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Abstract 

Wooden breast has emerged as an important condition in the poultry industry and affects the 

breast muscle of commercial meat-type chickens (broilers). Thus far, the condition has been 

classified as a myopathy, confirmed to not have an infectious origin, with molecular data 

showing the muscle to be under oxidative stress. The objective in this study was to query the 

functional origins of wooden breast and reveal its molecular similarities to known conditions 

based on pathway analyses. To carry out an in-depth comparative analysis, we generated 

RNAseq data from wooden breast affected birds and incorporated breast specific transcriptomic 

data from previously published studies. The comparative datasets were constructed from a range 

of commercial fast-growth and slow-growth varieties. Analysis of high-impact variants identified 

from transcriptome data provided a list of genes important in cell signaling, cell proliferation, 

cytoskeletal development, and calcium metabolism as being affected by nucleotide changes. 

Overlaying the lists of significantly differentially expressed genes with the list of high-impact 

variants produced a list of twenty genes that suggest an association of mechanistic and functional 

causes for woody breast; supporting a polygenic basis for this condition. Our study demonstrates 

that wooden breast shows an age-dependent gene expression pattern, with pathway analysis 

showing enrichment of glycolysis, cell differentiation, tumor suppression and inhibition, further 

indicating a complex condition with few similarities to myopathies. In summary, our results 

indicate the existence of a mechanistic, heritable basis for wooden breast, the drivers of which 

deserve more in-depth investigation. Additionally, they also suggest wooden breast to be a more 

complex condition than previously reported, potentially involving other organ systems.  
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Introduction 

The domestic chicken (Gallus gallus domesticus) is a major agricultural species and is 

arguably the most popular source of animal protein around the world. In the United States, 

chicken breast is the most consumed meat – per capita consumption surpassed 41kgs in 2015 

(source: US Poultry) – and the broiler industry has a substantial economic footprint ($30 

billion/year). Consumption of poultry has increased in step with human population growth as 

well as changes in consumption habits [1]. While demand continues to grow, production is under 

enormous stress due to a variety of disorders (ascites, fatty liver disease) and meat quality issues 

such as green muscle disease and wooden breast [2–6]. Of these, wooden breast (WB) is the 

most recent problem that is negatively impacting breast meat quality. WB is a muscle condition 

categorized as a breast myopathy, causing increased hardness of tissue and reducing meat 

quality. The frequency of WB has risen steadily over the last five years, being reported globally 

with reduced consumer acceptability [7] linked to economic losses [8, 9].  WB has become 

prominent within the last decade and has been reported to affect over 50% of commercial flocks 

[10, 11], but accurate estimates of global incidence are not known.  

 

Pectoral myopathies are not new in broiler poultry species, and broiler chicken 

particularly has a well-documented history of dystrophies and myopathies, including pectoral 

myopathies induced by physical or nutritional stress [12–14]. For example, Siller et al. [15] 

reported deep pectoral myopathy in both turkeys and broiler chicken induced by exercise. 
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However, WB is different from previously studied pectoral myopathies in some meaningful 

ways; the hallmarks of WB appear to be moderate to severe degenerative necrosis, with varying 

degrees of interstitial fibrosis. While some of these features are found in other myopathies, the 

co-occurrence of localized pectoral myopathy with fibrosis and striations has not been observed 

previously in broilers. WB is often observed in conjunction with white striping (WS), which is 

characterized by white striations that run parallel to the muscle fibers in the breast [11].  These 

white striations can resemble marbling and are associated with increased fat content [16].  In the 

past, some pectoral myopathies have been assigned etiologies ranging from nutritional deficiency 

(e.g., selenium) to hypoxia or ionophore toxicity [14, 17]. However, these etiologies are not 

supported in WB. Despite intensive studies of WB, including histopathological analyses, 

serological studies, dietary interventions, gene expression, and metabolomics studies [10, 18–

22], the causative factors of WB remain unknown.  

Both WB and WS demonstrate varying degrees of severity and have been identified in 

multiple commercial varieties. Recent studies have described WB as a polyphasic 

myodegeneration [11], presenting lymphocytic phlebitis [11, 20]. The only common explanatory 

factor appears to be the growth rate of commercial broilers, with the most severe cases found 

in the heaviest male birds [19, 23]. Kuttappan et al. [3] reported that the rapid growth rate and 

high-energy diets both increase the incidence of WS. A similar trend is observed with WB. Since 

2000, average broiler weights have increased by 3 kg (6.5 lbs), representing a 55% increase 

(Source: U.S. Poultry). Due to the high value of breast meat in proportion to the total carcass, 

increasing incidence and severity of WB translates into more significant economic losses [24].   

While selective breeding for performance traits (e.g. growth rate, feed efficiency) and 

advances in nutrition, are primarily responsible for growth rate improvements in broilers, it is not 
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known whether WB, which is associated with growth rate, has a genetic basis. Recent studies 

have used gene expression (RNAseq) and metabolomics analyses to characterize WB [9, 10, 18], 

but these investigations have not been informative about the underlying cause(s) of WB. 

Whereas a previous report suggested low heritability for WB [24],  a recent report by Pampouille 

et al. [25] describes the identification of quantitative traits loci (QTL) for WS in high-yield 

broilers, and further concludes that WS is a polygenic condition, supporting the hypothesis for a 

strong genetic basis for WB and WS.  

In this study, the objective was to utilize comparative analyses to illuminate the basis of 

WB and to characterize its similarity to other known conditions.  This study also evaluated the 

evidence for the supposition that WB is a muscle myopathy. We addressed this objective by 

comparative transcriptomic analyses of WB samples against various genotypes/phenotypes, 

followed by pathway analyses and tests for enrichment of canonical pathways. This study did not 

specifically focus on molecular features of WB/WS co-occurrence, and hence we do not draw 

inferences regarding WS. Altogether, our study indicates that a) WB is an age-dependent 

disorder driven by transcriptional dysregulation in fast-growth broilers, and b) that WB 

molecular profiles suggest a complex syndrome potentially involving multiple organ systems. 

These results suggest a genetic basis to WB and emphasize the importance of more in-depth 

studies of the mechanistic basis of WB. These findings also suggest that WB is a condition with 

potential consequences for whole organism health.  

 

Materials and Methods 

Study design and source of data 
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In this study, transcriptome data was generated from birds exhibiting WB, which was 

then analyzed comparatively with data generated for previous broiler gene expression studies and 

published in the peer-reviewed literature. The details of these samples, with links to original 

studies, are provided in Table 1. It is important to note that these studies focused on breast tissue-

specific gene expression and to our knowledge, WB was not the explicitly stated subject of 

investigation. However, a subset of these studies used modern commercial broilers. Therefore we 

cannot be sure that they were unaffected by WB; however based on the high frequency of WB in 

commercial broiler flocks [21] it is likely that these samples include WB affected individuals.  

