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Abstract	13	

Reconstructing	the	anatomical	pathways	of	the	brain	to	study	the	human	connectome	has	become	14	

an	 important	 endeavour	 for	 understanding	 brain	 function	 and	 dynamics.	 Reconstruction	 of	 the	15	

cortico-cortical	connectivity	matrix	in	vivo	often	relies	on	noninvasive	diffusion-weighted	imaging	16	

(DWI)	 techniques	 but	 the	 extent	 to	 which	 they	 can	 accurately	 represent	 the	 topological	17	

characteristics	 of	 structural	 connectomes	 remains	 unknown.	 We	 explored	 this	 question	 by	18	

constructing	connectomes	using	DWI	data	collected	from	macaque	monkeys	in	vivo	and	with	data	19	

from	published	invasive	tracer	studies.	We	found	the	strength	of	 fiber	tracts	was	well	estimated	20	

from	DWI	and	topological	properties	like	degree	and	modularity	were	captured	by	tractography-21	

based	 connectomes.	 Rich-club/core-periphery	 type	 architecture	 could	 also	 be	 detected	 but	 the	22	

classification	 of	 hubs	 using	 betweenness	 centrality,	 participation	 coefficient	 and	 core-periphery	23	

identification	 techniques	 was	 inaccurate.	 Our	 findings	 indicate	 that	 certain	 aspects	 of	 cortical	24	

topology	 can	 be	 faithfully	 represented	 in	 noninvasively-obtained	 connectomes	 while	 other	25	

network	analytic	measures	warrant	cautionary	interpretations.	26	

	 	27	
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Introduction	28	

Network	structure	is	thought	to	play	a	prominent	role	in	supporting	healthy	brain	function	(Griffa	29	

et	al.,	2013;	Fornito	et	al.,	2015).	Indeed,	a	large	body	of	work	has	been	devoted	to	the	analysis	of	30	

the	brain’s	structural	topology	in	order	to	characterize	and	infer	how	functional	networks	emerge	31	

from	 large-scale	 structural	 connectivity,	 or	 the	 “connectome”	 (Park	 and	 Friston,	 2013;	 Sporns,	32	

2014;	 Zuo	 et	 al.,	 2016).	 In	 humans,	 the	 characterization	 of	 network	 structure	 relies	mainly	 on	33	

noninvasive	 techniques	 such	 as	 tractography	 using	 diffusion-weighted	 magnetic	 resonance	34	

imaging	(DWI).	A	number	of	influential	observations	about	brain	organization	in	both	health	and	35	

disease	have	been	made	based	on	DWI	data	(e.g.,	van	den	Heuvel	et	al.,	2010;	van	den	Heuvel	and	36	

Sporns,	 2011;	 Zalesky	 et	 al.,	 2011;	 Crossley	 et	 al.,	 2014;	 Perry	 et	 al.,	 2015;	 Baum	 et	 al.,	 2017).	37	

Recent	validation	studies	in	the	macaque	have	demonstrated	how	a	general	correspondence	exists	38	

between	 DWI-based	 estimates	 of	 structural	 connectivity,	 specifically	 “connection	 strength”	39	

(usually	taken	as	some	derivative	of	the	number	of	streamlines	between	two	regions),	and	those	40	

derived	 from	 the	 gold	 standard	 invasive	 technique	 of	 using	 tract	 tracers	 to	 map	 axonal	41	

projections.	DWI-based	tractography	has	been	shown	to	correctly	detect	 the	presence	of	a	 large	42	

proportion	 of	 connections	 across	 the	 visual	 system	 (Azadbakht	 et	 al.,	 2015)	 and	 DWI-based	43	

estimates	of	connection	strengths	are	correlated	 to	 those	obtained	 from	tracer	studies	(van	den	44	

Heuvel	 et	 al.,	 2015;	 Donahue	 et	 al.,	 2016).	 However,	 even	with	 extremely	 high-resolution	DWI,	45	

probabilistic	 tractography	 suffers	 from	 a	 steep	 trade-off	 between	 sensitivity	 and	 specificity	46	

whereby	 obtaining	 a	 large	 proportion	 of	 true	 positive	 connections	 is	 accompanied	 by	 a	 large	47	

number	 of	 false	 positives	 and	 the	 optimal	 parameter	 settings	 for	 tractography	 (e.g.,	 curvature	48	

thresholds)	can	vary	widely	depending	on	the	location	of	the	seed	(Thomas	et	al.,	2014;	also	see	49	

Maier-Hein	et	al.,	2017).	The	ability	of	tractography	to	properly	reconstruct	the	connectivity	of	the	50	
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human	 brain	 and,	 in	 particular,	 the	 interpretation	 of	 detected	 streamlines	 (Jones	 et	 al.,	 2013),	51	

remains	a	matter	of	debate.	52	

Existing	validation	studies	in	the	macaque	have	only	examined	the	accuracy	of	DWI-based	53	

tractography	at	the	level	of	the	individual	connection.	However,	a	major	use	of	tractography	has	54	

been	 to	 study	 the	 human	 brain	 at	 the	 level	 of	 large-scale	whole-brain	 networks.	 The	 extent	 to	55	

which	 tractography	 can	 accurately	 capture	 the	 brain’s	 structural	 topology	 remains	 unknown.	56	

While	some	studies	have	shown	that	connectomes	generated	 from	tracer	studies	exhibit	similar	57	

network	organization	principles	as	those	reported	using	DWI	data	(e.g.,	Harriger	et	al.,	2012;	de	58	

Reus	and	van	den	Heuvel,	2013a),	it	is	still	unclear	whether	the	topologies	of	networks	obtained	59	

from	the	two	different	modalities	actually	coincide.	Most	previous	studies	have	also	been	limited	60	

to	tractography	within	a	single	hemisphere	and	usually	using	only	a	few	ex	vivo	specimens,	where	61	

DWI	scans	are	of	optimal	quality	and	are	not	affected	by	artifacts	such	as	motion	or	physiological	62	

noise.	In	this	study,	we	used	DWI	data	obtained	from	10	macaque	monkeys	in	combination	with	63	

macaque	 connectivity	described	by	published	 tracer	 studies	 to	determine	whether	probabilistic	64	

tractography	 can	 accurately	 represent	 whole-brain	 structural	 topology	 in	 vivo.	 Given	 that	65	

tractography’s	accuracy	varies	greatly	as	a	function	of	its	parameter	settings	(Dauguet	et	al.,	2007;	66	

Jones	et	al.,	2013;	Thomas	et	al.,	2014),	we	first	systematically	varied	tractography	parameters	to	67	

determine	the	optimal	settings	for	constructing	whole-brain	connectomes	in	the	macaque.	Using	68	

these	optimized	connectomes	in	conjunction	with	network	analytic	tools,	we	then	determined	the	69	

extent	 to	 which	 connectomes	 derived	 from	 DWI	 accurately	 captured	 the	 structural	 network	70	

characteristics	of	the	macaque	brain.	We	replicate	previous	findings	that	tractography	can	detect	71	

the	presence	and/or	absence	of	connections	above	chance	levels	and	can	also	provide	reasonable	72	

estimates	of	connection	strengths.	In	the	macaque,	more	accurate	connectomes	were	obtained	by	73	

lowering	the	curvature	threshold	and	discarding	a	small	percentage	of	the	weakest	connections.	74	
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However,	owing	to	the	high	false	positive	rates	in	tractography-based	connectomes,	their	ability	to	75	

accurately	capture	critical	aspects	of	structural	topology	was	dependent	on	the	robustness	of	the	76	

network	analytic	measure	in	question	to	misidentified	connections.	77	

Results	78	

Probabilistic	 tractography	 was	 performed	 using	 an	 FSL-based	 pipeline	 on	 diffusion-weighted	79	

magnetic	 resonance	 imaging	 data	 collected	 from	 10	 macaque	 monkeys	 at	 7T.	 Two	 different	80	

parcellations,	 a	 single-hemisphere	 one	 (“Markov-Kennedy”	 (Markov	 et	 al.,	 2014))	 and	 a	whole-81	

cortex	 parcellation	 (“RM-CoCo”	 (Kötter	 and	Wanke,	 2005;	 Bezgin	 et	 al.,	 2012))	 were	 used	 and	82	

tractography	parameters	(angular	threshold	and	distance	correction)	were	systematically	varied	83	

(see	Materials	and	Methods).	Tractography-derived	connectivity	matrices	 for	various	parameter	84	

combinations	for	an	example	subject	are	shown	alongside	the	tracer-derived	matrices	in	Figure	1.	85	

For	the	purposes	of	this	paper,	we	use	the	term	connection	“strength”	to	refer	to	the	number	or	86	

proportion	of	axons	running	between	two	regions	in	the	case	of	tract	tracing	data	and	the	number	87	

or	proportion	of	streamlines	running	between	two	regions	for	DWI-based	tractography.	88	

