-L+ 

cells have a lower death rate, a lower lysine release rate, and lower hypoxanthine consumption per birth compared 

to the ancestor. Phenotypes of ancestral A-L+ (WY1340 with preexisting WY2447-like mutants), 1:1 anc:evo 

(WY1340:WY2447), or evolved A-L+ (WY2447) were measured in 8-hr chemostats (Methods, “Quantifying 

phenotypes in chemostats”). 
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Fig 3-Figure Supplement 4. High levels of evolved clones in A-L+ 

Fig 3-Figure Supplement 4: (A)  High levels of evolved A-L+ clones prior to a starvation experiment (left of 

dotted line) and during a starvation experiment (right of dotted line). Different colors represent experiments on 

different days. In experiments that terminated at 0 hr (circles and squares), an entire colony grown on rich YPD 

(circles) or minimal SD plus excess (100 M) hypoxanthine (square) was resuspended in SD, and a fraction was 

used to inoculate SD plus excess hypoxanthine to grow exponential cultures. Otherwise (triangles), a fraction of 

YPD-grown colony was used to inoculate SD plus excess hypoxanthine to grow exponential cultures, and at time 

zero, the culture was washed free of supplements and starved of hypoxanthine. (B) Similar percentages of evolved 

A-L+ clones in chemostats and in CoSMO. For chemostat experiments, exponentially-growing cells washed free 

of supplements were pre-starved (unfilled symbols) or not pre-starved (filled symbols), and inoculated into 

chemstats (time zero). For CoSMO experiments, A-L+ cells were prestarved. In all experiments, we used the assay 

in Fig 3-Figure Supplement 3B to distinguish ancestral and evolved clones (Methods, “Detecting evolved clones”). 

If we sampled ntot cells, and nevo cells were evolved, then the fraction evolved was estimated to be nevo/ ntot, with 

error bar indicating 2 evo totn n (assuming that the random variable nevo followed a Poisson distribution). If zero 

assayed colonies were evolved, we found the maximal frequency of evolved clones such that the error bar of 

2 evo totn n  still covered zero, and used that error bar. For example, if 0 out of 88 was evolved (0%), and since 3 

out of 88 had a frequency of 3.4% with an error bar of 3.9% which covered zero, we added an error bar of 3.9% 

above the 0% data point.  
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Fig 3-Figure Supplement 5.  Evolutionary dynamics of A-L+ is consistent with high chromosomal mis-

segregation rate. 

Fig 3-Figure Supplement 5: (A) Growth rates of ancestral (WY1340) and evolved (WY2447) A-L+ cells in various 

concentrations of hypoxanthine (24-hr pre-starvation; Methods, “Microscopy quantification of growth 

phenotypes”). Three experiments were averaged, and error bars indicate two standard deviations. (B) The 

evolutionary dynamics of A-L+ in excess hypoxanthine could be explained if we assumed that chromosome mis-

segregation generated WY2447-like mutants at a rate of 0.01/cell/gen (solid lines). As a comparison, predictions 

from a mutation rate of 0.003/cell/gen (dotted lines) were also plotted. Brown and blue circles (measured in two 

different experiments) are identical to the corresponding ones in Fig 3-Figure Supplement 4A. Specifically, from 

the inoculum size and the final population size, we calculated the number of generations, which we then 

multiplied with the doubling time in SD with excess hypoxanthine to obtain the duration of exponential phase. 

We then inferred the lag phase to be ~6 hrs, and assumed that the fraction of evolved cells at time zero (the 

beginning of exponential phase) was similar to that at the time of inoculation. Our model (Fig 3-Code Supplement 

1) considered the fitness advantage of ancestor over mutant in excess hypoxanthine (A), as well as the conversion 

from ancestor to mutant. Data at 0 hr were slightly jittered to aid visualization. (C) We competed WY2447 

(expressing citrine-fluorescent protein) and WY1340 (expressing green-fluorescent protein) in 8-hr chemostats 

from two starting ratios, and measured strain ratios over time using flow cytometry (black circles). Using a 

mathematical model (Fig 3-Code Supplement 2) where growth parameters were measured experimentally (A) and 

where the ancestor converted to WY2447-like mutants at a rate of 0.01/cell/gen, we obtained a qualitative 

matching between model and experiments. In both models (B, C), death rate and hypoxanthine consumption per 

birth were from 8-hr chemostat measurements (Methods, “Quantifying phenotypes in chemostats”). 
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Fig 3-Figure Supplement 6. Measured A-L+ phenotypes are not significantly impacted by percent evolved 

clones during quantification. 

