Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

An assessment of Causal Inference in visual-inertial traveled distance estimation

View ORCID ProfileK.N. de Winkel, D. Diers, M. Laächele, H.H. Buülthoff
doi: https://doi.org/10.1101/357087
K.N. de Winkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.N. de Winkel
D. Diers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Laächele
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.H. Buülthoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Recent work indicates that the central nervous system assesses the causality of visual and inertial information in the estimation of qualitative characteristics of self-motion and spatial orientation, and forms multisensory perceptions in accordance with the outcome of these assessments. Here, we extend the assessment of this Causal Inference (CI) strategy to the quantitative domain of traveled distance. We present a formal model of how stimuli result in sensory estimates, how percepts are constructed from sensory estimates, and how responses result from percepts. Starting with this formalization, we derived probabilistic formulations of CI and competing models for perception of traveled distance.

In an experiment, participants (n=9) were seated in the Max Planck Cablerobot Simulator, and shown a photo-realistic virtual rendering of the simulator hall via a Head-Mounted Display. Using this setup, the participants were presented with various unisensory and (incongruent) multisensory visual-inertial horizontal linear surge motions, differing only in amplitude (i.e., traveled distance). Participants performed both a Magnitude Estimation and a Two-Interval Forced Choice task.

Overall, model comparisons favor the CI model, but individual analysis shows a Cue Capture strategy is preferred in most individual cases. Parameter estimates indicate that visual and inertial sensory estimates follow a Stevens’ power law with positive exponent, and that noise increases with physical distance in accordance with a Weber’s law. Responses were found to be biased towards the mean stimulus distance, consistent with an interaction between percepts and prior knowledge in the formulation of responses. Magnitude estimate data further showed a regression to the mean effect.

The experimental data did not provide unambiguous support for the CI model. However, model derivations and fit results demonstrate it can reproduce empirical findings, arguing in favor of the CI model. Moreover, the methods outlined in the present study demonstrate how different sources of distortion in responses may be disentangled by combining psychophysical tasks.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 27, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
An assessment of Causal Inference in visual-inertial traveled distance estimation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An assessment of Causal Inference in visual-inertial traveled distance estimation
K.N. de Winkel, D. Diers, M. Laächele, H.H. Buülthoff
bioRxiv 357087; doi: https://doi.org/10.1101/357087
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
An assessment of Causal Inference in visual-inertial traveled distance estimation
K.N. de Winkel, D. Diers, M. Laächele, H.H. Buülthoff
bioRxiv 357087; doi: https://doi.org/10.1101/357087

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4119)
  • Biochemistry (8828)
  • Bioengineering (6532)
  • Bioinformatics (23486)
  • Biophysics (11806)
  • Cancer Biology (9223)
  • Cell Biology (13336)
  • Clinical Trials (138)
  • Developmental Biology (7444)
  • Ecology (11425)
  • Epidemiology (2066)
  • Evolutionary Biology (15174)
  • Genetics (10453)
  • Genomics (14056)
  • Immunology (9188)
  • Microbiology (22200)
  • Molecular Biology (8823)
  • Neuroscience (47627)
  • Paleontology (351)
  • Pathology (1431)
  • Pharmacology and Toxicology (2493)
  • Physiology (3736)
  • Plant Biology (8090)
  • Scientific Communication and Education (1438)
  • Synthetic Biology (2225)
  • Systems Biology (6042)
  • Zoology (1254)