	89	

Figure	1.	(A)	Tracer-derived	connectivity	matrices	from	Markov	et	al	(2014)	(top)	and	CoCoMac	(Stephan	et	al.,	2001;	Shen	90	
et	 al.,	 2012)	 (bottom).	 (B)	 Tractography-derived	 matrices	 (upper	 triangle)	 for	 an	 example	 subject	 for	 each	 parcellation	91	
(Markov-Kennedy,	 top;	 RM-CoCo,	 bottom)	 using	 various	 tractography	 parameters.	 Accuracy	 of	 each	 connection,	 as	92	
compared	to	tracer-derived	matrices,	depicted	 in	 lower	triangles	 (TP:	 true	positive;	TN:	 true	negative;	FN:	 false	negative;	93	
FP:	false	positive).	For	the	RM-CoCo	parcellation,	left	hemisphere	ROIs	are	ordered	together	followed	by	right	hemisphere	94	
ROIs,	such	that	interhemispheric	quadrants	are	the	upper	right	and	lower	left	of	each	matrix.	95	
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Effects	of	varying	tractography	parameters	on	accuracy	96	

On	the	assumption	that	the	tracer-derived	networks	serve	as	a	“ground	truth”	for	the	large-scale	97	

anatomical	 connectivity	of	 the	macaque	brain,	we	 computed	a	number	of	 accuracy	measures	 to	98	

determine	the	ability	for	diffusion-weighted	tractography	to	reconstruct	anatomical	connectivity	99	

from	data	collected	 in	vivo.	These	 included	 the	percentage	of	connections	correctly	represented,	100	

the	area	under	 the	ROC	curve	 (AUC),	 and	corresponding	measures	of	 sensitivity,	 specificity	and	101	

precision.	 We	 first	 consider	 intrahemispheric	 tractography	 using	 the	 Markov-Kennedy	102	

parcellation.	With	 the	 “default”	 tractography	 parameter	 combination	 (curvature	 threshold:	 0.2;	103	

distance	correction:	off),	the	percentage	of	connections	correctly	represented	in	the	tractography-104	

derived	 connectivity	 matrices	 was	 on	 average	 79.21%	 (SD:	 0.32)	 before	 any	 thresholding	 was	105	

performed.	The	mean	AUC	was	0.68	(SD:	0.02),	which	corresponded	with	a	very	high	sensitivity	106	

(M:	 0.99,	 SD:	 0.01)	 but	 very	 low	 specificity	 (M:	 0.01,	 SD:	 0.01).	 These	 results	 are	 in	 line	 with	107	

previous	macaque	studies	using	ex	vivo	specimens	that	suggested	that	probabilistic	tractography	108	

is	accurate	at	correctly	detecting	connections	(Azadbakht	et	al.,	2015)	but	trades	off	specificity	for	109	

sensitivity	 (Thomas	 et	 al.,	 2014).	 Precision	 was,	 on	 average,	 0.79	 (SD:	 0.002)	 for	 the	 default	110	

parameter	settings	indicating	a	high	positive	predictive	value	in	DWI	tractrography	(i.e.,	the	great	111	

majority	of	positive	results	are	true	positives).	112	

Curvature	 thresholds	 in	 tractography	algorithms	constrain	 the	extent	 to	which	estimated	113	

streamlines	 can	 turn	 as	 they	 propogate.	 By	 default,	 FSL’s	 algorithm	 uses	 a	 threshold	 of	 0.2,	114	

corresponding	 to	 ~78˚̊.	 We	 systematically	 lowered	 this	 threshold	 (0.4,	 0.6,	 0.8	 or	 ~66˚̊,	 ~53˚̊,	115	

~37˚̊)	 to	 examine	 its	 effect	 on	 the	 accuracy	 of	 tractography.	 There	 was	 an	 effect	 of	 curvature	116	

threshold	on	the	percentage	of	correctly	detected	connections	of	the	unthresholded	matrices	(i.e.,	117	

where	 the	 x-axis	 =	 0,	 Fig.	 2A;	 repeated	 measures	 one-way	 ANOVA,	 F(3,	 9)=525.85,	 p<0.001).	118	

Notably,	 post	hoc	 comparisons	 indicated	 that	%	correct	was	not	 significantly	different	between	119	
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matrices	 derived	 using	 curvature	 thresholds	 of	 0.2	 and	 0.4	 (M:	 79.14%,	 SD:	 0.12)	 but	 was	120	

significantly	lower	for	thresholds	of	0.6	(M:	76.21%,	SD:	0.63)	and	0.8	(M:	51.31,	SD:	1.02)	(Tukey-121	

Kramer	tests,	p	<	0.05).	The	effect	of	curvature	threshold	on	the	AUC	of	unthresholded	matrices	122	

was	limited	to	differences	between	the	lowest	threshold	(0.8)	and	all	other	thresholds	(repeated	123	

measures	 one-way	 ANOVA,	 F(3,9)=39.83,	 p<0.001;	 post	 hoc	 Tukey-Kramer	 tests)	 (Fig.	 2B).	124	

Lowering	 the	 curvature	 threshold	 to	 0.6	 and	 below	 resulted	 in	 a	 significant	 drop	 in	 sensitivity	125	

(repeated	measures	one-way	ANOVA,	F(3,9)=676.26,	p<0.001;	post	hoc	Tukey-Kramer	tests)	with	126	

no	differences	 for	curvature	thresholds	of	0.2	and	0.4	(Fig.	2C,	 top).	This	was	accompanied	by	a	127	

significant	increase	specificity	across	all	curvature	thresholds	(Fig.	2C,	bottom;	repeated	measures	128	

one-way	 ANOVA,	 F(3,9)=530.79,	 p<0.001;	 post	 hoc	 Tukey-Kramer	 tests).	 Precision	 also	129	

significantly	 increased	 when	 the	 curvature	 threshold	 was	 lowered	 to	 0.6	 and	 below	 (repeated	130	

measures	 one-way	 ANOVA,	 F(3,9)=81.26,	 p<0.001;	 post-hoc	 Tukey-Kramer	 tests),	 with	 no	131	

pairwise	differences	between	0.2	and	0.4	(Fig	2D).	Intrahemispheric	tractography	using	the	RM-132	

CoCo	parcellation	produced	similar	results	(Fig.	S1).		133	
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	134	
Figure	2.	Accuracy	of	DWI	tractography.	(A-D)	Accuracy	measures	for	tractography	using	the	Markov-Kennedy	parcellation.	135	
(E-H)	Accuracy	measures	for	 interhemispheric	tractography	using	the	RM-CoCo	parcellation.	Curves	shown	correspond	to	136	
different	 tractography	 curvature	 thresholds	 as	 a	 function	of	 thresholding	 the	 tractography-derived	 connectivity	matrices	137	
(i.e.,	discarding	connections	having	the	lowest	proportion	of	streamline	counts).	138	

We	 also	 explored	 the	 accuracy	 of	 interhemispheric	 tractography	 using	 the	 RM-CoCo	139	

parcellation.	For	the	‘default’	tractography	parameter	settings,	interhemispheric	tracking	resulted	140	

in	 significantly	 lower	 %	 correct	 (paired	 t-test,	 t(9)=-1873.4,	 p<0.0001)	 and	 precision	 (t(9)=-141	

5636.7	 ,	 p<0.0001)	 while	 AUC	 was	 not	 different	 (t(9)=	 1.74,	 p=0.12)	 (Fig.	 2E-H	 vs.	 Fig.	 S1).	142	

However,	 as	 available	 tracer	 data	 for	 interhemispheric	 connections	 are	 limited,	 many	 of	 the	143	

“absent”	 interhemispheric	connections	 in	 the	 tracer	matrix	are	due	 to	a	 lack	of	anatomical	data.	144	

We	therefore	performed	the	same	analysis	on	just	the	subset	of	interhemispheric	connections	for	145	

which	 the	 CoCoMac	 database	 indicates	 an	 explicitly	 present	 (n=479)	 or	 absent	 (n=125)	146	

connection.	 While	 accuracy	 of	 tractography	 was	 remarkably	 better	 for	 this	 subset	 of	147	

interhemispheric	 connections,	 it	 was	 still	 slightly	 lower	 than	 that	 of	 intrahemispheric	148	

tractography	 (Fig.	 S2).	 Of	 note,	 precision	 for	 the	 subset	 analysis	 was	 considerably	 higher	 (Fig.	149	
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S2D)	than	that	for	all	interhemispheric	connections	(Fig.	2H),	indicating	that	the	vast	majority	of	150	

detected	connections	in	the	explicit	subset	were	true	positives.	151	

Just	as	in	intrahemispheric	tracking,	there	were	no	pairwise	differences	in	%	correct,	AUC	152	

or	 precision	 values	 between	 curvature	 thresholds	 of	 0.2	 or	 0.4	 for	 interhemispheric	 tracking	153	

(repeated	 measures	 one-way	 ANOVAs,	 all	 p<0.001;	 post-hoc	 Tukey-Kramer	 tests)	 (Fig	 2E-H).	154	