To determine the common genetic basis for WB as a distinct signal, aside from the breed 

specific growth and molecular profiles,  it is necessary to compare expression profiles across 

ages and genetic strains. WB has been reported in fast-growth broilers as early as two weeks of 

age, but with the most dramatic changes in severity occurring in the final three weeks before 

slaughter [16, 22]. Therefore, we compared gene expression of pectoralis major muscle tissue 

from fast- and slow-growth broilers. While WB has been reported from all major commercial 

broiler strains, WB has not been reported in slow-growth and heritage broilers to date.  

Secondly, as WB severity has been reported to increase with age and weight, we 

compared expression profiles among pectoralis muscle tissues from different age categories of 

both fast- and slow growth. To answer these questions, we used a combination of data generated 

in-house (reported above) in addition to reusing publicly available sequence data (NCBI Short 

Read Archive) that matched our analysis criteria. In total, nine publicly available datasets from 

six previously published studies were included in these comparisons (Table 1). In each instance, 

we selected studies that generated RNAseq data from the breast tissue, were sequenced on the 

Illumina platform, and were not from a pathogen challenge experiment. Three datasets were 
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from an environmental ammonia challenge study, using the 42-day old broilers of the Arbor 

Acres strain (Aviagen, sample prefix ARAC). While these treatments influence their gene 

expression profiles, our analyses showed that these three sample groups cluster together with 

other 42-day old fast-growth broilers. The inclusion of data from this experiment did not change 

the hierarchical clustering and separation of sample transcriptome profiles by performance and 

age profile; hence we retained all three datasets in further analyses.  

 

Sample Collection and RNA Extraction 

Live animal studies and euthanasia procedures performed in-house were approved by the 

Texas A&M University’s Animal Care and Use Committee (assurance number 2016-0065). 

Breast tissue samples were collected from eight, 42-day old chickens of a high-yielding 

commercial broiler strain.  The birds in the study were from an all-male flock and raised on a 

three-phase industry standard diet. Two birds were randomly sampled from each of four replicate 

pens, containing 40 birds each. The breast muscle was palpated to examine birds for hardness, 

before euthanasia. This approach has been used as a diagnostic method in several recently 

published studies [10, 26, 27]. Birds were then euthanized by cervical dislocation and dissected 

for the collection of tissues for genetic analysis. The pectoralis major and pectoralis minor 

muscles were then examined for gross lesions and hardness of the muscle.  Individual samples 

were classified as either WB+ or WB- based on the observed hardness of breast tissue and the 

absence of other visible abnormalities. While histological analyses have also been used for WB 

classification, they are perhaps more applicable for resolution of severity, rather than a 

diagnostic for presence-absence of WB. Furthermore, histological classification of breast tissue 

as ‘normal’ has not been found to be diagnostic of WB at the molecular level [11, 28].  While it 
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has been noted that WB and WS co-occur frequently, this study was focused on WB, and 

therefore did not specifically classify tissue for WS presence or severity. Of the eight individual 

birds sampled this way, six birds were classified as severe (WB+) based on palpation and gross 

lesions, whereas two other samples were less severe cases (WB-). Owing to the weak correlation 

between physical/histological and molecular markers of WB, all birds sampled in this study were 

classified into the WB group. Moreover, as the goal was to compare expression patterns across 

genotypic backgrounds, this grouping allowed better resolution through increased biological 

replication of the WB group.  

Tissue of size approximately 1cm3  was excised from the distal portion of the pectoralis 

major with a scalpel and immediately stored in RNAlater (Ambion Inc). After 24 hours of 

incubation at 40C, the excess RNAlater was removed, and samples were stored at -800C until 

further processing.  Total RNA was extracted from about 30mg of the tissue using the RNEasy 

Mini Kit (Qiagen Inc).  Samples were checked for RNA quality and concentration on a 

NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific).  

 

RNA Sequencing and Transcriptome Analysis 

 Total RNA isolates were submitted for library preparation and RNA-sequencing at the 

AgriLife Genomics and Bioinformatics Center (Texas A&M University). Sample libraries were 

prepared by performing DNAse digest, followed by poly-A selection for mRNA molecules. 

Individual mRNA isolates were then pooled into three sample libraries – namely one library 

comprising two WB- samples, and two libraries each comprising three WB+ samples.  These 

three sets of pooled samples were used for strand-specific library preparation, and the libraries 

were sequenced with 125bp single end sequencing.   
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The 11 datasets, including the in-house generated and downloaded datasets, were then 

processed identically. In brief, the raw RNAseq data was filtered for adapter contamination and 

quality trimmed using the program Trimmomatic [29]. Reads with average quality scores less 

than Q30 and shorter than 20bp in length were discarded. High-quality reads were mapped to the 

Gallus gallus genome (Version 4.8, Ensembl Release 85, July 2016) using the short-read de-

novo splice mapper STAR [30, 31], followed by counting of transcripts mapped to the ‘exon’ 

features using the tool HTSeq [32]. The counts data for each sample were then compared for 

statistical significance using the EdgeR package on the R statistical platform [33]. First, low 

expressed genes across all libraries (CPM <2) were filtered out. Next, normalization factors were 

calculated for differences in library sizes, followed by estimation of common and then tagwise 

dispersion (GLM). We used the package COMBAT  to check and correct for batch effects [34, 

35]. The quasi-likelihood based ‘glmQLFTest’ function was used to perform tests for 

significance between expression values among treatments. The QLF approach is known to 

provide greater protection against Type I error and can handle unbalanced designs better than 

exact tests. A total of 10 pairwise contrasts were performed between WB data (generated in-

house) and downloaded broiler transcriptome data. Following the analyses in EdgeR, topTag 

tables were used in interpretation and pathway analyses. For each of the ten differential 

expression results, pathway analyses were performed using the Ingenuity Pathway Analysis 

platform (Qiagen Inc.). Only genes significant at FDR <0.05, and with Log2FoldChange smaller 

than -0.5 or greater than 0.5 were included in pathway analyses. Finally, the results from 

pathway core analyses (10 datasets) were all included in a ‘Comparison Analyses' on the IPA 

platform, to characterize similarity of expression, shared canonical pathways, upstream 

regulators, and diseases. 
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Differential expression between Fast-Growth versus Slow-Growth broilers 

A secondary differential gene expression analysis was performed by grouping all the 

modern commercial broilers as the Fast-Growth Commercial Broiler (FGCB), and by grouping 

the Weichang (WC) and White Recessive Rock  (WRR) samples as the Slow-Growth Heritage 

Broiler (SGHB). The Illinois strain and the hybrid WRR-XH crosses were left out of this 

comparison as they are neither a heritage breed nor a commercial variety. Differential expression 

analysis and pathway analysis was performed in the same way as described above.  

