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Abbreviations 

aTIS  Alternative translation initiation sites 

BH  Benjamini-Hochberg 

CIA  Coinertia analysis 

CID  Collision-induced dissociation 

ETD  Electron-transfer dissociation 

EThcD  Electron-transfer/Higher-energy collision dissociation 

FDR  False discovery rate  

FPKM  Fragments per kilobase million 

GPCR  G-protein-coupled receptors 

HCD  Higher-energy collision dissociation 

LC-MS/MS Liquid chromatography tandem mass spectrometry 

lncRNA Long non-coding RNA 

MS  Mass spectrometry 

PTR  Protein-to-mRNA 

SAAV  Single amino acid variant 

SNV  Single nucleotide variant  

TF  Transcription factor 

uORF  Upstream open-reading frame  
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Abstract 

Genome-, transcriptome- and proteome-wide measurements provide valuable insights into how 

biological systems are regulated. However, even fundamental aspects relating to which human 

proteins exist, where they are expressed and in which quantities are not fully understood. Therefore, 

we have generated a systematic, quantitative and deep proteome and transcriptome abundance 

atlas from 29 paired healthy human tissues from the Human Protein Atlas Project and representing 

human genes by 17,615 transcripts and 13,664 proteins. The analysis revealed that few proteins 

show truly tissue-specific expression, that vast differences between mRNA and protein quantities 

within and across tissues exist and that the expression levels of proteins are often more stable 

across tissues than those of transcripts. In addition, only ~2% of all exome and ~7% of all mRNA 

variants could be confidently detected at the protein level showing that proteogenomics remains 

challenging, requires rigorous validation using synthetic peptides and needs more sophisticated 

computational methods. Many uses of this resource can be envisaged ranging from the study of 

gene/protein expression regulation to protein biomarker specificity evaluation to name a few. 
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Quantitative mass spectrometry / proteogenomics / human proteome / RNA-Seq / human 

transcriptome 
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Introduction 

Delineating the factors that govern protein expression and activity in cells is among the most 

fundamental research topics in biology. Although the number of potential protein coding genes in 

the human genome is stabilizing at about 20,000, high-quality evidence for their physical existence 

has not yet been found for all and intense efforts are ongoing to identify these currently ~13% 

‘missing proteins’ (Omenn et al. 2017). While it is also generally accepted that the quantities of 

proteins vary greatly within and across different cell types, tissues and body fluids (Wilhelm et al. 

2014; Kim et al. 2014), this has not been quantified for many human tissues. Furthermore, it is not 

very clear yet how the many anabolic and catabolic processes are coordinated to give rise to the 

often vast differences in the levels of proteins. Messenger RNA levels are important determinants 

for protein abundance (Vogel et al. 2010; Schwanhäusser et al. 2011) and extensive mRNA 

expression maps of human cell types and tissues have been generated as proxies for estimating 

protein abundance (GTEx Consortium 2013; Uhlén et al. 2015; Thul et al. 2017). However, other 

studies have also highlighted the much higher dynamic range of protein abundance as well as 

rather poor correlation of mRNA and protein levels suggesting that further, and possibly diverse 

regulatory elements play important roles (Schwanhäusser et al. 2011; Liu, Beyer, and Aebersold 

2016; Franks, Airoldi, and Slavov 2017). Decades of careful research has revealed numerous 

mRNA elements affecting translation or mRNA stability such as codon usage, start codon context or 

secondary structure to name a few. However, most of these studies focussed on single or few 

genes or single cell types or were performed in model organisms distinct from human systems and 

often did not cover a lot of proteins. Broader scale analyses have more recently become possible 

owing to advances in proteome and transcriptome profiling technologies, but these have mostly 

focussed on a single (disease) tissue or the cell-type resolved analysis of protein expression in 

single tissues (Zhang et al. 2014; Mertins et al. 2016). To the best of our knowledge, no broad-scale 

quantitative and integrative analysis of transcriptomes and proteomes across many healthy human 

tissues has been performed yet that would enable a comprehensive analysis of factors explaining 

the experimentally observed differences between mRNA and protein expression. Therefore, the 

purpose of this study was to generate a resource of molecular profiling data at the mRNA and 

protein level to facilitate the study of protein expression control and proteogenomics in humans. To 

this end, we analysed 29 major histologically healthy human tissues from the Protein Atlas Project 

(Uhlén et al. 2015) to provide a comprehensive baseline map of protein expression across the 

human body. As we show below as well as in an accompanying manuscript, this data can be used 

in many ways to explore protein expression and its regulation in humans. To facilitate further 

research on this fundamentally important topic and the many further uses that can be envisaged, all 

data is available in ArrayExpress (Kolesnikov et al. 2015) and proteomeXchange (Vizcaíno et al. 

