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angiogenesis, tumor suppressor signaling, cell cycle (particularly G1/S check point) were only enriched in

markers selected by SCMarker but not in those selected by the other methods (Figure 6).
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Figure 6. Gene set enrichment analysis (GSEA) of markers selected based on 3 methods: SCMaker, top
expressed and top variable genes, from the melanoma (a) and the head and neck cancer (b) data. Darkness

of the colors correspond to -log10 P values.
4. Application of SCMarker to brain data

We applied SCMarker to an independent dataset that includes 5,204 cells from the cerebellar hemisphere
of 6 different postmortem adult human brains based on Drop-seq platform=. We clustered cells using
Seurat+ with default parameters and markers selected by SCMarker. The tSNE» plots generated based on
SCMarker genes (Figure 7) showed more clear separation than those based on top variable genes selected
by Seurat in default mode. Moreover, purkinje neurons (Purk1) and non-neurons (Purk2) cells were
successfully clustered into two sub-groups based on markers selected by SCMarker. In addition,

cerebellar-specific astrocytes (Ast_Cer) were successfully separated from astrocytes (Ast).
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Figure 7. tSNE plots of 5,204 cells in the cerebellar hemisphere of 6 different postmortem adult human
brains based on markers selected by a) top variably expressed genes and b) SCMarker into 11 cell types
(left panel). Notice that Purkl and Purk?2 cells (middle panel) are mixed in a) but clearly separated in b),
highlighted by red arrows. So are cerebellar-specific astrocytes (Ast_Cer) and astrocytes (Ast) (right panel).

Conclusions

In this manuscript, we reported a new marker selection strategy SCMarker that performs ab initio marker
selection from scRNA-seq data. Using information-theoretic approaches without any biological priors,
SCMarker selects markers by scrutinizing two subpopulation discriminative features: 1) bi/mul-modal
distribution of subpopulation-informative gene expression in mixed cell population and 2) level of co-
expression among subpopulation-specific gene pairs. We found that SCMarker can consistently
significantly boost cell-type identification accuracy in several cancer and brain scRNA-seq datasets.
Because SCMarker does not depend on any prior knowledge, we anticipate that it will prove most useful

in analyzing cancer cells of a high degree of plasticity and heterogeneity in transcriptomic profiles-.

SCMarker can be easily incorporated as a preprocessing module into current sScRNA-seq data analysis
workflow to preprocess cell-gene count/expression matrix before performing further downstream

analysis. The source code of SCMarker is publicly available at https://github.com/KChen-lab/SCMarker.


https://doi.org/10.1101/356634
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356634; this version posted July 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Acknowledgements

This work was supported by a Chan-Zuckerberg Initiative award to Ken Chen.

References

1. Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. & Teichmann, S.A. The technology
and biology of single-cell RNA sequencing. Mol Cell 58, 610-20 (2015).

2. Macosko, E.Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using
Nanoliter Droplets. Cell 161, 1202-1214 (2015).

3. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual
circulating tumor cells. Nat Biotechnol 30, 777-82 (2012).

4. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Research 25, 1491-
1498 (2015).

5. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell
genomics. Nat Biotechnol 34, 1145-1160 (2016).

6. Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene
expression analysis. Genome Biol 16, 241 (2015).

7. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-
cell gene expression data. Nat Biotechnol 33, 495-502 (2015).

8. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell
RNA-seq. Science 352, 189-96 (2016).

9. Puram, S.V. et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor

Ecosystems in Head and Neck Cancer. Cell 171, 1611-1624 €24 (2017).

10. Santos J.M., E.M. On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised
Classification. In: Alippi C., Polycarpou M., Panayiotou C., Ellinas G. (eds) Artificial Neural
Networks — ICANN 2009. ICANN 2009. Lecture Notes in Computer Science 5769(2009).

11. Blashfield, R.K. Finding Groups in Data - an Introduction to Cluster-Analysis - Kaufman,L,
Rousseeuw,Pj. Journal of Classification 8, 277-279 (1991).

12. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-50 (2005).
13. Lake, B.B. er al. Integrative single-cell analysis of transcriptional and epigenetic states in the

human adult brain. Nat Biotechnol 36, 70-80 (2018).

14. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36,
411-420 (2018).

15. van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine
Learning Research 15,3221-3245 (2014).

16. Ye, X. & Weinberg, R.A. Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer
Progression. Trends Cell Biol 25, 675-86 (2015).


https://doi.org/10.1101/356634
http://creativecommons.org/licenses/by/4.0/