 

Variant analysis with RNAseq data  

A total of 54 sequence libraries (.fastq), including the eight generated for this study, were 

used to generate variant calls and to identify shared and unique SNP variants among the breeds 

included.  The Genome Analysis Toolkit [36] best practices pipeline for variant calling from 

RNAseq data was used to generate a set of high-quality variants for each sample using hard 

filtering. Briefly, STAR aligned reads (same used for differential expression analysis) were first 

processed to add read information and to mark duplicates using the tool Picard [37]. Binary 

alignment files were then fed into HaplotypeCaller, followed by the selection of SNP variants, 

and variant filtration. SNPs occurring in clusters within 35bp were filtered out, as were variant 

calls with Qual By Depth (QD) score <5, and Fisher strand bias > 35. The resultant set of high-

quality variants obtained this way were passed into the variant effect prediction software SnpEff  

[38]. Variants annotated as having a ‘High' impact modifier by SnpEff were used for comparison 

among samples. Due to the variability in sequencing library size and depth of coverage, 

differences in the number of variants were expected. Therefore, to account for potential bias 
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arising from differences in sequencing depth, high-impact variants were compared only between 

the FGCB group, and the SGHB group. The combined high-impact variant list was generated by 

pooling all variants by ENSEMBL gene ID and removing duplicates. 

 

Results 

Growth rate and age explain global gene expression patterns 

Across the ten datasets, a total of 12,202 genes were expressed above threshold 

(CPM=>2) and were included in both the differential expression and pathway analyses. An 

ordination analysis using Non-metric Multidimensional Scaling (NMDS, Figure 1) showed that 

fast-growth breeds (ARAC, ROSS and WR-XH Cross) overlapped each other, with younger (6 

and 21-days old) fast-growth broilers being less proximate to WB samples, compared to 42-day 

old broilers (ARAC), indicating a clear age based expression similarity. The Illinois and Ross 

breeds (6 and 21-days old) both clustered by age and also by breed, showing clear age-based 

segregation from 42-day old commercial broilers. The slow-growth breeds (WC and WRR, 120 

days and older) formed clusters distinct from the fast-growth broilers. Furthermore, all WB 

samples formed a tight cluster, validating the observation that birds without obviously visible 

WB symptoms are, nonetheless, not different at the molecular level. Therefore, birds from the 

same genetic background may not be suitable as a negative control (Figure 2).  

 

Comparison of pairwise differential expression analyses 

Results from EdgeR for each pairwise comparison against WB samples are summarized 

in Table 2, and mean-average plots for each comparison is shown in Figure 3. The complete list 

of differentially expressed genes with P-values for all pairwise comparisons is available in 
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supplementary materials.  Overall, the WC120+ and WRR120+ slow-growth varieties were most 

different from WB, based on the total number of differentially expressed genes (~2200). This 

number was approximately twice as high as any of the other comparisons. After the WC and 

WRR breeds, the Illinois 21D was most different (1702 genes differentially expressed), and Ross 

21D being most similar (693 genes differentially expressed), with other comparisons falling in 

between the extremes. The three different datasets of 42-day ARAC (3 treatments in the original 

study), were very similar to each other in their differences to WB (total of 1243, 1167, and 1330 

DEG respectively). The top canonical pathways identified were also highly similar, with T-cell 

receptor signaling in all three comparisons and IL-8 signaling in comparison to both A and C 

groups of ARAC. Canonical pathways explained by these DE genes showed that IL-8 signaling 

and T-cell receptor signaling were recurrent terms, but all three comparisons shared TGFB1 and 

TNF as the upstream regulators. 

Comparing WB to Ross 708 (6 and 21-days old) showed more significant differences at 

six days than at 21-days, with main pathway terms being CD28 Signaling in T-helper Cells and 

T-cell receptor signaling. Lipopolysaccharide and beta-estradiol were shared, upstream 

regulators. Unlike the Ross strain, the Illinois 6 and 21-day old birds were distinct in their global 

expression profile, with more significant differences to WB compared to the younger Ross strain 

birds. This observation would fit the known biology of the Illinois strain, which is a broiler line 

with a performance profile from the 1950's.  However, pathway terms for these datasets still 

included CD28 signaling in T-helper Cells and T-cell receptor signaling, which were shared with 

the Ross strain. Both WC120+ and WRR120+ slow-growth breeds were most different from WB 

samples in the extent of differential expression, and with no overlap in the top three pathway 

terms.  
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Pathway analysis of genes differentially expressed in slow growth varieties also yielded 

pathway terms that were not shared with other comparisons. Pathway analyses yielded hepatic 

fibrosis/hepatic satellite cell activation, calcium signaling, eNOS signaling, molecular 

mechanisms of cancer, NRF2 mediated oxidative stress, ERK/MAPK signaling, signaling by 

Rho family GTPases, Tec kinase signaling, and PI3K signaling in B lymphocytes as the top 

terms in ARAC (3 libraries), WRR-XH cross, WC120D+, WRR120D+, Ross 6D and 21D, and 

Illinois 6D and 21D respectively.. Interestingly, despite the differences in the top canonical 

pathways identified when comparing WB gene expression to that of slow growth varieties rather 

than fast-growth varieties, the upstream regulators suggested by this differential gene expression 

include the same terms. Diseases identified by the differential gene expression of each 

comparison evaluated included the same terms: Cancer, organismal injury, and gastrointestinal 

disease, with only one comparison indicating neurological disease. Finally, The frequent 

occurrence of T-cell receptor signaling and IL-8 Signaling suggest that molecules activated in 

these pathways may be suitable as biomarkers for detecting WB.  

 

Multisample Comparison Analysis 

The multisample comparison analysis allows identification of similarities and trends 

occurring across multiple datasets, specifically, identification of functions overrepresented across 

datasets. Pathways are considered significant if a higher number of molecules associated with a 

pathway are expressed than expected by chance.  Based on the pathways with highest -log(P-

values) and activation Z-scores, the top shared canonical pathways were T-cell receptor 

signaling, CD28 signaling in T-helper cells, and signaling by Rho family of GTPases. The top 50 

pathway and disease terms are shown in Table 3.  The top upstream regulators were TGFb1, 
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TNF and TP53 and beta-estradiol. The comparison feature also generated a list of the top 

diseases and disorders; the top three disease terms that emerged from the consensus of the 

multisample comparison were Cancer, Abdominal Neoplasm, and Solid Malignant Tumor. None 

of these top 100 disease terms pointed to muscle myopathies or other musculoskeletal disorders. 

Finally, the top disease signaling pathways were Cancer, MAPK and the P53 pathways.  

 

Fast-Growth versus slow-growth differential expression 

For this analysis, commercial broiler strains (ARAC, ROSS, WB) were included in the 

fast-growth commercial broiler (FGCB) group, and the WC120+ and WRR120+ strains were 

grouped into the slow-growth heritage broilers (SGHB) group. This particular analysis was 

designed to separate out those genes that are upregulated or downregulated in FGCB irrespective 

of age, with the supposition that genes associated with the onset and progression of WB in fast-

growth strains would be found across age categories (6-days to 42-days). A total of 11,766 genes 

were expressed above a threshold (CPM=>2), of which 6406 were differentially expressed 

(FDR<0.05, LogFC < -0.05 and >0.05). Of the total differentially expressed genes, 6168 genes 

were significantly downregulated in FGCB. These differentially expressed genes were then 

analyzed in IPA to identify canonical pathways and diseases/disorders. The top three canonical 

pathways based on -log(P) values were  Mitotic Roles of Polo-like Kinase, ILK Signaling, and 

ERK/MAPK signaling. As observed with other pairwise comparisons, the main disease terms 

were Cancer, Solid Malignant Tumors, and Gastrointestinal Disease. 