Together	 with	 the	 intrahemispheric	 tracking	 results,	 these	 findings	 suggest	 that	 using	 a	 high	155	

curvature	threshold	for	macaque	data	does	not	result	in	a	notable	effect	on	the	accuracy	of	DWI-156	

based	 tractography	 and	 instead	 may	 lower	 the	 specificity	 when	 reconstructing	 anatomical	157	

connections	across	the	macaque	brain.	158	

The	ability	of	probabilistic	tractography	to	reconstruct	white	matter	fiber	tracts	is	thought	159	

to	 be	 limited	 by	 the	 distance	 between	 ROIs.	 Factors	 such	 as	 noise,	 artifacts	 and	 actual	 fiber	160	

trajectory	 increase	 the	uncertainty	of	 tracking	with	 increasing	distance	 (Li	 et	 al.,	 2012).	To	 test	161	

whether	 this	 was	 the	 case	 for	 our	 data,	 we	 binned	 connections	 by	 distance	 and	 found	 that	%	162	

correct	dropped	as	a	function	of	distance	for	intrahemispheric	tracking	(Fig.	S3A),	consistent	with	163	

previous	 findings	 for	 intrahemispheric	 tractography	 (Donahue	 et	 al.,	 2016).	 	 There	 was	 no	164	

consistent	 effect	 of	 distance	 on	 %	 correct	 for	 interhemispheric	 tracking	 (Fig.	 S3B).	 Employing	165	

distance	correction	did	little,	if	anything,	to	change	accuracy	measures	(data	not	shown),	since	our	166	

accuracy	measures	are	computed	using	binarized	data	and	distance	correction	as	implemented	in	167	

FSL	 is	 simply	 a	 reweighting	 scheme	 that	 biases	 the	 number	 of	 streamlines	 detected	 for	 long-168	

distance	tracts	rather	than	whether	streamlines	are	detectable.	169	

Distance	 is	 also	 a	 determining	 factor	 in	 actual	 connectivity	 probabilities	 as	 observed	 in	170	

tracer-based	 networks	 (Markov	 et	 al.,	 2013;	 Beul	 et	 al.,	 2017),	 suggesting	 that	 the	 distance	171	

between	ROIs	could	be	used	to	estimate	the	existence	of	a	connection	between	them.	To	test	this,	172	

we	used	a	simple	geodesic	distance-based	model	to	generate	connectivity	matrices	in	the	Markov-173	
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Kennedy	parcellation.	Remarkably,	geodesic	distance-based	estimates	of	connectivity	led	to	better	174	

correspondence	with	 the	 tracer	 data	 (median	 AUC:	 0.75)	 than	DWI-based	 reconstructions	 (Fig.	175	

S4).	176	

Effects	of	discarding	“weakest”	connections	on	accuracy	177	

For	the	purposes	of	connectome	creation,	the	outputs	of	probabilistic	tractography	algorithms	are	178	

often	 thresholded	 by	 discarding	 connections	whose	 streamline	 counts	 do	 not	meet	 a	minimum	179	

requirement	(Zalesky	et	al.,	2016;	Roberts	et	al.,	2017).	To	determine	whether	such	a	thresholding	180	

technique	improves	the	accuracy	of	probabilistic	tractography,	we	systematically	thresholded	our	181	

tractography-derived	 connectivity	matrices	 by	 discarding	 between	 5	 and	 90%	of	 the	 “weakest”	182	

connections	 (i.e.,	 those	with	 lowest	weights)	 in	 increments	of	 5%.	Accuracy,	 as	measured	by	%	183	

connections	 correctly	 detected	 and	 AUC,	 dropped	 as	 a	 function	 of	 thresholding	 the	184	

intrahemispheric	 connectivity	 matrix	 (Fig.	 2A-B	 and	 S1A-B),	 with	 a	 significant	 drop	 occurring	185	

once	20%	or	more	of	the	weakest	connections	were	discarded,	depending	on	the	accuracy	metric,	186	

parcellation	 and	 curvature	 threshold	 used	 (Table	 S1).	 For	 interhemispheric	 tractography,	 only	187	

AUC	 dropped	 as	 a	 function	 of	 discarding	 the	 weakest	 weights,	 corresponding	 to	 a	 drop	 in	188	

sensitivity	(Fig.	2F-G,	but	see	Fig.	S2),	with	a	significant	drop	occurring	once	a	35%	or	more	was	189	

reached	(Table	S2).	190	

Do	DWI-based	connectomes	accurately	depict	network	characteristics?	191	

To	 determine	 whether	 network	 characteristics	 were	 accurately	 captured	 in	 DWI-based	192	

connectomes,	we	first	constructed	an	average	DWI-based	connectome	for	each	parcellation	using	193	

the	set	of	“optimal”	tractography	parameters	and	thresholds	that	maximized	AUC	for	each	animal	194	

(see	Methods,	Fig.	S5	and	Table	S2).	We	also	included	for	analysis	a	DWI-based	structural	network	195	

in	 the	 RM-CoCo	 parcellation	 derived	 from	 control	 animals	 recently	 described	 by	 Grayson	 and	196	
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colleagues	 (2017).	 This	 independent	 average	 network	was	 constructed	 using	 different	 imaging	197	

sequences,	image	preprocessing	and	probabilistic	tractography	procedures	from	those	described	198	

in	the	present	paper.	For	replication	purposes	and	to	examine	the	dependence	of	our	results	on	199	

our	 specific	 sample	 and	 DWI	 sequences,	 we	 present	 analyses	 on	 this	 additional	 DWI-based	200	

network	in	the	supplementary	materials	(see	Figures	S6-S8).	201	

The	edge	weights	of	the	average	DWI-based	network	were	correlated	with	those	from	the	202	

tract-tracing	 one	 for	 the	 Markov-Kennedy	 parcellation	 (Fig	 3A;	 Spearman	 rank	 correlation	203	

coefficient	 (rs)	 =	 0.51,	 p<0.0001)	 and	 also	 for	 the	 RM-CoCo	 parcellation	 (Fig	 3B;	 rs	 =	 0.45,	204	

p<0.0001;	also	see	Fig.	S6B).	This	correlation	is	in	line	with	(Donahue	et	al.,	2016)	or	better	than	205	

(van	den	Heuvel	et	al.,	2015)	previous	studies,	and	suggests	 that	 the	strength	of	a	white	matter	206	

fiber	 tract	 is	 well	 captured	 by	 tractography-based	 estimates.	 As	 distance	 correction	 biases	 the	207	

number	 of	 streamlines	 detected	 for	 long	 tracks,	 and	 therefore	 biases	 the	 weights	 of	 our	 DWI-208	

based	connectomes,	we	additionally	constructed	distance-corrected	versions	of	the	average	DWI-209	

based	 network	 for	 comparison	 with	 the	 tracer	 networks.	 The	 correlation	 between	 the	210	

tractography-based	 and	 the	 tract-tracing-based	 edge	 weights	 was	 worse	 than	 the	 correlation	211	

obtained	without	distance	correction	for	both	the	Markov-Kennedy	(rs	=	0.46,	p<0.0001;	Fig.	S7A)	212	

and	RM	parcellation	(rs	=	0.40,	p<0.0001;	Fig.	S7B).	Finally,	because	connection	strength	varies	as	213	

a	 function	 of	 distance	 in	 both	 tracer	 and	 tractography	 data	 (e.g.,	 Donahue	 et	 al.,	 2016)	we	 also	214	

computed	 the	partial	 correlation	between	 tracer	and	 tractography	weights	while	controlling	 for	215	

distance	between	ROIs.	The	correlation	between	the	weights	was	reduced	by	half	for	the	Markov-216	

Kennedy	parcellation	(rs	=	0.21,	p<0.0001)	but	only	marginally	for	the	RM-CoCo	parcellation	(rs	=	217	

0.43,	p<0.0001).	218	
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	219	

Figure	3.	Correspondence	of	network	topology	metrics	of	in	vivo	tractography	and	tract-tracing	connectomes.	(A-B)	220	
Connectome	weight	estimates	from	DWI	tractography	are	well	correlated	with	those	from	tracer	studies.	(C-F)	Centrality	221	
estimates	from	DWI-based	networks	are	correlated	with	those	from	tracer	studies	for	degree	but	not	betweenness	222	
centrality	estimates.	Only	some	hubs,	identified	as	those	with	centrality	>80th	percentile,	in	the	DWI-based	networks	223	
correspond	with	hubs	in	tracer-based	networks	(red	data	points).	These	included	cortical	areas	7a,	8m,	9/46d,	V4	in	the	224	
Markov-Kennedy	parcellation	(C,E),	and	anterior	and	posterior	cingulate	cortex	(CCa	and	CCp)	and	centrolateral	and	225	
ventrolateral	prefrontal	cortex	(PFCcl	and	PFCvl)	in	the	RM-CoCo	parcellation	(D,	F).	Hubs	in	tracer-based	networks	not	226	
identified	as	hubs	in	DWI-based	networks	denoted	in	black;	misidentified	hubs	in	DWI-based	networks	that	are	not	hubs	in	227	
tracer-based	networks	denoted	in	grey.	Correctly	identified	hubs	denoted	in	red.	228	

We	next	computed	a	number	of	graph	metrics	that	capture	different	levels	of	description	of	229	

topology	for	both	tracer-	and	DWI-based	networks	to	determine	the	extent	to	which	tractography-230	

derived	networks	can	accurately	estimate	network	topology.	231	

Centrality	232	

Centrality	measures	are	commonly	used	to	provide	estimates	of	the	extent	to	which	each	node	is	233	

embedded	within	a	network,	describing	its	potential	contribution	to	network	communication	(van	234	

den	Heuvel	and	Sporns,	2013a).	Figure	3	shows	how	the	nodal	degree	for	DWI-	and	tract-tracing-235	
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based	networks	was	positively	correlated	for	the	Markov-Kennedy	intrahemispheric	parcellation	236	