2014). 
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Results and Discussion 

Comprehensive transcriptomic and proteomic analysis of 29 human tissues 

We analysed 29 histologically healthy tissue specimen representing major human organs by label-

free quantitative proteomics and RNA-Seq (Fig 1A). Tissues were collected by the Human Protein 

Atlas project (Fagerberg et al. 2014) and adjacent cryo-sections were used for paired (allele 

specific) transcriptome and proteome analysis. RNA-Seq profiling detected and quantified in total 

17,615 protein coding genes with an average of 11,927 (+/- 937) genes per tissue (Fig 1B) when 

using a cut-off of 1 fragment per kilobase million (FPKM) (Uhlén et al. 2015). Proteomic profiling by 

mass spectrometry resulted in the identification and intensity-based absolute quantification (iBAQ) 

(Schwanhäusser et al. 2011) of a total of 15,210 protein groups with an average of 11,005 (+/-680) 

protein groups per tissue at a false discovery rate (FDR) of <1% at the protein, peptide, and peptide 

spectrum match (PSM) level (Fig EV1A). Protein identification was based on 277,698 non-

redundant tryptic peptides, representing a total of 13,664 genes and, on average, 10,547 (+/- 512) 

genes per tissue covering, on average, 88% of the expressed genome in every tissue. While the 

total number of confidently identified proteins in this study is smaller than that of other (community-

based) resources such as ProteomicsDB (Schmidt et al. 2018) and neXtProt (Gaudet et al. 2017) 

(coverage of 15,721 and 17,470 protein coding genes respectively), it provides a highly consistent 

collection of tissue proteomes including the deepest proteomes to date for many of the tissues 

analysed. It also provides protein level evidence for 72 proteins (represented by at least one unique 

peptide with Andromeda score of ≥100) that are not yet covered by neXtProt (release 2018-01-17; 

Table EV1).  

Overall, 12,894 protein-coding genes were detected on both transcript and protein level, and the 

detected proteins spanned almost the entire range of mRNA expression again indicating very 

substantial coverage of the expressed proteome (Fig 1C). However, some proteins could not be 

detected even for highly expressed mRNAs (i.e. higher than the mean mRNA abundance). About 

1/3 of these mRNAs were found in testis (486 of 1,574) and no other tissue contained nearly as 

many highly expressed mRNAs without protein evidence (Fig EV1B). The ‘missing’ proteins in the 

testis were statistically significantly enriched for processes related to spermatogenesis by gene 

ontology analysis (clusterProfiler; n=88 genes; BH adjusted p-value = 5x10-12). Although the rich 

expression of mRNAs in testis has been known for a long time and exploited for e. g. the cloning of 

many genes from cDNAs, the apparent absence of so many testis proteins with high mRNA 

expression is surprising. This was not due to e. g. poor coverage of the testis proteome (11,033 

detected protein coding genes) or other obvious technical factors. Interestingly, almost 300 of these 

“missing” proteins have also not been detected by antibodies in testis (according to the Human 

Protein Atlas Project) and nearly 200 have no ascribed molecular function. The inability to detect 
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these proteins by mass spectrometry or antibodies despite high levels of mRNA poses a number of 

questions. For example, are these proteins rapidly degraded implying specialized (and perhaps 

transient) functions in testis or sperm functionality? Are they perhaps stabilized in response to egg 

fertilisation? Proteins missing at the lower end of the mRNA expression range (less than mean 

mRNA abundance) are overrepresented in G-protein coupled receptor activity (n=170; BH adjusted 

p-value = 4×10-45), ion channels (n=111; BH adjusted p-value = 5×10-7)and cytokine related biology 

(n=121; BH adjusted p-value = 3×10-10). The abundance of these proteins may simply have been 

below the mass spectrometric detection limit or, as described many times, can be difficult to extract 

from cells owing to the presence of multi-pass transmembrane domains giving rise to few if any MS-

compatible tryptic peptides after digestion. Interestingly, for 770 identified proteins, no 

corresponding mRNA was detected in any tissue (Fig EV1C, Table EV2). These proteins were 

enriched for e. g. immune related processes including Major Histocompatibility Complexes (MHC; 

n=40; BH adjusted p-value = 1×10-41) and antibodies (n=39; BH adjusted p-value = 2×10-31), that are 

either produced (on and off) by certain cell types in a given tissue or arise from elsewhere in the 

body not covered by our proteomes and transcriptomes.  

To explore which and how many proteins show a tissue-specific expression profile, we applied the 

classification scheme of Uhlén et al. (Uhlén et al. 2015, 2016) previously developed for mRNA 

profiling and which stratifies genes into the five classes “tissue-enriched” (5-fold above any other 

tissue), “group enriched” (5-fold above any group of 2-7 tissues), “enhanced” (5-fold above the 

average of all other tissues), “expressed in all” (expressed in all tissues) as well as “mixed” genes 

(which do not match the other categories). Overall, a large fraction of all represented genes was 

expressed in all tissues: 37% (6,562) at the transcript level and 39% (5,394) at the protein level. 