 

Variant discovery from RNAseq data 
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Variant calling and filtering of the datasets yielded average SNP calls of 79,539, and 

83,902 for the FGCB and SGHB groups respectively. The individual variant calls were merged 

using GATK CombineVariants to generated a consolidated (merged) set of 709,959 and 279,339 

high-quality SNPs in FGCB and SGHB respectively. This difference in total variants was driven 

mainly by differences in the number of samples included in each group - namely 25 and eight for 

FGCB and SGHB respectively. The multisample VCFs annotated with snpEff to identify effects 

of the variants and to categorize impacts yielded 395 and 158 high-impact variants in FGCB and 

SGHB respectively. Overall, the proportions of effected features and functional impacts were 

evenly matched (Table 4) except where noted. Modifier effects (changes outside coding regions) 

was the most frequent effect, which was higher in FGCB compared to SGHB. High-impact 

variants which signify impacts within the coding sequences (e.g., frameshift, stop gained, stop 

lost), were of equal proportion in both groups, whereas both moderate, and low-impact variants 

were more frequent in SGHB.   

 Of the total high-impact variants, 37 were shared among all three fast-growth breeds (ARAC, 

Ross, WB), whereas 35 were shared among the two slow-growth breeds (WC120+ and 

WRR120+). Of these 72 total high-impact variants, 14 were found in both the slow and fast-

growth breeds, leaving 23 unique high-impact variants in FGCB, and 21 unique high-impact 

variants in SGHB (Table 5). The membership of both lists is rich in genes involved in cell 

signaling, cell proliferation, and cellular response to stress (including hypoxia). Particularly 

notable genes with high-impact variants unique to the FGCB group are SPEG, NPEPPS, and 

THYN1. These genes are involved in myocyte cytoskeletal development, linked to the cellular 

response to hypoxia, and associated with the induction of apoptosis, respectively. Notable genes 

with high-impact variants in the SGHB group were two myosin heavy chain genes (MYH1A, 
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and MYH1B) and dystonin (DST).  These genes are involved in motor activity and actin filament 

binding, and the assembly of collagen fibrils, respectively.  

 

Overlap of high expression and high-impact variants 

Genes with high-impact variants in either FGCB or SGHB were cross-referenced against 

the list of significantly differentially expressed genes between the two groups. Twenty-three of 

the total 45 genes were also found to be significantly differentially expressed (Table 5). Genes 

that were up- or down-regulated in FGCB were found in both high-impact variant lists. 

Interestingly, 17 of the 21 genes with high-impact variants in SGHB were also significantly 

differentially expressed, suggesting both a mechanistic and functional role for these genes.   

 

Discussion 

 The hierarchical clustering  of the pairwise differential expression analysis and the 100 

top pathway terms shared across the 10 comparisons showed that there is a definite age based 

clustering pattern; all 42-day old broilers (ARAC) cluster together, and based on the Z-score and 

P-values, are more similar to WB+ tissue in their gene expression profiles and the pathways they 

activate. On the other hand, younger birds (6 and 21-days old) of slow and fast-growth breeds, 

and older birds of slow-growth breeds cluster together and separately from the 42-day old 

broilers. Interestingly, these results show that young broilers (Ross and Illinois 6 and 21-days 

old) and the slow-growth varieties (WC, WRR strains) appear to have a similar gene expression 

pattern, in contrast to 42-day old broilers. In summary, the comparison of pathways from 

multiple pairwise comparisons show that age, first, and then growth rate (broiler strain) are the 

primary functional differentiators of WB tissue. The differentiation of the 120+ day old slow-
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growth broilers and 6 and 21-day old fast-growth broilers is especially notable, as they show that 

a) molecular signatures associated with WB are unique to older, fast-growth broilers, and b) that 

21-day old modern broilers (Ross 708) are less similar to 21-days old Illinois breed than to 42-

day old commercial broilers. These two points suggest an age-dependent transcriptome 

dysregulation in WB, which progresses with age, somewhere between the first and third week of 

life. This conclusion is similar to that reached by Griffin et al. [19].  

While gene expression and ontology analyses show which specific genes and molecular 

functions are involved in WB, the design of appropriate remediation strategies requires a better 

resolution of the similarity of WB to known diseases. A clear understanding of diseases and 

conditions explained by gene expression patterns is necessary to narrow down specific 

endogenous as well as environmental factors driving WB.  Specifically, we wanted to answer 

whether WB tissue expression patterns point to muscle myopathies, or whether such patterns are 

indicative of other conditions.  While genes essential in muscle growth and cell differentiation 

are up-regulated in WB tissue, the totality of expressed genes and pathways show little support 

for myopathy as the underlying condition. 

One important cause for concern is the repeated occurrence of regulators and pathways 

that suggest neoplastic disorders. Upregulation of glycolysis, which was observed as the primary 

pathway classifier in the same-background comparison is considered a "near-universal property" 

of primary and metastatic cancers [39–42]. Oxidative stress and impaired glycolysis can both 

arise due to mitochondrial dysfunction. Multiple studies have confirmed the transcriptomic [9, 

18] and metabolomic signatures of oxidative stress in WB [10], and have also suggested 

mitochondrial dysfunction [43]. Furthermore, genes essential to glycolysis, angiogenesis, and 
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apoptosis (up-regulated in WB) are transcriptionally regulated in hypoxic conditions  [44, 45], 

that are typical of tissue under oxidative stress.  

The individual and comparison pathway analyses provided many of the same terms as 

being important among comparisons. The top pathways based on activation Z-score were T-cell 

receptor signaling, CD28 signaling in T-helper cells, and signaling by Rho family of GTPases. 

CD28 is involved in stimulation of T-cell activation and 23 molecules involved in this pathway 

were identified in the transcriptome data. CD28 signaling is involved in glucose metabolism, 

activation of T-cells, and costimulation of immune responses [46].  T-cell receptors bind to 

antigenic peptides presented by antigen presenting cells and are known to respond to various 

signal transduction pathways. They may be invoked to regulate cell proliferation, apoptosis, and 

cytotoxic killing [47, 48]. These processes may be activated in wooden breast in response to 

apoptosis and necrosis occurring in breast tissue. Finally, the Rho family of GTPases are 

involved in regulating various processes, including reorganization of the actin cytoskeleton in 

response to growth factors and cytokines [49–51]. These pathway terms are indicating abnormal 

expression patterns that together affect cell signaling, cytoskeletal organization, and 

inflammation have all been identified as features of WB. As it has been previously shown 

through histological and enzymatic assay that WS/WB does not have an infectious origin [4], 

these immune responses are likely directed against endogenous cell proliferation and apoptotic 

processes (resembling neoplasms). 