Fig 3-Figure Supplement 6: A-L+ (WY1340), either prestarved for 24 hrs (open circles) or not prestarved (filled 

circles), were cultured in 8-hr chemostats (different colors representing independent chemostat experiments). 

Hypoxanthine consumption per birth (A), death rate (B), lysine release rate (C) were quantified (Methods 

“Quantifying phenotypes in chemostats”) using dynamics up to 48~50 hrs (small-size circles), 67~72 hrs 

(medium-size circles), or 94~96 hrs (large-size circles). Percent of evolved clones was quantified at the end of 

each measurement. Despite phenotypic differences between ancestral and evolved A-L+ (Fig 3-Figure Supplement 

3D), measured phenotypes did not show significant correlation with %evolved (slope +/- SEM being 0.1+/-0.8 

(A), 0.003+/-0.008 (B), and 0.3+/-0.6 (C) - none significantly different from zero). This lack of correlation is 

presumably due to the relatively large measurement errors and the relatively narrow spread in % evolved. Take 

consumption as an example. Suppose that ancestral and evolved A-L+ consumed hypoxanthine at 2.5 fmole/birth 

and 1.5 fmole/birth, respectively (Fig 3-Figure Supplement 3D). At 10% mutants, consumption would be 

2.5*0.9+1.5*0.1=2.4 fmole/birth. At 30% mutants, consumption would be 2.5*0.7+1.5*0.3=2.2 fmole/cell. This 

10% difference is smaller than the measurement error. For example, at ~33% evolved A-L+ (filled dots in A), 

consumption varied from 2.2 to 2.8 fmole/birth. 
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Fig 3-Figure Supplement 7. Parameters measured from L-A+ chemostats recapitulate chemostat dynamics  

Fig 3-Figure Supplement 7: L-A+ cells in SD+ 15μM  lysine were inoculated into a chemostat culturing vessel 

(19 ml). SD + 20μM  lysine in the reservoir was pumped into the culturing vessel to achieve an 8-hr doubling 

time (i.e. 19 ml *ln(2)/8/hr = 1.646 ml/hr). L-A+ phenotypes in Table 1 (except for release rate of 0.30 fmole 

hypoxanthine/cell/hr and death rate of 0.0021/hr measured in this particular experiment) were used to simulate 

chemostat dynamics (Fig 3-Code Supplement 3). Simulations (lines) and experiments (circles) are in good 

agreement.     

 

 

Fig 3-Table Supplement 1. Mutations in WY2447 

Fig 3-Code Supplement 1. Modeling A-L+ evolution in excess hypoxanthine 

Fig 3-Code Supplement 2. Modeling competition between evolved and ancestral A-L+ strains in hypoxanthine-

limited chemostats 

Fig 3-Code Supplement 3. Modeling chemostat dynamics of L-A+ 
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Fig 4-Figure Supplement 1. Purine consumption by A-L+ is relatively constant during purine-limitation  

Fig 4-Figure Supplement 1: For hypoxanthine-limited chemostat measurements, data were jittered slightly along 

the x-axis to facilitate visualization. Consumption was measured over a similar time window as that of CoSMO 

growth rate to ensure similar evolutionary effects. For exponential and saturation consumption of adenine (which 

is similar to hypoxanthine, see Fig 2-Figure Supplement 1A), error bars mark 2 standard error of mean for slope 

estimation. The black dashed line marks the average hypoxanthine consumption per A-L+ birth in chemostats 

(Table 1; Table 1-Table Supplement 2). 
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Fig 5-Figure Supplement 1. Regression analysis reveals death and release rates in a chemostat 

Fig 5-Figure Supplement 1: Using regression to measure death rate (grey) and hypoxanthine release rate (blue) for 

the triangle-marked chemostat experiment from Fig 3. For an explanation, see “Quantifying phenotypes in 

chemostats” in Methods. Densities of fluorescent live cells and non-fluorescent/ToPro3-positive dead cells were 

measured via flow cytometry (Methods, “Flow cytometry”). Hypoxanthine was quantified using the yield 

bioassay (Methods, “Bioassays”).  
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Fig 6-Figure Supplement 1. Quantifying release and death rates of A-L+  