However, 43% (7,516) of all transcripts and 53% (7,272) of all proteins showed elevated expression 

in one or more tissues (“tissue-enriched”, “group-enriched” or “tissue-enhanced”). Only 4.3% (on 

average) of all transcripts and 5.4% of all proteins showed a tissue-enriched profile. Two notable 

exceptions are brain and testis which exhibit a higher percentage of tissue enriched proteins and 

transcripts in line with a recent analysis of RNA-Seq data from the Human Protein Atlas and GTEx 

projects (GTEx Consortium 2013). Proteins with more tissue restricted expression tended to be of 

somewhat lower abundance (Fig EV1D).  

The above global trends in transcript and protein tissue expression distributions were also mirrored 

by functional categories of genes but with some interesting detail (Fig 1D). For example, while the 

tissue distribution of expression of disease-associated genes followed that of all genes, the 

expression of drug targets in general and GPCRs in particular was much more tissue restricted 

speaking to the notion that proteins may make for better drug targets if they are not ubiquitously 

expressed (Hao and Tatonetti 2016). In this context, we point out that our baseline map of protein 

expression across the human body may be of general value to drug discovery as one can e. g. 
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quickly examine the expression of a particular target of interest, to help to better understand 

adverse clinical effects and off-target mechanisms of action of drugs based on their tissue 

expression profiles. For instance, a recent study revealed phenylalanine hydroxylase (PAH) as an 

off-target of the pan-HDAC inhibitor panobinostat (Becher et al. 2016). Our map of protein 

expression shows that PAH is abundantly expressed in liver (and kidney) which is also the major 

site of hydroxylation in the human body (Matthews 2007), indicating that the liver is the major site 

where panobinostat exerts its detrimental effects, i. e. leading to decreased tyrosine levels, and 

eventually hypothyroidism in affected patients. In contrast, essential genes (Wang et al. 2015; Hart 

et al. 2015; Blomen et al. 2015) as well as mitochondrial genes were found in the vast majority of all 

tissues in line with their central roles for maintaining cellular homeostasis. Despite the differences in 

detail, our dataset confirms, at the protein level, that there is a core set of ubiquitously expressed 

genes/proteins and that individual tissues are not strongly characterized by the categorical presence 

or absence of mRNAs or proteins but rather by quantitative differences (Geiger et al. 2013). This is 

also evident from an analysis of the most divergently expressed proteins or transcripts that shows 

enrichment of proteins related to the functional specialization of the respective tissue (Fig EV1E, 

Table EV2). 

mRNA and protein expression 

The dynamic range of transcripts detected by RNA-Seq spanned about four orders of magnitude 

and that of proteins detected by mass spectrometry spanned eight orders of magnitude (Fig 2A). 

This difference alone explains (at least in part) the overall higher coverage of the expressed 

proteome by RNA-Seq compared to that of LC-MS/MS. The much wider dynamic range at the 

protein level implies that protein synthesis and protein stability play an important role in determining 

protein levels beyond mRNA levels. Moreover, the number of protein copies produced per molecule 

of mRNA appears to be much larger for high- than for low-abundance transcripts, leading to a 

nearly quadratic relationship between mRNA levels and protein levels in every tissue (slope of 2.6 in 

Fig 2B (brain) and between 1.8 and 2.7 for all 29 tissues, Fig EV2A; Appendix Fig S1). This may be 

rationalized by cellular economics such that genes encoding highly abundant proteins not only 

express high mRNAs levels, but also encode regulatory elements that favour high translation 

efficiency and high protein stability (Vogel et al. 2010). The often vast differences in mRNA and 

protein expression within a tissue can also be visualized by plotting the ranked order of relative 

intensities of transcripts and proteins (Fig 2C). For example, in the heart, 41% of the total mRNA 

quantity (by FPKM) represents a single protein (MT-ATP8) and nearly 60% of all mRNA covers just 

five transcripts (all coding for mitochondrial proteins). In contrast, about 13% of the total protein 

quantity (by iBAQ) is contributed by five proteins (four of which are myosins and one represents a 

‘contamination’ from blood present in the tissue). One would expect the heart to be rich in both 

protein families owing to the contractile function of the organ which requires a lot of energy. And 
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while it is possible that mitochondrial proteins are underrepresented in quantitative terms (they are 

not underrepresented merely by counting presence/absence) because our lysis conditions may not 

have solubilized this organelle with high efficiency, it is surprising that even among the 100 most 

highly expressed mRNAs and proteins, only about 20% are the same (Fig 2D) and the overlap only 

increases to about 60% for the 5,000 most abundant proteins and transcripts (Fig EV2B). The 

abundance distribution of transcripts and proteins is also quite different between tissues with the 

spleen showing the opposite characteristics compared to the heart, and the lung showing a more 

even distribution of transcript and protein levels (Fig EV2C-D). Due to the fact that a majority of the 

proteins are expressed at similar levels across human tissue, it is not very surprising that the 

correlation of mRNA/protein ratios across tissues is generally not very strong (Fig 2E; median 0.35). 