 The disease terms from the multigroup comparison analysis in IPA also found the same 

top conditions like those found in pairwise comparisons. Many of these terms also invoke the 

digestive system (intestine, colon, liver, abdomen, etc.), which is surprising considering all the 

analyses were based on differentially expressed genes in the pectoralis major tissue. While 
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pathway analysis relies on over-representation or functional class scoring, they still rely on 

accurate annotations, cell-specific information, and well-described pathways for the accuracy of 

results [52, 53]. Therefore, while it is possible that other organs may be involved, validation of 

that question will depend on additional sampling and wet-lab based approaches. Other locations 

of organismal injury notwithstanding, these terms still suggest some important syndromes that 

can be considered very concerning.  The major diseases and disorders explained by expression 

patterns also suggest abnormal cell proliferation and cell signaling mechanisms. The comparative 

analysis showed that over 80% of the top diseases identified by the pathway analyses indicate 

tumors, cancers, and neoplastic conditions. Even as some caution is necessary for interpreting 

pathway analysis for chicken datasets, due to the majority of pathways described being from 

mammalian models, it has repeatedly been shown that pathway signatures do predict disease 

outcomes accurately based on shared molecular features [54–57]. The reasons and basis for this 

similarity of WB to neoplastic disorders deserve further investigation. 

Top canonical pathways emerging from the comparison between FGCB and SGHB 

groups indicated altered activity of multiple serine/threonine kinases including polo-like kinase 

(Plk),  integrin-linked kinase (Ilk), and extracellular signal-regulated kinase/mitogen-activated 

protein kinase (Erk/Mapk). All three pathways are implicated in the regulation of the cell cycle 

and cell survival. Specifically, Plk is induced by mitogens and is most abundant during 

metaphase of mitosis with activities including chromosome segregation, centrosome maturation 

and spindle assembly [58, 59]. Plk also functions in other stages of mitosis including inactivation 

of the anaphase-promoting complex and regulation of nuclear envelope breakdown during 

prophase [58–60]. It has also been shown that depletion of Plk in cancer cells induces apoptosis 

and it is now considered a high potential target for intervention [58, 60]. Ilk impacts the cell 
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cycle and survival through activation of critical signaling pathways and stimulation of 

downstream effector proteins, while Erk/Mapk is similarly involved by activating many growth 

factors, cytokines and transcription factors [61–64]. Erk/Mapk further promotes cell survival by 

phosphorylating and thus inhibiting the pro-apoptotic protein BAD (Bcl2 associated agonist of 

cell death) while also inducing the expression of cell survival genes [63].  Finally, of 

considerable interest is the ability of Ilk to anchor actin filaments to cell-matrix contact sites, 

regulating changes in cell shape, cell migration, cell adhesion, as well as the ability to 

phosphorylate myosin in smooth muscle cells [61, 62]. Each of these pathways plays an essential 

role in the regulation of cell proliferation, maintenance, and death which are all physiological 

activities that have been identified as perturbed in the WB condition and thus this analysis 

provides a focused framework for further investigating the underlying mechanisms of the 

condition. 

 

Molecular Basis of WB 

In studies of WB, it has been observed that few live bird or carcass quality variables are 

accurately predictive of the presence of WB (Athrey et al., unpublished). For example, in 

replicate flocks of broilers of the same breed raised under identical conditions, no combination of 

rearing or dietary variables has been found to prevent WB occurrence [22, 65]. Furthermore, the 

severity of WB varies within the same flock under identical conditions [4]. Based on these 

observations, it appears likely that nutritional interventions, while perhaps useful for 

ameliorating severity, may be of limited utility in eliminating wooden breast. On the other hand, 

these data suggest a genetic basis underlying WB. This hypothesis has received recent support 

with the identification of QTL for WS [25]. While the relationships between WB and WS are not 
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fully resolved, the co-occurrence of these two conditions makes it more likely that WB has a 

genetic basis.  

In this study, we identified highly expressed genes that contained high-impact variants. 

This small subset of genes is involved in critical cell proliferation and signaling functions. The 

identification of genes with high-impact variants that are also differentially expressed point 

towards a genetic basis that links the changes at the DNA level to functional expression. Such 

DNA variants that are associated with expression differences are called Cis-acting regulatory 

variants and are known to explain a substantial amount of phenotypic variation, as well as having 

a role in disease etiology [66–68]. In this study, we identified a total of 44 high-impact variants, 

of which 21 were also significantly differentially expressed genes. While not all of these 21 

genes may be directly affecting WB occurrence or severity, their expression patterns and the type 

of SNP modification make their involvement in WB highly probable. Particularly noteworthy 

genes identified in this analysis were MYH1A, MYH1B (high-impact variants in SGHB), the 

pair of which are myosin heavy chain genes. Both of these genes had ‘splice acceptor variants’ 

that may result in a different mature mRNA product and protein. These genes are members of a 

larger group of myosin genes which regulate development and function of avian skeletal muscle 

[69]. Interestingly, MYH1B was also identified as a candidate gene for white striping in a QTL 

mapping study by Pampouille et al. [25]. Another pair of notable genes with high-impact 

variants were DST (dystonin) and TMEM108 (Transmembrane protein). DST was modified in 

SGHB, whereas TMEM108 was modified in FGCB. DST is a cytoskeletal linker protein, which 

is involved in collagen trimerization and formation of scar tissue following injury [70]. DST is 

known to interact with TMEM108, a gene that regulates the stability of microtubules, by 

recruiting TMEM108 for the transport of endosomal vesicles [71]. Mutations in the DST gene 
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have been identified as being responsible for hereditary neuropathy and dystonia (abnormal 

muscle tone) in mouse models [72]. The high-impact variants and differential expression of these 

genes may be associated with the rigidity, collagen content, and microscopic features observed in 

WB.  

While the short list of genes identified in this study have a high likelihood of being 

explanatory of WB, and even as potential diagnostic biomarkers for  the condition, we stop short 

of calling these candidate genes; population-level analyses such as association testing (GWAS) 

would be necessary to confirm if variants in these genes are causative of WB. However, these 

findings do lend support for a polygenic basis for WB, but perhaps occurring in conjunction with 

regulatory mechanisms that are yet to be identified and confirmed. Whether a putative genetic 

basis for wooden breast can be traced to linked loci under selection for growth traits or is a result 

of de novo mutations and structural variants, remains to be established. The high frequency of 

WB within flocks is suggestive of underlying causes that are not highly variable among 

individuals of a flock. Any variation in severity could, therefore, be a result of particular 

genotypes, and the resulting allele-specific growth traits and nutritional interactions. Such a 

pattern is consistent with multi-genic traits, alleles for which may segregate in populations as 

heterozygotes, and the occurrence and severity of the condition may be driven by allele-specific 

expression patterns [73, 74]. De novo mutations would also explain a similar pattern. 