Fig 6-Figure Supplement 1: A-L+ cells grown to exponential phase in SD + excess hypoxanthine were washed and 

diluted into SD. (A-C) “Starvation”: At time zero, cells were inoculated into SD. From population and lysine 

dynamics (A), live release model (B) and dead release model (C) yielded a similar fit to the data. Thus from 

regression alone, we could not distinguish live from dead release. (D-F) “Chemostat”: Cells were pre-starved in 

SD for 24 hrs and then transferred to a hypoxanthine-limited chemostat (doubling time 8 hrs) at time zero. From 

population and lysine dynamics (D), lysine release rate by live cells (E) and death rate (F) can be calculated from 

slopes of respective regressions (Methods, “Quantifying phenotypes in chemostats”). Note that lysine release rate 

during starvation (B) remained relatively constant during the initial 90 hrs (the time window we later used to 

measure CoSMO growth rate; also see Fig 6-Figure Supplement 4B). In chemostat upon reaching the steady state, 

the release rate also remained relatively constant (the last three time points in D, E).  
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Fig 6-Figure Supplement 2. A-L+ intracellular lysine content varies with time and environment  

Fig 6-Figure Supplement 2: A-L+ cells (WY1340) grown in SD+ excess hypoxanthine to exponential phase were 

washed and diluted into SD at time zero. Cells were either starved further (B) or inoculated into hypoxanthine-

limited chemostats after 24 hrs of pre-starvation (A). At various times, cells were harvested and intracellular 

lysine was extracted and measured via yield bioassay. Different colors (except grey) represent different replicates 

and are identical to those in Fig 6A. Grey symbols in (A) represent the intracellular lysine content required to 

satisfy the dead release model at the steady state (calculated from the last three time points of Fig 6-Figure 

Supplement 1D). Grey symbols and dashed lines in (B) represent the intracellular lysine content required to 

satisfy the dead release model during starvation. Since live or dead release could explain chemostat results (A) but 

dead release could not explain starvation results (B), we made the most parsimonious assumption of live release. 
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Fig 6-Figure Supplement 3. Slight cell size increase during A-L+ starvation  

Fig 6-Figure Supplement 3: A-L+ cells (WY1340) grown in SD + excess hypoxanthine were either maintained at 

exponential phase (green) or washed and starved in un-supplemented SD for 24 hours (black). Cell sizes were 

measured using a Coulter counter. The initial peak in starved cells may represent dead cell debris. The average 

sizes of exponential and starved cells were 64.8 fl and 80.5 fl, respectively (dashed lines).    
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Fig 6-Figure Supplement 4. Lysine release by A-L+ during starvation is relatively constant during the initial 90 

hrs. 

Fig 6-Figure Supplement 4: (A) Exponentially-growing A-L+ cells were washed and diluted into SD. Live and 

dead population densities were measured by flow cytometry, and lysine concentration was measured by the yield 

bioassay. Regression in both live release model (B) and dead release model (C) deviated from linearity. Since 

metabolite analysis suggests that live release is more likely (Fig 6-Figure Supplement 2B), we infer that release 

rate is time-variant - initially slow and then speeding up (a similar but less obvious trend can also be seen in Fig 

6-Figure Supplement 1B). However, since CoSMO growth rate measurements rarely exceeded 96 hrs, we used 

the lysine release rate measured up to 90 hrs in Model ii. 
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Fig 6-Figure Supplement 5. The A-L+ chemostat model can describe experimentally-observed chemostat steady 

state  

Fig 6-Figure Supplement 5: A-L+ cells grown exponentially in SD + excess hypoxanthine were washed and 

diluted into SD, and pre-starved for 24 hrs. At time zero, starved cells (together with the medium which had 

already accumulated some lysine) were inoculated into chemostats, and fresh SD + 20 µM hypoxanthine was 

pumped in at a rate to achieve a doubling time of 8 hrs. Dynamics of live and dead populations (left) and of 

released lysine (right) were plotted (squares, circles, and diamonds representing three chemostats). Model (dashed 

lines; Fig 6-Code Supplement 1) was based on parameters in Table 1, except for a lysine release rate of 0.99 

fmole/cell/hr which was averaged among the three chemostats. The initial decline in live cell density in 

experiments was presumably due to a growth lag when cells transitioned from starvation to chemostats, which 

was not modeled. The initial decline in extracellular lysine concentration in experiments is consistent with the live 

release model: reduced live cell density leads to reduced extracellular lysine.   
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Fig 6-Figure Supplement 6. Measuring lysine release rate 