(Fig	3C;	rs	=	0.45,	p	<	0.01)	as	well	as	the	RM-CoCo	whole	brain	parcellation	(Fig	3D;	rs	=	0.24,	p	=	237	

0.01).	 Betweenness	 centrality,	 however,	 was	 not	 correlated	 for	 either	 parcellation	 (Markov-238	

Kennedy:	 rs	 =	 0.14,	 p=0.23;	RM-CoCo:	 rs	 =0.14,	 p=0.11)	 (also	 see	 Fig.	 S6C).	Network	 “hubs”	 are	239	

often	singled	out	for	investigation	because	of	the	special	topological	role	they	are	thought	to	play	240	

in	network	communication	and	are	 identified	as	 those	nodes	with	high	centrality.	To	determine	241	

whether	 hubs	 in	 the	 tractography-based	 networks	 coincide	 with	 those	 in	 the	 tracer-based	242	

networks,	 we	 identified	 hub	 nodes	 as	 those	 having	 centrality	 values	 greater	 than	 the	 80th	243	

percentile	 for	each	centrality	measure.	Although	some	overlap	exists	 in	the	identified	hubs	from	244	

tractography-	 and	 tracer-based	 networks	 (Fig.	 3C-F;	 red	 data	 points),	 a	 number	 of	 hubs	 in	 the	245	

tracer-based	networks	were	not	considered	hubs	in	the	tractography-based	networks	(Fig.	3C-F;	246	

black	data	points)	and	vice	versa	 (grey	data	points;	also	see	Fig.	S6C-D).	These	 findings	suggest	247	

that	 tractography-based	 estimates	 of	 node	 centrality	 may	 not	 accurately	 reflect	 actual	248	

topologically	central	cortical	regions.	249	

Network	architecture	250	

Modularity	251	

One	common	way	to	describe	brain	network	architecture	has	been	to	decompose	brain	networks	252	

into	smaller	communities	or	modules	that	are	responsible	for	more	specialized	functions,	and	the	253	

connections	 between	 communities	 as	 serving	 the	 potential	 to	 integrate	 across	 these	 functions	254	

(Meunier	et	al.,	2010;	Sporns	and	Betzel,	2016).	We	examined	whether	the	modular	organization	255	

of	 tractography-based	 networks	 accurately	 reflected	 those	 obtained	 from	 tract	 tracing.	256	

Tractography-based	 networks	 showed	 a	 remarkably	 similar	 organization	 of	 subnetworks	 as	257	

compared	 to	 the	 tracer-based	 networks	 (Fig.	 4A).	 For	 the	 Markov-Kennedy	 parcellation,	 the	258	
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modular	 organization	 differed	 only	 in	 its	 assignment	 of	 three	 nodes	 (F2,	 F5,	 ProM)	 to	 the	259	

prefrontal	module	in	the	tractography-based	network	(Fig.	4A	top	right,	dark	blue)	rather	than	a	260	

more	fronto-parietal	one	in	the	tracer-based	network	(Fig.	4A	top	left,	light	green).	However,	even	261	

in	the	tracer-based	network,	these	three	nodes	exhibit	extensive	and	strong	connectivity	with	the	262	

prefrontal	module	(Fig.	4A	top	left,	grey	edges).	For	the	RM-CoCo	parcellation,	the	decomposition	263	

of	the	tractography-based	network	resulted	in	a	fourth	module	(Fig.	4A,	bottom	right,	dark	blue)	264	

and	 the	 assignment	 of	 some	 prefrontal	 areas	 (PFCdl,	 FEF,	 PMCm,	 PFCvl,	 PMCvl)	 to	 a	 more	265	

prefrontal	 module	 (light	 blue)	 rather	 than	 a	 more	 fronto-parietal	 one	 as	 in	 the	 tracer-based	266	

network	(Fig.	4A,	bottom	left,	 light	green).	We	determined	the	distance	between	the	two	sets	of	267	

modules	 by	 computing	 the	 variation	 of	 information	 (VI)	 between	 them	 (Meilǎ,	 2007).	 For	 both	268	

parcellations,	 the	VI	was	 significantly	 lower	 between	 the	 tractography-based	partitions	 and	 the	269	

tracer-based	ones	as	compared	to	the	tracer-based	null	networks	(Markov-Kennedy:	0.13	vs	0.70	270	

±	4.2x10-15;	RM-CoCo:	0.27	vs	0.35	±	3.0x10-15),	suggesting	that	the	tractography-	and	tracer-based	271	

partitions	were	more	similar	to	each	other	than	expected	by	chance.	272	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356576doi: bioRxiv preprint 

https://doi.org/10.1101/356576


	 15	

	273	

Figure	4.	Modularity	partitions	of	tractography-based	networks	are	well	matched	with	those	from	tracer-based	274	
networks.	(A)	Connectogram	depictions	of	modular	structure	of	each	network	type	for	the	Markov-Kennedy	(top)	and	the	275	
RM-CoCo	(bottom)	parcellations.	Community	assignments	are	denoted	by	node	color.	Within-module	edges	are	denoted	276	
with	the	same	color	as	the	module	while	between-module	edges	are	denoted	in	gray.	Edges	were	thresholded	for	ease	of	277	
visualization.	For	the	Markov-Kennedy	parcellation,	the	visualization	threshold	was	set	to	33%	for	both	network	types.	For	278	
RM-Coco,	the	visualization	threshold	was	set	to	keep	connections	in	the	strongest	weight	category	(i.e.,	3)	in	the	tracer-279	
based	network	and	the	tractography-based	network	was	matched	for	the	number	of	edges.	(B)	Correlation	between	280	
tractography-	and	tracer-based	network	participation	coefficients	for	the	Markov-Kennedy	(top)	and	RM-CoCo	(bottom)	281	
parcellations.	The	community	assignment	of	tracer-based	networks	were	imposed	on	the	tractography-based	networks	to	282	
determine	participation	coefficients.	283	

We	 also	 assessed	 the	 accuracy	 of	 the	 tractography-based	 networks	 community	284	

assignments	 by	 first	 imposing	 the	 community	 structure	 of	 the	 tracer-based	 networks	 on	 the	285	

tractography-based	ones	and	then	computing	the	participation	coefficients	for	each	of	the	nodes	286	

in	 the	 tractography-based	networks.	 The	participation	 coefficient	 describes	 the	 extent	 to	which	287	

each	node	 is	 connected	 to	nodes	 in	other	modules.	 If	 the	 “true”	community	assignments	and,	 in	288	

particular,	the	between-module	distribution	of	connections	from	the	tracer-based	networks	were	289	

well	 estimated	 by	 the	 topology	 of	 the	 tractography-based	 networks,	 then	 the	 participation	290	
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coefficients	 of	 the	 tractography-based	 network	 nodes	 computed	 in	 this	 manner	 should	 match	291	

those	 from	 the	 tracer-based	 networks.	 There	 was	 a	 moderate	 match	 for	 the	 Markov-Kennedy	292	

parcellation	 (Fig.	 4B;	 rs	 =	 0.39,	 p=0.02,	 Spearman	 rank	 correlation)	 but	 not	 for	 the	 RM-CoCo	293	

parcellation	 (Fig.	 4B;	 rs	 =	 0.03,	 p=0.42;	 also	 see	 Fig.	 S8).	 Together	 with	 the	 observed	 low	 VI	294	

between	 partition	 lists,	 these	 results	 suggest	 that	 nodal	 community	 assignments	 are	 well	295	

represented	by	DWI-based	connectomes	and	the	distribution	of	connections	between	and	within	296	

modules	can,	to	some	degree,	be	estimated	as	well.	297	

Rich	Club	Architecture	298	

Brain	networks	have	also	been	described	as	having	a	so-called	“rich	club”	architecture,	whereby	a	299	

subset	of	high	degree	nodes	exhibit	dense	connectivity	with	each	other,	often	poised	to	mediate	300	

intermodular	communication	and	forming	a	strong	anatomical	core	(van	den	Heuvel	and	Sporns,	301	

2013b).	 We	 examined	 whether	 a	 rich	 club	 architecture	 could	 be	 detected	 in	 the	 tracer-based	302	

networks,	and	the	extent	 to	which	the	 tractography-based	networks	were	able	 to	replicate	such	303	

findings.	 As	 our	 networks	were	weighted,	we	 computed	 the	normalized	 rich	 club	 coefficient	 by	304	

considering	network	weights	in	addition	to	topology	when	generating	the	null	models	(Alstott	et	305	

al.,	 2014)	 for	 both	 of	 the	 tractography-based	 networks	 as	 well	 as	 the	 Markov-Kennedy	 tracer	306	

network.	 Similar	 to	 previous	 findings	 (Knoblauch	 et	 al.,	 2016),	 the	 Markov-Kennedy	 tracer	307	

network	approached	a	rich	club	architecture	at	a	degree	of	24	(p	=	0.08	for	weighted	networks,	p	308	