The results from our multisample comparison analysis show that WB has an age-

dependent expression pattern, with molecular signatures and phenotypic markers becoming more 

evident in older birds. Such a phenomenon, called age-dependent penetrance, has frequently 

been observed in various heritable diseases. Recent studies have shown that some features of 

WB are observable as early as two weeks of age [19, 20], and therefore would explain our 
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observation of 21-day old Ross birds being more similar to the older WB affected the group.  

The inherited human neurodegenerative disorder, Huntington's Disease, is known to manifest in 

middle to later life, and gene expression studies show age-dependent expression and 

dysregulation of various signaling genes [75]. Age-dependent disorders may also include 

heritable genetic mechanisms such de novo mutations, or as somatic mutations [76–78] that may 

affect genome organization, or repair mechanisms and increase the penetrance of diseases in later 

life [79, 80]. Further investigations of genome organization, the frequency of de novo mutations, 

or breakdown of repair mechanisms in fast-growth broilers are necessary to illuminate whether 

and how these processes may be important in WB.  

 

Conclusions 

Our study used transcriptomic datasets to compare pectoralis tissue from commercial 

broilers with wooden breast against multiple genotypic backgrounds, and confirmed the 

previously reported molecular signatures in addition to previously unreported molecules and 

pathways. The comparison of tissue from fast-growth genetic backgrounds to those from slow-

growth genetic backgrounds and different age classes suggests a genetic basis for WB that elicits 

age-dependent expression patterns in fast-growth broiler strains. The functional analyses of 

pathways from comparative data suggest that WB is a potentially polygenic, complex syndrome, 

with molecular similarities to neoplastic disorders. Through analysis of high-impact variants 

among the studied breeds, we identified a short list of genes with high-impact variants that are 

also significantly differentially expressed, suggesting Cis-Regulatory processes involving 

essential developmental and cytoskeletal genes. This result underscores the need for more in-
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depth analyses to investigate the role of these genes, basis of these disease pathways and 

similarities to complex disorders.    
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Figure Legends 

Figure 1: Non-Metric Multidimensional Scaling plot of the RNAseq datasets in the multi-sample 

comparison study. The samples from each age and growth-rate group cluster clearly within 

groups. Commercial fast-growth broilers also appear more proximate to each other and are 

arranged from top to bottom in order of increasing age, while youngest and slowest growth 

breeds are furthest away from older, fast-growth breeds. 

Figure 2: Hierarchical clustering heatmap of the top 100 most expressed genes, based on 

logCPM values, across samples. Clustering shows that woody breast samples fall among Ross 

21-day old and ARAC 42 old birds, with slow-growth heritage birds (WC and WRR) forming a 

distinct cluster. 

Figure 3: Mean-Average plots for analysis of differentially expressed genes for each pairwise 

comparison performed against the woody breast sample set. Points in red show the genes that 

were expressed at <-2 logFC or > 2 logFC, with a FDR <0.05.  
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Tables 

 

Table 1: Summary of data used in the comparative analysis, including information about the chicken breed, tissue type, the age of 

birds at sampling, SRA accession info, and authors of the original study. 

SRA 
accessio

n ID 

Chicken 
Breed/variety 

Breed Type Tissue 
Type 

Age of bird 
at sampling 

Authors 

PRJNA3
39392 

Arbor Acres Commercial Broiler Pectorali
s major 

42-days Yi et al., 
2016 [81] 

PRJNA3
42997 

WC and WRR Heritage Broilers Pectorali
s major 

120 and 180 
days 

Qui et al., 
2017 [82] 

PRJNA2
94010 

Recessive White 
Rock (WRR) & 

Xinhua 

Heritage & 
Indigenous 

Pectorali
s major 

42-days Chen et al. 
[83]  

PRJNA2
73416 

Ross 708 & Illinois 
Chickens 

Commercial Broiler 
& Legacy Breed 

Pectorali
s major 

6 and 21-
days 

Davis et 
al., 2015 

[84] 

PRJNA2
66323 

WRR & XH Heritage & 
Indigenous 

Pectorali
s major 

42-days Ouyang et 
al., 2015 

[85] 

WRR: White Recessive Rock, WC: Wenchang Chicken, XH: Xinghua Chicken 
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Table 2: Summary of results from pairwise contrasts performed among RNAseq data using edgeR. The table shows the information on 

differentially expressed genes, summary of pathway analysis using IPA, upstream regulators for each dataset, and top disease terms. 

Again
st 

Arbor 
acres 

42Day 

Arbor 
acres 

42Day 
Arbor acres 

42Day 

WRR-
XHCro

ss 
WC120D

+ 
WRR120

D+ ROSS-21D ROSS-6D ILL-21D ILL-6D 
Grou

p 1 2 3 4 5 6 7 8 9 10 
Up in 
WB 912 855 1001 372 1435 1227 438 686 1131 473 

Down 
in WB 331 312 329 249 849 894 255 482 571 789 
Total 
DE 1243 1167 1330 621 2284 2121 693 1168 1702 1262 

Top 
Canon

ical 
PW 

T Cell 
Receptor 
Signaling 

CD28 
Signaling 

in T 
Helper 
Cells 

Axonal 
Guidance 
Signaling 

eNOS 
signalin

g 

Axonal 
Guidance 
Signaling 

NRF2 
Mediated 
Oxidative 

Stress 

T-Cell 
Receptor 
Signaling 

CD28 
Signaling in 

T Helper 
Cells 

Signaling 
by Rho 

Family of 
GTPases 

CD28 
Signaling in 

T Helper 
Cells 

  
IL-8 

Signaling 

T Cell 
Receptor 
Signaling 

IL-8 
Signaling 

Calcium 
Signalin

g 

Molecular 
Mechanis

ms of 
Cancer 

IL-8 
Signaling 

Production 
of Nitric 
Oxide 

IL-12 
Signaling 

and 
Production 

of 
Macrophage

s 

CD28 
Signaling 

in T 
Helper 
Cells 

T-cell 
Receptor 
Signaling 

  

Signaling 
by Rho 

Family of 
GTPases 

Phospholi
pase C 

Signaling 

T-cell 
Receptor 
Signaling 

Hepatic 
Fibrosis

/ 
Hepatic 
Stellate 

Cell 
Activati

on 

T -cell 
Receptor 
Signaling 

ERK/MA
PK 

Signaling 

CD28 
Signaling in 

T Helper 
Cells 

T-Cell 
Receptor 
Signaling 

Tec 
Kinase 

Signaling 

PI3K 
Signaling in 

B 
Lympocytes 
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Upstre
am 

Regs TGFB1 TGFB1 TGFB1 TNF TGFB1 TGFB1 
Lipopolysac

charide TP53 TNF 
Lipopolysac

charide 

  TNF TNF TNF 
beta-

estradiol 
beta-

estradiol 
beta-

estradiol 
beta-

estradiol 
Lipopolysac

charide 
beta-

estradiol 
beta-

estradiol 

  
beta-

estradiol 
beta-

estradiol 
Lipopolysac

charide TGFB1 TP53 TP53 TGFB1 
beta-

estradiol TGFB1 TNF 
Diseas

es Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer 

  
Organism
al Injury 

Organism
al Injury 

Organismal 
Injury 

Organis
mal 

Injury 
Organism
al Injury 

Organism
al Injury 

Organismal 
Injury 

Organismal 
Injury 

Organism
al Injury 

Organismal 
Injury 

  

Gastrointe
stinal 

Disease 

Gastrointe
stinal 

Disease 
Gastrointesti
nal Disease 

Neurolo
gical 

Disease 

Gastrointe
stinal 

Disease 

Gastrointe
stinal 

Disease 
Gastrointesti
nal Disease 

Gastrointesti
nal Disease 

Gastrointe
stinal 

Disease 
Gastrointesti
nal Disease 
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Table 3: List of top 50 canonical pathway terms, and diseases and disorders identified from comparative analysis. In this analysis, 

multiple DEG datasets are compared to identify common pathway terms that are found more often than expected by chance. 