Fig 6-Figure Supplement 6: A-L+ cells grown to exponential phase in SD plus excess hypoxanthine were washed 

and diluted into SD at time zero. Cells were either starved further (“Starve”) or inoculated into hypoxanthine-

limited chemostats after 24 hrs of pre-starvation (e.g. Fig 6-Figure Supplement 1D-E; doubling times marked 

above). Each symbol represents an independent measurement, and measurements done at the same time were 

marked with the same color. Open and closed symbols represent pre-growth done in tubes versus flasks, 

respectively. We observed day-to-day variations in measurements (e.g. cyan circles higher than blue triangles). 

Lysine release rate data are in Table 1-Table Supplement 4. 

 

Fig 6-Code Supplement 1. Modeling chemostat dynamics of A-L+ 
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Fig 7-Figure Supplement 1. Death rates of L-A+ and A-L+ are relatively constant over a range of CoSMO-like 

environments. 

Fig 7-Figure Supplement 1: (A) Exponential L-A+ (WY1335) cells were washed in SD, and death rate was 

measured in chemostats at various doubling times (Methods, “Quantifying phenotypes in chemostats” Eq. 14; Fig 

5-Figure Supplement 1 grey). As a comparison, death rates in batch cultures with zero or excess lysine are shown 

(see 28 for detailed methodology and data). With no lysine, the early-phase death rate (grey; from 5 to 12 hr post-

wash) was slower than the late-phase death rate (black; from 12 to 30 hr post-wash;). With excess lysine, death 

rates were very low (orange diamonds; Methods, “Calculating death rate in non-limited batch culture”). Death 

rates of L-A+ in chemostats (blue; doubling times from left to right being 8 hr, 6 hr, 5.5 hr, and 3 hr) were in-

between death rates in starvation and in excess lysine. Blue solid and dashed lines mark the mean death rate ± 2 

standard error of mean (SEM) from 5.5~ 8 hr doubling time chemostats (Table 1). Detailed data are in Table 1-

Table Supplement 3. We used log plotting scale to visualize differences between small numbers. (B) Exponential 

A-L+ (WY1340) cells were washed and pre-starved for 24 hours. They were either further starved (black) or 

cultured at various growth rates in chemostats (blue). During starvation, death rate was initially slow and then 

sped up (see 28 for detailed methodology and data). Average death rate (blue solid line) and 2 SEM (blue dotted 

lines) were calculated from chemostats run at doubling times of 5.4 ~8 hrs (e.g. Fig 6-Figure Supplement 1F), and 

used in our model (Table 1). Detailed data are in Table 1-Table Supplement 4. We used linear plotting scale 

because early death rates were zero and could not be plotted on the log scale. In both A and B, death rates were 

quantified from the decline rate of ln(live population size), and live population size could be measured via 

microscopy total fluorescence intensity 28 (circles), microscopy live cell count 28 (triangles), or flow cytometry 

live cell density (diamonds, Methods “Flow cytometry”). 
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Fig 7-Figure Supplement 2. A spatially-structured environment slows down L-A+ evolution in CoSMO. 

Fig 7-Figure Supplement 2: (A) L-A+ evolves rapidly in a well-mixed environment. Exponentially-growing L-A+ 

(WY1335) and A-L+ (WY1340) were washed free of supplements, preconditioned, and mixed at 1:1 in SD at a 

total cell density of 105/ml. The resultant CoSMO was grown in a well-mixed environment. At various times, 

samples were plated on YPD, and 32 L-A+ colonies (red diamonds) and 84~96 A-L+ colonies (green circles) were 

isolated to assay whether they were evolved or not (Methods, “Detecting evolved clones”). (B) L-A+ evolves 

slowly in a spatially-structured environment. L-A+ (WY1335 and WY1657) and A-L+ (WY1340 and WY1342) 

were mixed at approximately equal ratio and spotted onto the middle of an agarose slice containing 0.7 µM lysine 