=	0.06	for	mixed	networks)	but	rich	club	architecture	was	not	consistently	detected	across	a	range	309	

of	degrees	and	by	and	 large	not	 significant	 for	any	of	 the	 types	of	network	considered	 (Fig.	6A,	310	

left).	 Although	 the	DWI-based	Markov-Kennedy	network	 showed	 an	 increase	 in	 the	 normalized	311	

rich	 club	 coefficient	 at	high	degree	 levels,	 none	were	 significantly	 greater	 than	1	 following	FDR	312	

correction	(Fig.	5A,	right).	As	we	have	previously	reported	(Shen	et	al.,	2015),	the	RM-CoCo	tracer	313	

network	exhibits	a	rich	club	architecture	at	multiple	degree	levels	(Fig.	5B,	 left).	The	DWI-based	314	
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RM-CoCo	network	also	exhibits	a	rich	club	architecture	at	multiple	degree	levels	for	all	three	types	315	

of	models	considered	(Fig.	5B,	right).	A	hypergeometric	test	of	significant	rich	club	levels	detected	316	

in	this	network	when	a	mixed	model	was	considered	showed	significant	overlap	with	the	tracer	317	

network	in	3	of	14	levels	(at	k=55,	p<0.01;	at	k=54,	p=0.01;	and	at	k=53,	p=0.03;	also	see	Fig.	S9).	318	

For	level	k=55,	10	rich	club	hubs	that	included	regions	of	the	prefrontal	and	cingulate	cortex	were	319	

identified	in	both	the	tracer-	and	DWI-based	networks	(Fig.	5C;	red).	Some	additional	regions	of	320	

the	 temporal	 cortex	 along	with	dorso-medial	 prefrontal	 cortex	were	RC	hubs	 in	 the	DWI-based	321	

network	but	not	the	tracer-based	one	(Fig.	5C;	grey),	while	a	number	of	parietal	and	prefrontal	RC	322	

hubs	 of	 the	 tracer-based	 network	were	 notably	missing	 from	 the	 DWI-based	 network	 (Fig.	 5C;	323	

black).	324	

	325	

Figure	5.	Rich	club	(RC)	architecture	in	tracer-	and	DWI-based	networks.	Normalized	rich	club	coefficient	for	tracer-	(left)	326	
and	DWI-based	(right)	networks	for	the	Markov-Kennedy	(A)	and	RM-CoCo	(B)	parcellations.	RC	levels	(i.e.,	normalized	rich	327	
club	coefficients	significantly	>1)	denoted	by	circles.	(C)	RCs	at	degree	level	55	for	RM-CoCo	parcellation.	Red	nodes	and	328	
edges	depict	those	that	are	common	to	both	tracer-	and	DWI-based	networks.	RC	nodes	and	edges	incorrectly	detected	by	329	
DWI	are	depicted	in	grey,	and	those	in	tracer-based	networks	but	missed	by	DWI	are	depicted	in	black.	330	

Core-Periphery	Architecture	331	

For	denser	networks,	such	as	the	Markov-Kennedy	tracer	one,	a	core-periphery	architecture	has	332	

been	 described	 (Ercsey-Ravasz	 et	 al.,	 2013).	 Here,	 we	 determined	 whether	 the	 core-periphery	333	
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architecture	previously	reported	in	the	Markov-Kennedy	tracer	network	can	be	reconstructed	by	334	

tractography-based	connectomes.	For	the	symmetrized	tracer-based	network,	we	detected	a	set	of	335	

18	nodes	that	contributed	to	the	high-density	core,	with	the	11	remaining	nodes	considered	to	be	336	

in	the	periphery	(Fig.	6A).	For	the	tractography-based	network,	a	core-periphery	architecture	was	337	

also	detected,	with	the	core	consisting	of	21	nodes,	of	which	16	were	correctly	identified	(Fig.	6B).	338	

A	 hypergeometric	 test	 showed	 significant	 overlap	 in	 the	 core	 memberships	 of	 the	 tracer	 and	339	

tractography	networks	(p<0.001).	340	

	341	

Figure	 6.	 Core-Periphery	 architecture	 in	 tracer-	 and	 DWI-based	 networks.	 (A)	 Core-periphery	 architecture	 detected	 in	342	
Markov-Kennedy	tract	tracing	network.	Core	nodes	and	edges	depicted	in	red,	peripheral	nodes	depicted	in	coral.	(B)	Core-343	
periphery	 architecture	 detected	 in	 the	 tractography-based	 network.	 Correctly	 identified	 core	 nodes	 and	 edges	 in	 red,	344	
peripheral	nodes	in	coral.	Incorrectly	identified	core	nodes	and	edges	depicted	in	grey,	while	core	nodes	that	were	missed	345	
depicted	in	black.	346	

Discussion	347	

We	 have	 tested	 the	 performance	 of	 in	 vivo	 diffusion	 and	 tractography-based	 connectomes	 by	348	

comparing	 them	 to	 the	 gold	 standard	 connectomes	 from	 tracer	 data	 in	macaque	monkeys.	We	349	

found	 that	 the	 reconstruction	of	 individual	 connections	 to	be	moderately	accurate,	with	a	 steep	350	

tradeoff	between	sensitivity	and	specificity	that	replicates	previous	ex	vivo	reports.	We	also	found	351	

the	 proportion	 of	 streamlines	 detected	 between	 any	 two	 given	 regions	 can	 serve	 as	 a	 robust	352	
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estimate	of	the	number	of	axons	that	run	between	them,	and	that	this	relationship	was	dependent	353	

on	 the	 distance	 between	 regions.	 Importantly,	 we	 performed	 a	 series	 of	 validation	 studies	 on	354	

network	 topology	metrics	 and	demonstrated	how	 the	 assignment	of	nodes	 into	 communities	 in	355	

tractography-based	 connectomes	 is	 fairly	 accurate	 and	 that	 a	 high-density	 rich	 club	 or	 core-356	

periphery	 organization	 can	 be	 detected,	 just	 as	 they	 can	 be	 in	 the	 corresponding	 tracer-based	357	

networks.	 However,	 the	 proper	 identification	 of	 hubs	within	modules,	 and	membership	 in	 rich	358	

club	or	core-periphery	type	architectures	was	 less	accurate,	 likely	owing	to	the	great	number	of	359	

false	positive	connections	generated	by	tractography.	As	network	analysis	has	quickly	become	a	360	

popular	 approach	 for	 analyzing	 cortical	 connectomes,	 leading	 to	 the	 influential	 and	 expanding	361	

fields	of	connectomics	and	network	neuroscience	(Sporns,	2013;	Bassett	and	Sporns,	2017),	our	362	

findings	 are	 instrumental	 for	 the	 interpretation	 of	 network	 topology	 results	 based	 on	 in	 vivo	363	

measurements	of	structural	connectivity.	364	

Reconstruction	of	interareal	cortico-cortical	connections	in	vivo		365	

Mapping	 the	 cortical	 connectome	 and	 uncovering	 its	 topological	 layout	 is	 a	 major	 ongoing	366	

research	endeavour,	involving	many	large-scale	efforts	like	the	Human	Connectome	Project	(Van	367	

Essen	et	al.,	2013).	Structural	connectomes	in	vivo	can	only	be	constructed	with	diffusion	weighted	368	

imaging	 and	 tractography	 at	 present.	 The	 majority	 of	 such	 approaches	 aim	 to	 reconstruct	 the	369	

large-scale	cortico-cortical	connectivity	matrix	and	subsequently	analyze	it	using	network	metrics	370	

(Bassett	et	al.,	2008;	Hagmann	et	al.,	2008;	Gong	et	al.,	2009).	Here,	we	found	the	reconstruction	of	371	

connections	between	the	cortical	areas	to	be	above	chance,	but	not	highly	accurate.	Our	obtained	372	

quantitative	 measures,	 such	 as	 AUC,	 are	 comparable	 to	 recent	 reports	 investigating	373	

intrahemispheric	connections	(Thomas	et	al.,	2014;	Azadbakht	et	al.,	2015;	van	den	Heuvel	et	al.,	374	

2015;	Donahue	et	al.,	2016).	Our	results	provide	additional	quantitative	evidence	on	the	feasibility	375	

to	 correctly	 uncover	 the	 correct	 pairs	 of	 interconnected	 areas	 with	 diffusion	 imaging	 and	376	
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tractography,	by	using	two	different	benchmark	datasets	obtained	by	tract	tracing.	Despite	large	377	

differences	 in	 how	 these	 two	 benchmark	 datasets	 were	 derived,	 how	 their	 connectivity	 was	378	

expressed	and	how	they	have	differing	network	topologies,	intrahemispheric	tractography	results	379	

for	 these	 two	 parcellations	 were	 remarkably	 similar.	 Importantly,	 we	 also	 examined	380	

interhemispheric	 tractography	 and	 show	 that	 it	 exhibits	 worse	 reconstruction	 quality	 than	381	

intrahemispheric	tractography.	This	is	consistent	with	our	observation	that	tractography	accuracy	382	

decreases	with	increasing	distance	between	regions	(also	see	Li	et	al.,	2012;	Donahue	et	al.,	2016),	383	

which	 is	 only	 compounded	when	 tracking	 across	 hemispheres.	 However,	 when	we	 limited	 our	384	

analysis	to	only	those	interhemispheric	connections	that	were	explicitly	defined	in	CoCoMac,	the	385	

accuracy	 of	 DWI	 tractography	 approached	 that	 of	 intrahemispheric	 tracking.	 Precision,	 in	386	

particular,	was	considerably	higher	for	this	subset	analysis,	suggesting	that	the	false	positive	rate	387	

decreased	 dramatically	 when	 we	 only	 considered	 explicitly	 defined	 connections.	 This	 suggests	388	

that,	to	some	degree,	missing	information	in	CoCoMac	about	interhemispheric	connections	may	be	389	

lowering	our	 estimates	of	DWI	 tractography	accuracy.	Moreover,	 although	 considered	 the	 “gold	390	

standard”,	 tracer	 data	 themselves	 are	 not	 perfect	 and	 can	 be	 affected	 by	 variability	 across	391	

individual	 injections,	 the	 uptake	 of	 tracers	 by	 passing	 axonal	 fibers,	 as	 well	 as	 the	 distance	392	

travelled	by	particular	tracers	(for	discussion,	see	Köbbert	et	al.,	2000;	Lanciego	and	Wouterlood,	393	