Ranked	by	-log(P)	 Diseases	and	Disorders	 Canonnical	Pathways	
1	 T	Cell	Receptor	Signaling	 Cancer	
2	 CD28	Signaling	in	T	Helper	Cells	 abdominal	neoplasm	
3	 Signaling	by	Rho	Family	GTPases	 cancer	
4	 Phospholipase	C	Signaling	 solid	tumor	
5	 Axonal	Guidance	Signaling	 malignant	solid	tumor	
6	 Tec	Kinase	Signaling	 adenocarcinoma	
7	 FcÎ³	Receptor-mediated	Phagocytosis	in	Macrophages	and	Monocytes	 digestive	system	cancer	
8	 FXR/RXR	Activation	 digestive	organ	tumor	
9	 Germ	Cell-Sertoli	Cell	Junction	Signaling	 abdominal	cancer	
10	 CTLA4	Signaling	in	Cytotoxic	T	Lymphocytes	 non-melanoma	solid	tumor	
11	 Semaphorin	Signaling	in	Neurons	 tumorigenesis	of	tissue	
12	 Regulation	of	IL-2	Expression	in	Activated	and	Anergic	T	Lymphocytes	 neoplasia	of	epithelial	tissue	
13	 Phagosome	Formation	 carcinoma	
14	 GP6	Signaling	Pathway	 malignant	neoplasm	of	large	intestine	
15	 Role	of	Tissue	Factor	in	Cancer	 intestinal	cancer	
16	 B	Cell	Receptor	Signaling	 large	intestine	neoplasm	

17	
Production	of	Nitric	Oxide	and	Reactive	Oxygen	Species	in	

Macrophages	 intestinal	tumor	
18	 Calcium-induced	T	Lymphocyte	Apoptosis	 large	intestine	adenocarcinoma	
19	 Primary	Immunodeficiency	Signaling	 large	intestine	carcinoma	
20	 Colorectal	Cancer	Metastasis	Signaling	 intestinal	carcinoma	
21	 Leukocyte	Extravasation	Signaling	 gastrointestinal	carcinoma	
22	 PI3K	Signaling	in	B	Lymphocytes	 gastrointestinal	tract	cancer	
23	 LXR/RXR	Activation	 gastrointestinal	neoplasia	
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24	 Ephrin	B	Signaling	 necrosis	
25	 Cardiac	Î²-adrenergic	Signaling	 cell	death	
26	 RhoGDI	Signaling	 apoptosis	
27	 CXCR4	Signaling	 organization	of	cytoskeleton	
28	 Protein	Kinase	A	Signaling	 organization	of	cytoplasm	
29	 Î±-Adrenergic	Signaling	 organismal	death	
30	 Opioid	Signaling	Pathway	 morbidity	or	mortality	
31	 Breast	Cancer	Regulation	by	Stathmin1	 liver	lesion	
32	 Integrin	Signaling	 abdominal	carcinoma	
33	 Acute	Phase	Response	Signaling	 tumorigenesis	of	epithelial	neoplasm	
34	 iCOS-iCOSL	Signaling	in	T	Helper	Cells	 abdominal	adenocarcinoma	
35	 PKCÎ¸	Signaling	in	T	Lymphocytes	 tumorigenesis	of	malignant	tumor	
36	 Glioma	Invasiveness	Signaling	 tumorigenesis	of	carcinoma	
37	 Paxillin	Signaling	 morphology	of	cells	
38	 ILK	Signaling	 morphology	of	body	cavity	
39	 Th1	and	Th2	Activation	Pathway	 migration	of	cells	
40	 Role	of	JAK1	and	JAK3	in	Î³c	Cytokine	Signaling	 cell	movement	
41	 G-Protein	Coupled	Receptor	Signaling	 liver	carcinoma	
42	 Th2	Pathway	 liver	tumor	
43	 Hepatic	Fibrosis	/	Hepatic	Stellate	Cell	Activation	 liver	cancer	
44	 Sirtuin	Signaling	Pathway	 hepatobiliary	system	cancer	
45	 Hereditary	Breast	Cancer	Signaling	 breast	or	colorectal	cancer	
46	 Superoxide	Radicals	Degradation	 genital	tract	cancer	
47	 Fc	Epsilon	RI	Signaling	 pelvic	tumor	
48	 GÎ±i	Signaling	 pelvic	cancer	
49	 Complement	System	 genitourinary	tumor	
50	 Virus	Entry	via	Endocytic	Pathways	 urogenital	cancer	
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Table 4: Comparison of variant effect prediction between the slow-growth heritage broilers (SGHB), and the fast-growth commercial 

broilers (FGCB). Results from snpEff based on high-quality SNP variants are shown. Colored boxes highlight notable differences in 

predicted effects for any category. Green colored boxes show elevated frequency of effects that are less likely to cause adverse 

impacts, whereas red shaded boxes show elevated frequency of phenotype-changing effects. 

Group	 		 SGHB	 FGCB	
		 Type		 	Count		 	Percent		 	Count		 	Percent		

Effects	by	
impact	

HIGH		 158	 0.03%	 395	 0.03%	
LOW		 60566	 11.67%	 94998	 8.01%	

MODERATE		 17001	 3.28%	 30856	 2.60%	
MODIFIER		 441262	 85.02%	 1059364	 89.35%	

		 		 		 		 		 		