Still, there is positive correlation in almost 90% of all cases and almost half are also statistically 

significant. However, care has to be taken when interpreting this distribution. We generally find that 

proteins and transcripts that are high (low) expressed in one tissue are also expressed high (low) in 

many (but not always all) other tissues (Fig EV2E). As shown in Fig 2F, the transcript and protein 

levels of the tyrosine kinase SYK are highly correlated across tissues reflecting the specialized 

function of the protein in T- and B-cell biology. In contrast, other proteins such as EIF4A3 (a DEAD-

box RNA helicase involved in translation initiation) show no such correlation. However, this is 

merely the result of similar expression levels in most tissues reflecting also their roles in central 

biological processes in all tissues (Wilhelm et al. 2017).  

It is noteworthy that proteomes correlate stronger between tissues (median of 0.77) than 

transcriptomes (median of 0.67) (Fig 3A). This might be due to the fact that the dynamic range of 

protein levels is larger and thus small biological or technical variations of individual genes have a 

negligible impact on the overall rankings. It might also imply that there are mechanisms in cells that 

buffer the protein quantities against changes in mRNA abundance (Liu, Beyer, and Aebersold 2016; 

Kustatscher, Grabowski, and Rappsilber 2017). The strongest correlations both for transcripts and 

proteins were found for the anatomically adjacent small intestine and duodenum. At the proteome 

level, the brain and heart show clear differences to other proteomes and gastrointestinal organs 

appear to be more similar to each other. Visualizing the transcriptome and proteome profiles in a 

plane using co-inertia analysis (CIA) (Culhane et al. 2005) indicate that mRNA and protein levels 

are more similar to each other within tissues than between tissues (Fig 3B) also reflected by an RV 

coefficient of 0.78 (a multivariate generalization of the squared Pearson correlation coefficient). 

Moreover, the CIA grouped several tissues according to similarities in their physiological function 

with tissues of the immune system and of the gastrointestinal tract representing the largest groups. 

It is interesting to note that this clustering appears to be driven by the cellular composition of 

individual tissues. For instance, the appendix co-clusters with the spleen, lymph node and tonsil and 

all four tissues contain a large fraction of lymphocytes (Fig 3C, blue panel). Similarly, the stomach, 
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duodenum, small intestine, colon and rectum all comprise a large proportion of (intestinal) glandular 

cells, which are important determinants of the molecular make-up of those tissues (Fig 3C, grey 

panel). All the above illustrates that there must be multiple molecular factors and mechanisms 

determining the quantitative expression of protein. This particular aspect of the present 

mRNA/protein expression resource may be particularly useful for the community as it provides a rich 

data source for the study of protein expression control (see also the accompanying manuscript). 

Proteogenomic characterisation of human tissues 

One aspect of the data we cover in more detail in this study is the considerable interest in the 

community to use proteomics data to annotate genomes, often referred to as proteogenomics. With 

matched RNA-Seq and proteomics data at hand, we set out to assess the merits of proteogenomics 

at several levels. First, we investigated the identification of protein isoforms. Based on RNA-Seq 

data, it has been suggested that human cell types typically express one dominant isoform (Ezkurdia 

et al. 2015). In proteomics, isoforms are much more difficult to distinguish unambiguously because 

the identification of proteins is inferred from the underlying peptide data. Given that many proteins 

contain conserved short stretches of amino acids and the fact that the median sequence coverage 

achieved for each protein is limited (here between 14 and 25%; Fig EV3A), many potential isoforms 

will not be covered by unique peptides and some peptides may also match to multiple entries in 

comprehensive sequence collections such as Ensembl (102,450 entries), thus often identifying a 

so-called protein group rather than one specific protein or isoform thereof. Illustrated by the 

proteomic data obtained from trypsin digested tonsil (Fig 4A), only 14% of all protein groups 

contained one single protein when searching the MS data against Ensembl. However, when 

searching the same data against a protein sequence database constructed from the tissue specific 

RNA-Seq data, the proportion of single entry protein groups increased to 53% (see Appendix Fig S3 

for all tissues). In this way, we were able to identify 53,858 non-redundant isoforms by RNA-Seq for 

17,560 genes and confirm 15,257 by proteomics for 11,833 genes across the 29 tissues (Fig EV3B, 

Table EV1 and EV6).  