(the “spotting” setting in Methods “Quantifying spatial CoSMO growth dynamics”; pre-starved A-L+ cells were 

washed again in SD so that CoSMO started with a defined level of lysine). At 96 hrs, CoSMO samples were 

plated on YPD, and 80 L-A+ colonies (red diamonds) and 88 A-L+ colonies (green circles) were isolated to assay 

whether they were evolved or not. For (A) and (B), error bars indicate two standard deviations according to 

binomial distribution. Specifically, if we observed e evolved clones among N total clones, then the fraction 

evolved was p=e/N and error bar was 2[√𝑁𝑝(1 − 𝑝)]/𝑁. If no evolved clones were observed, then p=0 and the 

upper error bar was defined to be that of maximal e whose lower error bar spanned 0 (similar to Fig 3-Figure 

Supplement 4). Error bars were truncated at 0 and 1.  
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Fig 7-Figure Supplement 3. Predicting the steady state growth rate of spatial CoSMO. 

Fig 7-Figure Supplement 3: Spatial CoSMO growth were simulated under varying initial total cell density, 

inoculation setup (uniformly-plated “u” versus centrally-spotted “s”), agar depth, and diffusion coefficient (20 and 

360 µm2/sec corresponding to diffusion coefficients in community and agarose, respectively 24). Spatial 

simulations yielded similar CoSMO growth rates (brown). Experimental measurements of spatial CoSMO (purple) 

and CoSMO growth rate calculated from Eq. 14 (orange) were taken from Fig 7 and plotted here for comparison. 

The spatial model and the calculation both considered variable lysine release rate. 
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Fig 7-Figure Supplement 4. Population dynamics of spatial CoSMO. 

Fig 7-Figure Supplement 4: Preconditioned L-A+ and A-L+ were mixed at approximately 1:1 ratio and grown on 

2xSD agar (which may contain trace nutrient contaminants) or agarose (Methods, “Quantifying spatial CoSMO 

growth dynamics”). (A) Growth dynamics of CoSMO on four media. Inset: shared experimental setup. 15 µl of 

4x104 total cells was spotted on the center of the cut pad, forming an inoculum spot of radius ~4 mm. (B) Growth 

dynamics of CoSMO in deep 96-well plates. 1.5x105 initial total cells were filtered on top of a membrane filter to 

ensure uniform spatial distribution. This was equivalent to 3000 cells/mm2. (C) After the lag phase, steady state 

growth rates of CoSMO were calculated from 11 independent experiments, with color-coding corresponding to 

those in (A) and (B). Time points where total cell numbers exceed 1x108 were excluded to avoid stationary phase. 

Error bars mark 2 standard error of estimating growth rate. In A and B, each data point represented the average of 

three flow cytometry measurements of a single spatial sample. Experimental data for A and B and summary data 

for C are provided in Fig 7-Table Supplement 1.  
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Fig 7-Figure Supplement 5. Spatial CoSMO eventually resembles well-mixed CoSMO. 

Fig 7-Figure Supplement 5: Metabolite concentrations in the agarose and the community eventually reach a nearly 

uniform state. Plotted are top views of lysine (L) and hypoxanthine (A) concentrations in a CoSMO community at 

the agarose surface 120 hrs after being spotted in the middle of an agarose pad. Since the populations were fairly 

intermixed within the community 24, the overall metabolite distributions remained fairly uniform within the 

community. The spatial averages of L and A in the community were 1.35 μM and 0.79 μM, respectively. The 

average concentrations in the agarose (1.31 μM for L and 0.73 μM for A) closely matched those inside the 

community. Thus, CoSMO growth rate in a spatially-structured environment is similar to that in a well-mixed 

environment. Here, the diffusion coefficients inside CoSMO and agarose were 20 and 360 µm2/sec, respectively.  

 
 

 

Fig 7-Code Supplement 1. Spatial CoSMO model with a similar diffusion coefficient for agar and community 

regions. 

Fig 7-Code Supplement 2. Spatial CoSMO model with separate diffusion coefficients for agar and community 

regions. 

Fig 7-Table Supplement 1. Experimental measurements of spatial CoSMO population dynamics and a 

summary of steady state CoSMO growth rate. 
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