2011;	Markov	et	al.,	2014).	394	

Earlier	 validation	 studies	 have	 highlighted	 the	 inability	 of	 tractography	 to	 resolve	 long-395	

range	 connections.	 Both	 probabilistic	 (Li	 et	 al.,	 2012)	 and	 deterministic	 (Dauguet	 et	 al.,	 2007;	396	

Zalesky	and	Fornito,	2009)		 tractography	algorithms	suffer	 from	 false	negatives	associated	with	397	

long-range	 fibers	 due	 to	 the	 increasing	 uncertainty	 of	 tractography	with	 distance	 (Jbabdi	 et	 al.,	398	

2015).	 Simply	biasing	 connection	weights	 towards	 long-distance	 connections	using	 the	distance	399	

correction	 option	 did	 little	 to	 resolve	 this	 problem	 as	 accuracy	 measures	 relied	 on	 the	 binary	400	
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classification	 of	 the	 existence	 or	 non-existence	 of	 connections	 (but	 see	 Azadbakht	 et	 al.,	 2015).	401	

Instead,	 implementing	 the	 distance	 correction	 option	 affected	 the	 ability	 of	 tractography	 to	402	

estimate	 the	 strength	 of	 connections,	 decreasing	 it	 substantially	 when	 distance	 was	 estimated	403	

with	the	more	realistic	measure	of	geodesic	distance	rather	than	Euclidean	distance.	Connectomes	404	

constructed	using	deterministic	 tractography	 are	 generally	more	 sparse	 than	 those	 constructed	405	

using	probabilistic	tractography	(Zalesky	et	al.,	2016),	and	can	suffer	from	a	large	number	of	false	406	

negative	 connections	 (Gong	 et	 al.,	 2009;	 Bastiani	 et	 al.,	 2012).	 Recent	 reports	 of	 probabilistic	407	

tractography,	 including	 the	 results	 presented	 here,	 have	 additionally	 indicated	 that	 while	 the	408	

majority	of	 'true	connections'	are	successfully	reconstructed,	 they	instead	come	at	the	price	of	a	409	

large	 number	 of	 false	 positive	 connections	 (e.g.,	 Thomas	 et	 al.,	 2014).	 The	 choice	 between	410	

deterministic	 and	 probabilistic	 tractography	 then,	 can	 be	 considered	 as	 a	 choice	 between	411	

constructing	 low-sensitivity/high-specificity	 connectomes	 versus	 high-sensitivity/low-specificity	412	

ones.	Relevant	 for	 the	probabilistic	 tractography	results	presented	here,	excessive	 false	positive	413	

connections	have	been	reported	as	a	major	drawback	of	diffusion	imaging	and	tractography	in	a	414	

validation	study	with	simulated	human	brain	data	(Maier-Hein	et	al.,	2017).	These	findings,	along	415	

with	 the	 observation	 that	 false	 positives	 have	 a	 much	 larger	 impact	 on	 estimates	 of	 network	416	

topology	 as	 compared	 to	 false	 negatives	 (Bastiani	 et	 al.,	 2012;	 Zalesky	 et	 al.,	 2016),	 should	 be	417	

explicitly	 taken	 into	 account	 as	 important	 limitations	 when	 interpreting	 results	 from	 diffusion	418	

imaging	 tractography.	 Our	 results	 indicate	 that	 thresholding	 the	 weakest	 weights	 in	 the	419	

tractography-based	networks	on	 the	order	of	20-30%	did	not	affect	 the	percentage	of	 correctly	420	

detected	 connections.	 Moreover,	 thresholding	 on	 the	 order	 of	 55-85%	 did	 not	 affect	 AUC	 as	 it	421	

decreased	 sensitivity	 while	 dramatically	 increasing	 specificity.	 This	 is	 consistent	 with	 previous	422	

estimates	 for	 optimizing	 the	 tradeoff	 between	 sensitivity	 and	 specificity	 (de	 Reus	 and	 van	 den	423	

Heuvel,	2013b;	Donahue	et	al.,	2016).	Choosing	 to	 threshold	by	discarding	 the	weakest	weights,	424	
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however,	may	 result	 in	also	discarding	weak	 true	positives.	Weak	connections	are	known	 to	be	425	

important	 in	 determining	 the	 brain’s	 functional	 organization	 (Gallos	 et	 al.,	 2012;	 Goulas	 et	 al.,	426	

2015)	and	may	be	better	represented	in	networks	that	have	been	constructed	using	methods	that	427	

take	the	frequency	of	edge	reconstruction	across	subjects	into	account	(Roberts	et	al.,	2017).	We	428	

also	 found	 that	 lower	 curvature	 thresholds,	 at	 least	 for	 macaque	 data,	 result	 in	 fewer	 false	429	

positives	 and	 greater	 specificity	 without	 greatly	 affecting	 other	 accuracy	 measures	 (also	 see	430	

Dauguet	et	al.,	2007;	Azadbakht	et	al.,	2015).	Whether	this	is	a	result	of	less	cortical	folding	and,	431	

therefore,	less	convoluted	white	matter	pathways	in	the	macaque	brain	(Herculano-Houzel	et	al.,	432	

2010;	 Zilles	 et	 al.,	 2013)	 or	whether	 it	 constitutes	 an	 indicative	 guide	 for	 human	 tractography	433	

remains	to	be	seen.	434	

Using	 the	 streamline	 count	 as	 a	 proxy	 of	 fiber	 density	 has	 been	 previously	 criticized	435	

because	 it	 is	 susceptible	 to	 differences	 in	 tract	 lengths,	 curvature	 and	 branching	 (Jones,	 2010;	436	

Jones	et	al.,	2013).	However,	we	showed	how	the	probability	values	obtained	with	 tractography	437	

were	significantly	correlated	with	an	explained	variance	 in	 line	with	Donahue	et	al.	 (2016),	and	438	

nearly	twice	that	of	van	den	Heuvel	et	al.	(2015).	Since	it	is	clear	from	tracer	studies	that	physical	439	

distance	plays	a	large	role	in	the	existence	and	strength	of	connections	(Markov	et	al.,	2013;	Beul	440	

et	 al.,	 2017),	 a	 cautionary	 note	 is	 needed	 when	 interpreting	 such	 validation	 results.	 We	 have	441	

shown	that	a	model	based	on	physical	distance	alone	was	able	 to	achieve	comparable	and	even	442	

higher	AUC	than	the	diffusion	and	tractography-based	reconstructions.	Moreover,	the	correlation	443	

between	 the	 strength	 of	 connections	 and	 the	 tractography	 probabilities	 was	 diminished	 when	444	

physical	distance	was	taken	 into	account.	Physical	distance-based	models	(e.g.,	Ercsey-Ravasz	et	445	

al.,	 2013;	 Bezgin	 et	 al.,	 2017)	 may	 therefore	 offer	 a	 more	 stringent	 baseline	 than	 using	446	

tractography	 alone	 while	 advancements	 in	 both	 imaging	 and	 tractography	 methods	 are	 still	447	

needed	for	the	accurate	reconstruction	of	cortical	connectomes	in	vivo.		448	
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Investigating	network	topology	of	the	cortex	in	vivo		449	

The	success	of	some	network	metrics	but	not	others	in	the	tractography-based	connectomes	was	450	

dependent	 on	 their	 resilience	 to	 rewirings.	 We	 found	 the	 partitioning	 of	 the	 cortico-cortical	451	

network	 into	modules	 to	 be	 highly	 similar	 between	 the	 invasive	 and	 non-invasive	 connectivity	452	

datasets.	These	 results	 bestow	some	 confidence	 in	module	partitioning	 results	 obtained	 in	vivo.	453	

This	 is	 in	 line	 with	 recent	 work	 that	 showed	 how	 false	 negatives,	 and	 even	 false	 positives,	 in	454	

connectomes	 affect	 modularity	 partitioning	 minimally	 (Zalesky	 et	 al.,	 2016).	 Partitioning	 brain	455	

networks	 into	modules	 can	result	 in	variable	 communities	across	 iterations	 (Sporns	and	Betzel,	456	