One way to improve the detection of isoforms is to increase the sequence coverage in the 

proteomic data. To this end, we performed an ultra-deep proteomic analysis of tonsil tissue by 

applying seven different proteases (trypsin, LysC, LysN, GluC, ArgC, AspN, and chymotrypsin) and 

three peptide fragmentation techniques (HCD, CID and EThcD/ETD). This resulted in the 

identification of 11,569 protein groups (10,288 genes), represented by 421,073 non-redundant 

peptides leading to a median protein sequence coverage of 54% (Fig EV3C-E; Table EV5; when 

searched against Ensembl). Of these protein groups, 2,201 could be unambiguously linked to a 

single isoform. When searched against protein sequences derived from the tonsil-specific RNA-Seq 

data, we identified 10,592 protein groups, among which 6,293 represented a particular isoform 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 27, 2018. ; https://doi.org/10.1101/357137doi: bioRxiv preprint 

https://paperpile.com/c/ffsVtv/xyvd
https://paperpile.com/c/ffsVtv/xyvd
https://doi.org/10.1101/357137


11 

 

identified by unique peptides (Fig 4A). The above shows that isoform calling on the protein level is 

possible, but doing so systematically remains challenging. We further note that because most 

isoforms were detected by very few isoform-unique peptides, confident quantification of the different 

isoforms of the same gene found in the same tissue is currently very difficult and may require 

targeted MS assays rather than shotgun approaches. In this context, it is also worth mentioning that 

there is no clear consensus in the proteomics and transcriptomics communities as to how 

quantitative values should be allocated to particular proteins or transcripts. While it is custom in 

proteomics to use the parsimonious approach (i. e. allocate all iBAQ intensity to the protein with the 

highest overall evidence), it is custom to distribute RNA-Seq reads covering shared sequences 

across multiple transcripts containing that sequence (Trapnell et al. 2010). It would not be surprising 

if these differences in quantification approaches would add substantially to the poor correlation of 

mRNA and protein levels (or their ratios). In addition, there is currently no tractable way to 

determine which allele of a gene gave rise to a detected protein or isoform thereof. 

To assess the ability of proteomics to detect genetic variants, we analysed whole exome 

sequencing (WES), RNA-Seq and ultra-deep proteomics data of tonsil tissue. In the WES data, the 

average exon coverage was 98x and 97% of the exons were covered >20x providing a sound basis 

for the identification of single amino acid variants (SAAVs). Variant calling and filtering of WES data 

resulted in 9,848 high-quality, non-synonymous point mutations (i.e. nonsense and missense 

variants excluding I>L and L>I variants that cannot be distinguished by mass spectrometry), 

representing 5,527 human genes and including 6,112 heterozygous and 3,736 homozygous 

variants (Fig 4B, Table EV6). In the RNA-Seq data, 3,524 of the 9,848 genomic variants (36%; 

2,171 heterozygous and 1,353 homozygous cases; representing 2,428 genes) were covered 

sufficiently (≥10x) to assess their genotype. The reason for the substantial loss of coverage in the 

RNA-Seq vs exome data is because i) not all genes are expressed from both alleles in a given 

tissue and ii) even at a sequencing depth of 50 million reads, the dynamic range of mRNA 

abundance is too high to cover all transcripts and variants many times over. It has been noted 

before that the identification of SAAVs by proteomics is challenging and plagued by false positives 

in standard database searching regimen because i) the tandem mass spectra used for database 

searching are often not of very high quality, ii) these spectra often do not contain the complete 

amino acid sequence information of the underlying peptide and iii) the current FDR statistics for 

peptide/protein identification do not translate well to variant calling on the peptide level. As a result, 

random matches can and will frequently occur raising substantial concern about part of the current 

proteogenomic literature (Nesvizhskii 2014). When searching our proteomic data against 

concatenated sequences obtained from the WES data, Ensemble and UniProt and requiring an 

identification by both Mascot and Andromeda as well as a number of further criteria (for details see 

methods), we identified 1,942 candidate peptides mapping to 724 of the 9,848 (non-canonical) 
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exome variants (7.4%; 400 heterozygous and 324 homozygous cases). These peptide variants are 

all missense mutations (Table EV6). For 41% of the heterozygous cases (165 out of 400), we 

obtained peptide level evidence for the canonical and alternative variant, while for the remaining 

cases, we only identified the alternative variant (235). For validation, candidate peptide spectra 

were compared to those of synthetic reference standards (Zolg et al. 2017). To this end, we 

attempted the synthesis of reference peptides for all 724 alternative variants and obtained such 

peptides for 574 cases. Automated spectral angle analysis (Toprak et al. 2014) provided evidence 

for 238 variants (SA ≥0.7, Mascot ion score ≥50) including 109 heterozygous and 129 homozygous 

cases (Fig 4B; Table EV6). Manual inspection of the above 724 candidate peptides identified 204 

unique alternative variant sites of which 158 were also found in the SA analysis. The variants that 

passed our (conservative) filtering criteria merely represent 2.4% of all variants detected at the 

exome level, 6.7% of the variants detected at the mRNA level and 32% of the candidates suggested 

by database searching. When tracing the confidently identified peptide variants back to the 

proteomic workflow, it became clear that the vast majority of all variants are represented by peptides 

generated by Trypsin, LysC and ArgC cleavage and using the standard HCD fragmentation 

technique. In addition, the confirmation rate (using synthetic peptide reference standards,) for tryptic 

peptides was also much higher than that of the other enzymes (Fig 4C; synthetic peptides were not 

measured by EThcD/ETD). This can be attributed to the fact that trypsin-like peptides generally 

show well predictable fragmentation behaviour and that most bioinformatic tools are optimized for 

use with data generated from tryptic digestion of proteomes. While the above shows that some of 

the variants detected on the nucleotide level could be confirmed at the protein level, the overall 

success rate was low. We note here that this was not due to lack of expression of the underlying 

gene because the proteomic data covers 76 % of all expressed tonsil genes (8,869 of 11,746 

mRNA-Seq genes), 47% (2,615 of 5,527) of all the genes  for which variants were detected by 

exome sequencing and 75% (1,822 of 2,428) by RNA-Seq respectively (further discussed below). 