Effects	by	
functional	class	

MISSENSE		 17021	 22.22%	 30907	 25.17%	
NONSENSE		 50	 0.07%	 97	 0.08%	
SILENT		 59514	 77.71%	 91795	 74.75%	

Missense	-	Silent	ratio	 0.286	 		 0.336696	 		
		 		 		 		 		 		
		 3	prime	UTR	variant		 53496	 10.29%	 82491	 6.94%	

	Count	by	
effects	

5	prime	UTR	premature	
start	codon	gain	variant		 544	 0.10%	 1302	 0.11%	

5	prime	UTR	variant		 3529	 0.68%	 8050	 0.68%	
downstream	gene	variant		 143715	 27.65%	 292411	 24.60%	
initiator	codon	variant		 1	 0.00%	 6	 0.00%	

intergenic	region		 109334	 21.03%	 255700	 21.51%	
intron	variant		 70624	 13.59%	 268782	 22.61%	

missense	variant		 17001	 3.27%	 30856	 2.60%	
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non	canonical	start	codon		 0	 0.00%	 1	 0.00%	
non	coding	exon	variant		 169	 0.03%	 369	 0.03%	
splice	acceptor	variant		 36	 0.01%	 107	 0.01%	
splice	donor	variant		 57	 0.01%	 152	 0.01%	
splice	region	variant		 837	 0.16%	 3099	 0.26%	

start	lost		 9	 0.00%	 21	 0.00%	
stop	gained		 50	 0.01%	 97	 0.01%	
stop	lost		 10	 0.00%	 25	 0.00%	

stop	retained	variant		 24	 0.00%	 36	 0.00%	
synonymous	variant		 59490	 11.44%	 91758	 7.72%	
upstream	gene	variant		 60901	 11.72%	 153487	 12.91%	

		 		 		 		 		 		

Count	by	
genomic	region	

DOWNSTREAM		 143715	 27.69%	 292411	 24.66%	
EXON		 76508	 14.74%	 122280	 10.31%	

INTERGENIC		 109334	 21.07%	 255700	 21.57%	
INTRON		 70124	 13.51%	 266869	 22.51%	

SPLICE	SITE	ACCEPTOR		 36	 0.01%	 107	 0.01%	
SPLICE	SITE	DONOR		 53	 0.01%	 145	 0.01%	
SPLICE	SITE	REGION		 747	 0.14%	 2771	 0.23%	

UPSTREAM		 60901	 11.73%	 153487	 12.95%	
UTR	3	PRIME		 53496	 10.31%	 82491	 6.96%	
UTR	5	PRIME		 4073	 0.78%	 9352	 0.79%	
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Table 5: Lists of top high-impact variants unique to the fast-growth commercial broilers and slow-growth heritage broiler groups. 

Highlighted genes are those that were also significantly differentially expressed in comparison of Fast versus Slow groups. The 

directionality of regulation is also given for these differentially expressed genes. 

HI Variants Unique to 
FGCB 

Expression & 
Direction Description Function 

ATAD5   ATPase family AAA domain-containing protein 5  Immunoglobulin prouction 

C10orf71   chromosome 10 open reading frame 71 Unknown 

CELSR1   Cadherin EGF LAG seven-pass G-type receptor 1 Calcium Ion Binding 

CUEDC1   CUE domain containing protein 
Downregulation of Estrogen Receptor 

1 

DECR1   2,4-dienoyl-CoA reductase 1 fatty acid beta-oxidation 

ENSGALG00000004746   Uncharacterized Unknown 

ENSGALG00000022316 Down in FGCB C-type lectin family member Fucose/Mannose Binding 

ENSGALG00000023351 Down in FGCB Small Integral Membrane Protein Unknown 

ENSGALG00000023846   Uncharacterized Unknown 

ENSGALG00000026688   Uncharacterized Unknown 

KIFC1   Kinesin-like protein KIFC1 ATPase activity 

MYCBPAP   MYCPG-Associated Protein Cell differentiation 

NES   NEST Protein intermediate filament binding 

NPEPPS   Puromycin-sensitive aminopeptidase Cellular response to hypoxia 

OGFR   Opioid growth factor receptor Regulation of cell growth 

PKD1   
polycystin 1, transient receptor potential channel 

interacting Regulation of calcium channels 

RFC4   replication factor C subunit 4 DNA-dependent ATP-ase activity 
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SPEG Up in FGCB SPEG Complex locus Myocyte cytoskeletal development 

STAT1 Up in FGCB Signal transducer and transcription activator 
Mediates cell viability in response to 

stress 

THYN1 Up in FGCB Thymocyte Nuclear Protein Induction of apoptosis 

TMEM108 Down in FGCB Transmembrane Protein 
cellular response to brain-derived 

neurotrophic factor stimulus 

tvb   TNF-related apoptosis inducing ligand 
Tumor necrosis factor-activated 

receptor activity 

WIPI1       
HI Variants Unique to 

SGHB Direction	 Description Function 

BFIV21	 		 MHC	Class	1	component	 Metal	ion	binding	

Blec2	 Up	in	FGCB	 C-type	Lectin	Like	Receptor	2	 Inhibition	of	natural	killer	cytotoxicity	

C2CD5	 Up	in	FGCB	 C2	Calcium	Dependent	Domaning	Containg	5	
Calcium	bion	binding	and	calcium-
dependent	phospholipid	binding	

CASP10	 Up	in	FGCB	 Cystein-Aspartic	Acid	protease	family	 Regulation	of	apoptosis	

CCNL1	 Up	in	FGCB	 Cyclin	gene	family	member	
pre-mRNA	splicing	and	regulation	of	

RNA	polymerase	II	

CIRH1A	 		 Ribosome	biogenesis	factor	 nucleolar	processing	of	pre-18S	rRNA	

DST	 Up	in	FGCB	 Dystonin		 Cytoskeletal	linker	protein	

ENSGALG00000002067	 Down	in	FGCB	 Mannosyltranferase	activity	
Mannosylation	of	lipid-linked	

oligosaccharides	

ENSGALG00000021835	 Up	in	FGCB	 Uncharacterized	 Unknown	

ENSGALG00000028551	 Up	in	FGCB	 Glutathione	transferase	
Cellular	defense	against	toxic	

compounds	

Lpin1	 		 Lipin	1	phospatidate	phosphatase	
Fatty	acide	metabolism,	transcription	

regulation	

MYH1A	 Down	in	FGCB	 myosin,	heavy	chain	1A,	skeletal	muscle	 Microtubule	motor	activity,	actin	
filament	binding	

MYH1B	 Down	in	FGCB	 myosin,	heavy	chain	1B,	skeletal	muscle	 Microtubule	motor	activity,	actin	
filament	binding	
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RPL12	 		 ribosomal	protein	L12	 Ribosomal	large	subunit	assembly	

SLC9A2	 Up	in	FGCB	 solute	carrier	family	9	member	A2	 Proton	extrusion,	regulation	of	pH,	
sodium	absorption	

STAMBP	 Down	in	FGCB	 STAM	binding	protein	 Zinc	metalloprotease	activtity	

STRN3	 Up	in	FGCB	 striatin	3	 Calcium	dependent	calmodulin	
binding	

SULT1E1	 		 Sulfotransferase	 Sulfate	conjugation	of	estradiol	and	
estrone	

TLN1	 Down	in	FGCB	 talin-1	 actin	filament	binding	

WRAP73	 Down	in	FGCB	 WD	repeat	containing,	antisense	to	TP73	 Regulation	of	mitotic	spindle	
assembly	

ZDHHC5	 		 palmitoyltransferase	ZDHHC5	 Palmitoyltransferase	activity	
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