2016).	 To	 minimize	 the	 effects	 of	 unstable	 partitionings,	 we	 chose	 to	 use	 the	 most	 consistent	457	

community	 structure	 detected	 from	 multiple	 iterations	 of	 partitioning.	 Additional	 work	 is	 still	458	

needed	to	fully	assess	how	the	accuracy	of	partitioning	affects	comparisons	of	modularity	between	459	

different	networks.	460	

The	 participation	 coefficient,	 a	 higher-order	 network	 metric	 commonly	 used	 to	 identify	461	

intra-modular	 “provincial”	 and	 inter-modular	 “connector”	 hubs	 based	 on	 their	 cross-modular	462	

edges,	was	 not	 consistent	 across	 the	 invasive	 and	 non-invasive	 datasets.	 Our	 results	 suggested	463	

that	 for	 the	Markov-Kennedy	parcellation,	 inaccuracies	mostly	 arose	 from	 the	 reconstruction	of	464	

inter-	and	intra-modular	connections	as	the	participation	coefficients	were	correlated	even	when	465	

we	 controlled	 for	 differences	 in	 community	 structure	 by	 keeping	 the	 partitioning	 scheme	 fixed	466	

when	computing	participation	coefficients.	For	the	RM-CoCo	parcellation,	however,	there	was	an	467	

additional	 cost	 from	 the	 slightly	 inaccurate	 classification	 of	 nodes	 into	 their	 respective	468	

communities.	 Indeed,	 two	 networks	 can	 have	 extremely	 similar	modularity	 partitions	 but	 their	469	

underlying	connections	could	be	statistically	independent.	470	

The	 susceptibility	 of	 centrality	measures	 to	 rewirings	 resulted	 in	 discrepancies	 between	471	

the	 results	 obtained	 from	 the	 invasive	 and	 non-invasive	 measurements.	 While	 for	 degree	472	
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centrality	 a	 significant	 positive	 correlation	 was	 observed,	 no	 significant	 correlations	 were	473	

observed	 for	betweenness	 centrality	 in	 our	dataset	 and	only	moderate	 correlations	 in	 a	 second	474	

dataset	 (see	Supplemental	Material).	The	 top	most	 connected	nodes	or	 “hubs”	between	 the	 two	475	

modalities	also	did	not	fully	overlap	when	using	either	centrality	metric.	Our	results	indicate	that	476	

more	 confidence	 can	 be	 assigned	 to	 degree	 as	 compared	 to	 betweenness	 centrality	when	 non-477	

invasive	measurements	are	used.	Along	similar	lines,	global	descriptions	of	structural	organization	478	

like	rich-club	or	core-periphery	architectures,	 if	they	existed	in	the	tract	tracing	networks,	could	479	

be	 obtained	 from	 the	 tractography-based	 networks.	 However,	 the	 particular	 identification	 of	480	

nodes	as	hubs	within	these	architectures	was	less	accurate,	owing	again	to	the	susceptibility	of	the	481	

identification	to	rewirings.	Taken	together,	these	results	suggest	that	caution	must	be	taken	when	482	

using	DWI-based	 tractography	 for	 identifying	hubs,	 as	 identification	 is	 extremely	 susceptible	 to	483	

false	connections.	 	484	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356576doi: bioRxiv preprint 

https://doi.org/10.1101/356576


	 25	

Materials	and	Methods	485	

Data	 were	 collected	 from	 10	 male	 adult	 macaque	 monkeys	 (9	 Macaca	 mulatta,	 1	 Macaca	486	

fascicularis,	 age	 5.8	 ±	 1.9	 years).	 A	 subset	 of	 these	 animals	 (N=3)	 had	 MRI-compatible	 dental	487	

acrylic	 implants	 anchored	 to	 the	 skull	with	 ceramic	 bone	 screws.	All	 surgical	 and	 experimental	488	

procedures	were	approved	by	the	Animal	Use	Subcommittee	of	the	University	of	Western	Ontario	489	

Council	 on	 Animal	 Care	 and	 were	 in	 accordance	 with	 the	 Canadian	 Council	 of	 Animal	 Care	490	

guidelines.	491	

Surgical	preparation	and	anaesthesia	protocols	have	been	previously	described	(Hutchison	492	

et	al	2011).	Briefly,	animals	were	anaesthetized	before	their	scanning	session	and	anaesthesia	was	493	

maintained	using	1.5-2.0%	isoflurane	during	image	acquisition.	Images	were	acquired	using	a	7-T	494	

Siemens	MAGNETOM	head	scanner	with	a	high	performance	gradient	(Siemens	AC84	II;	Gmax	=	495	

80	mT/m;	SlewRate	=	400	T/m/s	and	an	in-house	designed	and	manufactured	8-channel	transmit,	496	

24-channel	receive	coil	optimized	for	the	primate	head.	For	each	monkey,	two	diffusion	weighted	497	

scans	 were	 acquired	 with	 opposite	 phase	 encoding	 in	 the	 superior-inferior	 direction	 at	 1	 mm	498	

isotropic	 resolution.	 For	 seven	 animals	 data	was	 acquired	 2D	EPI	 diffusion	 (Siemens	Advanced	499	

Diffusion	WIP	511)	with	TE/TR	=	48.8	ms	/	7500	ms,	b	=	1000	s/mm2	,	64	directions,	104	x	104	500	

matrix,	24	slices,	iPat	=	3	and	bandwidth	of	1923	Hz/px.	For	the	remaining	3	animals,	a	multiband	501	

EPI	diffusion	 sequence	 (Feinberg	 et	 al.,	 2010;	Moeller	 et	 al.,	 2010)	was	used;	TE/TR	=	47	ms	 /	502	

6000	ms,	multiband	=2,	b	=	1000	s/mm2	,	64	directions,	128x	128	matrix,	24	slices,	iPat	=	2,	Partial	503	

fourier	=	5/8	and	bandwidth	of	1502	Hz/px.	A	3D	T1w	structural	reference	was	collected	for	all	504	

animals	 using	 an	 MP2RAGE	 (Marques	 et	 al.,	 2010)	 acquisition	 at	 500	 um	 isotropic	 resolution;	505	

TE/TR	=	3.15	ms	/	6500	ms,	TI1/TI2	=	800	ms	/	2700	ms,	flip1/flip2	=	4	/	5,	256	x	256	matrix,	506	

128	slices,	iPat=2	and	240	Hz/px	bandwidth.	507	
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Diffusion-weighted	 image	 preprocessing	 was	 implemented	 using	 the	 FMRIB	 Software	508	

Library	toolbox	(FSL	v5).	This	consisted	of	susceptibility-induced	distortion	correction	using	FSL’s	509	

‘topup’	 (similar	 to	 Andersson	 et	 al.,	 2003)	 and	 ‘eddy’	 (Andersson	 and	 Sotiropoulos,	 2016)	510	

functions,	and	modeling	of	multiple	fiber	directions	using	FSL’s	‘bedpostx’	function	(Behrens	et	al.,	511	

2007).	 ROI	 parcellations	 specified	 in	 F99	 macaque	 template	 space	 were	 registered	 using	 the	512	

Advanced	 Normalization	 Tools	 (ANTS)	 software	 package	 (Avants	 et	 al.,	 2011)	 to	 each	 animal’s	513	

T1w	 anatomical	 image	 using	 a	 nonlinear	 registration	 and	 then	 linearly	 registered	 to	 diffusion	514	

space.	Seed	and	target	ROI	masks	were	defined	as	the	white	matter	(WM)	voxels	adjacent	to	each	515	

gray	matter	(GM)	ROI,	referred	to	as	the	GM-WM	interface.	An	exclusion	mask	for	each	seed	mask	516	

was	also	created	using	 the	GM	voxels	adjacent	 to	 the	seed	mask.	For	 intrahemispheric	 tracking,	517	

exclusion	masks	of	the	opposite	hemisphere	were	also	used.	518	

Two	distinct	parcellation	schemes	were	chosen	to	match	available	 tract-tracing	data.	The	519	

first	 (‘Markov-Kennedy’)	 was	 an	 intrahemispheric	 parcellation	 of	 29	 ROIs	 that	 matched	 those	520	

contributing	to	the	edge-complete	connectivity	matrix	described	in	Markov	et	al	(2014)	(Fig	1A,	521	

top).	 The	 second	 (“CoCo-RM”)	 was	 a	 whole-cortex	 parcellation	 of	 82	 ROIs	 matching	 the	522	

connectivity	matrix	 described	 in	 Shen	 et	 al.	 (2012)	 (also	 see	Kötter	 and	Wanke,	 2005)	 (Fig	 1A,	523	

bottom).	524	

Tractography	was	performed	between	all	ROIs	using	both	parcellation	schemes	with	FSL’s	525	

‘probtrackx2’	 function.	Parameters	used	for	tracking	were:	5000	seeds,	2000	steps,	0.5	mm	step	526	

length,	termination	of	paths	that	loop	back	on	themselves	and	rejection	of	paths	that	pass	through	527	

exclusion	mask.	 Curvature	 threshold	was	 varied	 (0.2,	 0.4,	 0.6,	 0.8)	 and	 distance	 correction	was	528	

toggled	on	and	off.		The	distance	correction	option	produces	a	connectivity	distribution	that	is	the	529	

expected	length	of	the	streamlines	that	cross	the	voxel	multiplied	by	the	number	of	samples	that	530	

cross	 it.	 In	effect,	 the	distance	 correction	option	 serves	 to	 increase	 the	weights	of	 long-distance	531	
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connections.	 The	 “default”	 parameter	 combination	 was	 considered	 as	 that	 commonly	 used	 in	532	

human	studies	(curvature	threshold:	0.2;	distance	correction:	off).		533	

A	structural	connectivity	matrix	for	each	parameter	set	in	each	parcellation	in	each	animal	534	

was	generated	by	taking	the	number	of	streamlines	detected	between	each	ROI	pair	and	dividing	535	

it	by	 the	total	number	of	streamlines	 that	were	successfully	sent	 from	the	seed	mask	(i.e.,	 those	536	

that	were	not	rejected	or	excluded).	Each	connectivity	matrix	was	subsequently	symmetrized.	537	