Instead, the main reasons for poor coverage of variants at the proteome level are the still limited 

sensitivity and dynamic range of detection, limited peptide coverage of a protein and the insufficient 

coverage of amino acids in peptide mass spectra along with shortcomings in peptide identification 

algorithms. 

Recent research showed that there is more heterogeneity in gene models than previously 

anticipated, as a result of e. g. alternative translation initiation sites (aTIS) (Na et al. 2018) and there 

is an on-going debate in the community whether or not long non-coding RNAs (lncRNAs) can be 

translated into proteins (Chen et al. 2017). Ribosomal profiling showed that thousands of potential 

aTIS may exist and that ~40% of all lncRNAs can at least engage the ribosome (Kearse and Wilusz 

2017). In order to explore if our resource can provide protein evidence for such cases, we used a 

database search strategy (Marx et al. 2017) in which we searched all LC-MS/MS files against 
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combined sequences from i) a curated lncRNA database (GENCODE v.25), ii) a database 

containing protein sequences derived from alternative translation initiation sites (see methods), iii) 

GENCODE, iv) UniProt and v) the tissue-specific RNA-Seq data. Any potential lncRNA or aTIS 

peptide was required to originate from just one single sequence collection only (i.e. lncRNA or aTIS 

and no other database), be identified both by Mascot and Andromeda, to fulfil stringent score cut-

offs (see methods), to be backed up by the expression of the underlying transcript in at least one of 

the tissues (FPKM >1) and to fail a BLAST search against UniProt to exclude obvious alternative 

explanations. This approach yielded 5 lncRNA and 344 aTIS peptides, respectively. Because of the 

size of the searched database (aTIS: 474,991 entries; lncRNA: 29,524 entries) there was still ample 

opportunity to generate false positives. Interestingly, not a single lncRNA peptide could be 

substantiated by synthetic peptides indicating that lncRNA are rarely if at all translated (Bánfai et al. 

2012). To validate the candidate aTIS peptides, we compared spectra of endogenous and synthetic 

peptide reference standards as described above. Only 66 aTIS peptides (including 8 N-terminally 

acetylated peptides) covering 53 genes and 57 alternative translation start sites could be confirmed 

in this way (Table EV6). Manual spectrum interpretation yielded 96 aTIS peptides (overlap of 45 to 

the SA analysis) mapping to 76 genes and 81 alternative translation start sites. In total, we 

confirmed 117 aTIS peptides mapping to 89 genes and 99 alternative translation start sites, which 

include 14 peptides from 12 genes reported in previous studies, for example FXR2, RPA1 and 

CDV3 (Table EV6) (Kim et al. 2014; Branca et al. 2014). Fifty five of the above aTIS peptides 

represent 5’ N-terminal extensions of the original gene, 32 peptides represent novel (acetylated) N-

termini downstream of the canonical start site, 17 represent frame-shifts potentially leading to an 

entirely new sequence, 5 peptides likely represent upstream ORFs (uORF) with a stop codon before 

the canonical start site and 8 peptides with mixed annotation (Fig 4D, left panel). The mirror mass 

spectra in Fig 4E for the endogenous (top) and synthetic (bottom) peptide 

(ac)ATTQISKDELDELKEAFAK from the actin binding protein plastin-3 (PLS3) provides an example 

for the detection of a novel N-terminal sequence. For 36 of the peptides representing aTIS, we 

identified the exact start site as the peptide was N-terminally acetylated (Fig 4D, right panel). Among 

these, 18 contained an AUG start codon (Met), 8 contained a GUG start codon (Val), 5 a UUG and 

4 a CUG start site (both Leu), and one GCG start site (Ala). This confirms the emerging notion that 

non-AUG translation initiation events are not as infrequent as previously thought and may represent 

a mechanism to regulate protein expression (Kearse and Wilusz 2017). This study only identified a 

relatively small number of aTIS events compared to others (Na et al. 2018) implying that enrichment 

of N-terminal peptides (Gevaert et al. 2003; Kleifeld et al. 2010) is a more efficient way to detect 

such events systematically but also pointing out that the previous literature may not be free of a 

substantial number of mistakes.  
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An important learning from the present systematic analysis of transcriptomes and proteomes of 

human tissues is that identifying protein variants or novel coding sequences using proteomics is 

possible but remains very challenging. There were large discrepancies between the results of the 

two database search engines used (Mascot and Andromeda) (Fig EV3F-G, Appendix Fig S4 and 

