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angiogenesis, tumor suppressor signaling, cell cycle (particularly G1/S check point) were only enriched in 

markers selected by SCMarker but not in those selected by the other methods (Figure 6). 

 

Figure 6. Gene set enrichment analysis (GSEA) of markers selected based on 3 methods: SCMaker, top 

expressed and top variable genes, from the melanoma (a) and the head and neck cancer (b) data. Darkness 

of the colors correspond to -log10 P values. 

4. Application of SCMarker to brain data 

We applied SCMarker to an independent dataset that includes 5,204 cells from the cerebellar hemisphere 

of 6 different postmortem adult human brains based on Drop-seq platform13. We clustered cells using 

Seurat14 with default parameters and markers selected by SCMarker. The tSNE15 plots generated based on 

SCMarker genes (Figure 7) showed more clear separation than those based on top variable genes selected 

by Seurat in default mode. Moreover, purkinje neurons (Purk1) and non-neurons (Purk2) cells were 

successfully clustered into two sub-groups based on markers selected by SCMarker. In addition, 

cerebellar-specific astrocytes (Ast_Cer) were successfully separated from astrocytes (Ast). 
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Figure 7. tSNE plots of 5,204 cells in the cerebellar hemisphere of 6 different postmortem adult human 

brains based on markers selected by a) top variably expressed genes and b) SCMarker into 11 cell types 

(left panel). Notice that Purk1 and Purk2 cells (middle panel) are mixed in a) but clearly separated in b), 

highlighted by red arrows. So are cerebellar-specific astrocytes (Ast_Cer) and astrocytes (Ast) (right panel). 

Conclusions 

In this manuscript, we reported a new marker selection strategy SCMarker that performs ab initio marker 

selection from scRNA-seq data. Using information-theoretic approaches without any biological priors, 

SCMarker selects markers by scrutinizing two subpopulation discriminative features: 1) bi/mul-modal 

distribution of subpopulation-informative gene expression in mixed cell population and 2) level of co-

expression among subpopulation-specific gene pairs.  We found that SCMarker can consistently 

significantly boost cell-type identification accuracy in several cancer and brain scRNA-seq datasets.  

Because SCMarker does not depend on any prior knowledge, we anticipate that it will prove most useful 

in analyzing cancer cells of a high degree of plasticity and heterogeneity in transcriptomic profiles16. 

SCMarker can be easily incorporated as a preprocessing module into current scRNA-seq data analysis 

workflow to preprocess cell-gene count/expression matrix before performing further downstream 

analysis.  The source code of SCMarker is publicly available at https://github.com/KChen-lab/SCMarker. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/356634doi: bioRxiv preprint 

https://doi.org/10.1101/356634
http://creativecommons.org/licenses/by/4.0/


 9 

Acknowledgements 

This work was supported by a Chan-Zuckerberg Initiative award to Ken Chen. 

 

References 

1. Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. & Teichmann, S.A. The technology 
and biology of single-cell RNA sequencing. Mol Cell 58, 610-20 (2015). 

2. Macosko, E.Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using 
Nanoliter Droplets. Cell 161, 1202-1214 (2015). 

3. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual 
circulating tumor cells. Nat Biotechnol 30, 777-82 (2012). 

4. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Research 25, 1491-
1498 (2015). 

5. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell 
genomics. Nat Biotechnol 34, 1145-1160 (2016). 

6. Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene 
expression analysis. Genome Biol 16, 241 (2015). 

7. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-
cell gene expression data. Nat Biotechnol 33, 495-502 (2015). 

8. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell 
RNA-seq. Science 352, 189-96 (2016). 

9. Puram, S.V. et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor 
Ecosystems in Head and Neck Cancer. Cell 171, 1611-1624 e24 (2017). 

10. Santos J.M., E.M. On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised 
Classification. In: Alippi C., Polycarpou M., Panayiotou C., Ellinas G. (eds) Artificial Neural 
Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science 5769(2009). 

11. Blashfield, R.K. Finding Groups in Data - an Introduction to Cluster-Analysis - Kaufman,L, 
Rousseeuw,Pj. Journal of Classification 8, 277-279 (1991). 

12. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-50 (2005). 

13. Lake, B.B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the 
human adult brain. Nat Biotechnol 36, 70-80 (2018). 

14. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 
411-420 (2018). 

15. van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine 
Learning Research 15, 3221-3245 (2014). 

16. Ye, X. & Weinberg, R.A. Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer 
Progression. Trends Cell Biol 25, 675-86 (2015). 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/356634doi: bioRxiv preprint 

https://doi.org/10.1101/356634
http://creativecommons.org/licenses/by/4.0/