For	 distance-based	 analyses,	 the	 distance	 between	 ROIs	 in	 the	 Markov-Kennedy	538	

parcellation	was	 determined	 as	 the	 geodesic	 distance	 of	 their	 barycenters,	 that	 is,	 the	 shortest	539	

distance	 passing	 through	 the	white	matter	 that	 connects	 the	 barycenters	 of	 a	 pair	 of	 areas	 (as	540	

available	from	the	Core-Nets	database:	core-nets.org).	The	distance	between	ROIs	in	the	RM-CoCO	541	

parcellation	was	 computed	 as	 the	 Euclidean	 distance	 between	 the	 centers	 of	 all	 ROIs.	 For	 both	542	

parcellations,	connections	were	binned	according	to	eight	distance	quantiles	for	analysis.	543	

For	determining	accuracy	of	the	DWI-based	structural	connectivity	matrices	(i.e.,	analyses	544	

illustrated	 in	 Fig.	 2),	 the	 corresponding	 tracer	 matrices	 were	 symmetrized	 (Fig	 1A)	 and	 all	545	

matrices	were	binarized.	%	correct	was	computed	as:	#	true	positives	+	#	true	negatives	/	total	#	546	

connections	 (after	 Azadbakht	 et	 al.,	 2015).	 We	 additionally	 computed	 the	 area	 under	 the	 ROC	547	

curve	(AUC),	sensitivity,	specificity,	and	precision	of	the	DWI-derived	matrices.	Comparisons	were	548	

only	 performed	 on	 the	 upper	 triangles	 of	matrices.	 Repeated	measures	 one-way	ANOVAs	were	549	

performed	 to	 assess	 the	 effect	 of	 curvature	 threshold	 on	 accuracy,	 treating	 the	 curvature	550	

thresholds	as	four	manipulations	on	the	same	group	of	subjects.	551	

To	quantify	the	extent	to	which	physical	distance	can	predict	the	existence	of	connections	552	

between	cortical	areas,	logistic	regression	was	used,	with	the	existence	of	connections	serving	as	553	

the	 binary	 dependent	 variable	 and	 the	 physical	 geodesic	 distance	 between	 the	 barycenters	 of	554	

cortical	 areas	 serving	 as	 the	 independent	 variable.	 The	model	 parameters	were	 estimated	 in	 a	555	
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training	set	consisting	of	70%	of	the	total	number	of	area	pairs	and	the	rest	of	the	pairs	were	used	556	

to	estimate	the	ROC	curve.	The	procedure	was	repeated	1000	times	and	each	time	the	training	set	557	

was	 assembled	 by	 sampling	 with	 replacement.	 The	 reported	 ROC	 curves	 and	 AUC	 values	558	

correspond	to	these	1000	iterations.	559	

For	 network	 analyses,	 average	 DWI-based	 structural	 connectivity	 matrices	 for	 both	 the	560	

Markov-Kennedy	 and	 RM-CoCo	 parcellations	were	 generated	 by	 selecting,	 for	 each	 subject,	 the	561	

matrix	 having	 maximum	 AUC	 when	 compared	 to	 the	 tract-tracing	 data.	 The	 combination	 of	562	

tractography	parameters	and	thresholding	that	yielded	the	maximum	AUC	for	each	subject	in	each	563	

parcellation	 is	 provided	 in	 Table	 S2.	 To	 enable	 direct	 comparison	 of	 tracer-	 and	 tractography-564	

based	 networks,	 tracer	 matrices	 were	 symmetrized.	 Consequently,	 network	 analytic	 results	565	

presented	here	on	the	tracer	matrices	differ	slightly	from	previous	studies	(e.g.,	Ercsey-Ravasz	et	566	

al	2013;	Knoblauch	et	al	chapter	on	RC;	Shen	et	al	2012;	Shen	et	al	2015	RC).	Tractography-based	567	

networks	 were	 then	 thresholded	 to	 match	 the	 density	 of	 the	 corresponding	 tracer-derived	568	

networks.	 In	 the	case	of	 the	RM-CoCo	parcellation,	 intra-	and	 interhemispheric	quadrants	of	 the	569	

tractography-based	network	were	treated	with	different	thresholds	due	to	their	vast	differences	570	

in	 density	 in	 the	 tract-tracing	 network	 (intra:	 0.84	 vs	 inter:	 0.36).	 For	 the	 Markov-Kennedy	571	

parcellation,	 edges	 in	 both	 tracer-	 and	 tractography-based	 networks	were	 treated	 as	weighted.	572	

For	the	RM-CoCo	parcellation,	because	of	the	categorical	nature	of	the	weighted	information	in	the	573	

CoCoMac	 database,	 edges	 were	 binarized	 for	 the	 tracer-based	 network	 as	 well	 as	 the	574	

tractography-based	network	for	computing	centrality	measures	(degree	and	betweenness).	575	

Measures	 of	 centrality,	 modularity	 partitioning	 and	 participation	 coefficients	 were	576	

obtained	 using	 functions	 from	 the	 Brain	 Connectivity	 Toolbox	 (BCT;	 https://sites.google.	577	

com/site/bctnet/).	For	weighted	graphs,	the	degree	of	each	node	was	computed	as	the	sum	of	its	578	

edge	weights	while	for	binarized	graphs,	node	degree	was	taken	as	the	total	number	of	its	edges.	579	
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For	 the	 calculation	 of	 betweenness	 centrality,	 the	 edge	 weights	 were	 inverted	 so	 that	 larger	580	

weights	corresponded	with	longer	paths.	Community	detection	was	performed	using	the	Louvain	581	

algorithm	(Blondel	et	al.,	2008).	As	we	did	not	know	how	the	small	network	of	29	nodes	from	the	582	

Markov-Kennedy	 parcellation	 should	 be	 partitioned,	 we	 first	 varied	 the	 resolution	 parameter	583	

(gamma)	 between	 0	 and	 2	 in	 increments	 of	 0.05	 and	 determined	 the	most	 commonly	 detected	584	

number	of	partitions	>1	in	that	range.	The	minimum	value	of	gamma	that	produced	that	number	585	

of	 partitions	 was	 selected.	 For	 the	 RM-CoCo	 parcellation,	 we	 similarly	 varied	 the	 resolution	586	

parameter	 but	 selected	 a	 gamma	 value	 that	 gave	 a	 reasonable	 number	 of	 partitions	 based	 on	587	

previous	 studies	 of	whole-brain	modularity	 in	 the	macaque	 (Harriger	 et	 al.,	 2012;	Goulas	 et	 al.,	588	

2015).	Partitioning	for	both	parcellations	was	then	repeated	100	times	using	the	selected	gamma	589	

value,	and	the	most	consistent	partitioning	was	chosen	for	analysis.	This	was	done	independently	590	

for	 both	 tracer-	 and	 tractography-based	 networks.	 For	 the	 Markov-Kennedy	 parcellation	591	

partitions,	 both	 tracer	 (gamma	 =	 0.65)	 and	 tractography	 (gamma	 =	 0.65)	 networks	 were	592	

consistently	partitioned	100/100	times.	For	the	RM-CoCo	parcellation,	the	most	common	partition	593	

of	the	tracer	network	(gamma	=	1)	occurred	17/100	times	while	that	of	the	tractography	network	594	

(gamma	=	0.95)	occurred	44/100	times.	Spearman	rank	correlation	coefficients	were	computed	to	595	

assess	 the	 correspondence	 of	 network	 measures	 between	 the	 two	 modalities.	 Statistical	596	

significance	 of	 the	 correlations	was	 assessed	 using	 permutation	 tests	 by	 resampling	 data	 pairs	597	

without	replacement	10,000	times.	598	

Rich	 club	 detection	 was	 performed	 following	 the	 procedures	 described	 by	 Alstott	 et	 al.	599	

(2014)	 for	computing	null	networks	 that	are	 topological,	weighted,	and	of	mixed	 topo-weighted	600	

form.	 Core-periphery	 detection	 was	 performed	 as	 described	 in	 Ercszey-Ravasz	 et	 al	 (2013).	601	

Briefly,	the	cortico-cortical	network	was	subject	to	a	modified	Bron-Kerbosch	algorithm	with	both	602	

pivoting	and	degeneracy	ordering	(Eppstein	et	al.,	2010).	The	algorithm	detects	all	cliques	up	to	603	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/356576doi: bioRxiv preprint 

https://doi.org/10.1101/356576


	 30	

the	maximum	size.	A	clique	 is	a	subset	of	 the	nodes	of	 the	network	among	which	the	maximum	604	

possible	 amount	 of	 connections	 exists.	 The	 core	 was	 defined	 as	 the	 union	 of	 all	 the	 nodes	605	

participating	in	the	cliques	of	maximum	size.	606	
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