S5) implying that the underlying scoring schemes are not optimized yet for the detection of variants 

and novel coding regions. At present, synthetic peptide reference spectra appear to be mandatory 

for validation and manual spectra comparisons still have a role to play (Lee et al. 2018). Neither 

approach has been followed systematically in the literature so far and, obviously, they are also not 

without error but clearly more powerful than purely relying on statistical criteria with largely arbitrary 

cut-offs alone (Nesvizhskii 2014; Dimitrakopoulos et al. 2016; Lee et al. 2018). It appears that even 

with the latest proteomic technology, proteogenomics currently offers rather small returns on very 

significant efforts in data generation, analysis and validation and that large improvements will be 

required to change this situation substantially in the future. It is possible that our filtering criteria 

were perhaps too strong so that further variants may be present in the data (see Table EV6, all 

mirror mass spectra are available in proteomeXchange). However, no convincing false discovery 

rate estimation has been published yet for spectral angle analysis (let alone for manual data 

analysis), hence we decided to be conservative. Still, the resource presented in this work should be 

of considerable value for scientists wishing to develop more sophisticated approaches for 

proteogenomics in the future and the authors think that there is considerable future potential in the 

use of synthetic peptide references in conjunction with spectral angle analysis particularly for the 

many chimeric spectra present in classical data dependent proteomic datasets but more so for the 

rising use of data independent data acquisition regimes.  
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Materials and Methods 

Human tissue specimen 

The 29 human tissue samples used for mRNA and protein expression analysis were obtained from 

the Department of Pathology, Uppsala University Hospital, Uppsala, Sweden as part of the sample 

collection governed by the Uppsala Biobank (www.uppsalabiobank.uu.se/en/). All tissue samples 

were collected and handled using standards developed in the Human Protein Atlas 

(www.proteinatlas.org) and in accordance with Swedish laws and regulations. Tissue samples were 

anonymised in agreement with approval and advisory reports from the Uppsala Ethical Review 

Board (References # 2002-577, 2005-338 and 2007-159 (protein) and # 2011-473 (RNA)). The 

need for informed consent was waived by the ethics committee. The list of all tissues along with 

corresponding sample preparation and measurement information is provided in Table EV1. 

RNA sequencing  

Procedures for RNA extraction from tissues, library preparation, and sequencing have already been 

described (Uhlén et al. 2015). Briefly, pieces of frozen human tissue were embedded in Optimal 

Cutting Temperature (OCT) compound and stored at -80°C. Cryosections were cut and stained with 

hematoxylin-eosin for microscopical confirmation of tissue quality and proper representativity. 5-10 

cryosections (10 µm) were transferred to RNAse free tubes for extraction of total RNA using the 

RNeasy Mini Kit (Qiagen). RNA quality was analyzed with an Agilent 2100 Bioanalyzer system with 

the RNA 6000 Nano LabChip Kit (Agilent Biotechnologies). Only samples of high-quality RNA (RNA 

Integrity Number ≥7.5) were used for mRNA sample preparation and sequencing. The mRNA 

strands were fragmented using Fragmentation Buffer (Illumina) and the templates were used to 

construct cDNA libraries using a TruSeq RNA Sample Prep Kit (Illumina). Gene expression was 

assessed by deep sequencing of cDNA on Illumina HiSeq HiSeq 2000/2500 system (Illumina) for 

paired-end reads with a read length of 2 × 100 bases. RNA sequencing data was aligned against 

the human reference genome (GRCh38, v83) using Tophat2.0.8b. FPKM (fragments per kilobase of 

exon model per million mapped reads) values were calculated using Cufflinks v2.1.1 as a proxy for 

transcript expression level. The FPKM values of each gene were summed up in an individual 

sample and median normalization was applied to evaluate genes expression levels between 

tissues. A cutoff value of 1 FPKM was used as a lower limit for detection across all tissues. 

Sample preparation and off-line hydrophilic strong anion chromatography (hSAX) 

Fresh frozen human tissue samples (parallel cryosections cut simultaneously as those used for 

RNA extraction, described above) were prepared for LC-MS/MS as described previously (Ruprecht 

et al. 2017). Briefly, tissue slices were homogenized in lysis buffer (50 mM Tris/HCl, pH 7.6, 8 M 

urea, 10 mM tris(2-carboxyethyl)phosphin hydrochloride, 40 mM chloroacetamide, protease and 
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phosphatase inhibitors) by bead milling (Precellys 24, Bertin Instruments, France; 5,500 rpm,2 × 20 

s, 10 s pause). Protein content was determined using the Bradford method (Coomassie (Bradford) 

Protein Assay Kit, Thermo Scientific) and 300 µg of the protein extract were used for in-solution 

digestion with trypsin. For this, the sample was diluted with 50 mM Tris/HCl to a final urea 

concentration of 1.6 M, and trypsin was added at a 50:1 (w/w) protein to protease ratio. After 4 

hours of digestion at 37°C, another aliquot of trypsin was added to reach a final 25:1 (w/w) protein 

to protease ratio and the sample was incubated overnight at 37°C. In addition, the tonsil sample 

was subjected digestion using LysC, ArgC, GluC, AspN, LysN and Chymotrypsin (LysC were from 

Wako, Japan; the other proteases were from Promega, USA). 300 µg of the protein extract 

prepared as described above were applied in each digestion. The buffers were prepared according 

to the manufacturer's protocols. The resulting peptides were desalted and concentrated on C18 

StageTips (Rappsilber, Mann, and Ishihama 2007) and fractionated via hSAX off-line 

chromatography exactly as described previously (Ruprecht et al. 2017). The details of digestion for 

each tissue are given in the Appendix Table S1. 

Online liquid chromatography tandem mass spectrometry (LC-MS/MS) 

Quantitative label-free LC-MS/MS analysis was performed using a Q Exactive Plus mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a nanoflow LC 

system (NanoLC-Ultra 1D+, Eksigent, USA). Peptides were delivered to a trap column (0.1 × 2 cm, 

packed with 5 μm Reprosil PUR AQ, Dr. Maisch GmbH, Germany) at a flow rate of 5 μl/min for 10 

min in 100% solvent A (0.1% formic acid, FA, in HPLC-grade water). After 10 min of loading and 

washing, peptides were transferred to a 40 cm (75-μm inner diameter) analytical column, packed 

with 3 μm, ReproSil-Pur C18-AQ, Dr. Maisch GmbH, Germany) and separated using a 110-min 

gradient from 2% to 32% solvent B (0.1% FA, 5% dimethyl sulfoxide in acetonitrile, ACN) at a flow 

rate of 300 nL/min. Full scans (m/z 360-1,300) were acquired at a resolution of 70,000 using an 

AGC target value of 3e6 and a maximum ion injection time of 100 ms. Internal calibration was 

performed using the signal of a DMSO cluster as lock mass (Hahne et al. 2013). Tandem mass 

spectra were generated for up to 20 precursors by higher energy collisional dissociation (HCD) 

using a normalized collision energy of 25%. The dynamic exclusion was set to 35 seconds. 

Fragment ions were detected at a resolution of 17,500 using an AGC target value of 1e5 and a 

maximum ion injection time of 50 ms.  

LysC, ArgC, GluC, AspN, LysN and Chymotrypsin digested samples were measured on a Q 

Exactive HF mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a 

nanoflow LC system (NanoLC-Ultra 1D+, Eksigent, USA). Full scan MS spectra were acquired at 

60,000 resolution and a maximum ion injection time of 25 ms. Tandem mass spectra were 

generated for up to 15 peptide precursors and fragments detected at a resolution of 15,000. The 
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MS2 AGC target value was set to 2e5 with a maximum ion injection time of 100 ms.  The other 

settings were the same as for the Q Exactive Plus. 

Tryptic peptides from the tonsil sample were also analysed on an Orbitrap Fusion Lumos Mass 

Spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled on-line to a nanoflow LC 

system (UltiMate™ 3000 RSLC nano System, Thermo Fisher Scientific) using CID, and EThcD/ETD 

fragmentation. Full MS scans were performed at a resolution of 60,000, a maximum injection time of 

50 ms and an AGC target value is 5e5, followed by MS2 events with a duty cycle of 2s for the most 

intense precursors and a dynamic exclusion set to 60 seconds. CID scans were acquired with 35% 

normalized collision energy and Orbitrap readout (1e5 AGC target, 0.25 activation Q, 20 ms 

maximum injection time, inject ions for all available parallelizable time enabled, 1.3 m/z isolation 

width). EThcD/ETD scans used charge-dependent parameters: 2+ precursor ions were fragmented 

by EThcD with 28% normalized collision energy and 3+ to 7+ precursor ions were fragmented by 

ETD. The MS2 scans were read out in the Orbitrap (1e5 AGC target, 0.25 activation Q, and 100 ms 

maximum injection time). 

MS Data processing and database searching 

For peptide and protein identification and label free quantification, the MaxQuant suite of tools 

version 1.5.3.30 was used. The spectra were searched against the Ensembl human proteome 

database (release-83, GRCh38) with carbamidomethyl (C) specified as a fixed modification. 

Oxidation (M) and Acetylation (Protein N-Term) were considered as variable modifications. 

Trypsin/P was specified as the proteolytic enzyme with 2 maximum missed cleavages. The match 

between runs function was enabled, with match time window set to 0.7 min and an alignment time 

window of 20 min. The FDR was set to 1% at both PSM and protein level. LysC/P, ArgC and LysN 

were specified with 2 maximum missed cleavages. Searches for GluC and AspN peptides allowed 3 

missed cleavages. Chymotrypsin (C terminal of F, Y, L, W, or M) was allowed with at most 4 missed 

cleavages. Label free quantification was performed using the iBAQ approach (Schwanhäusser et al. 

2011) . For non-tryptic peptides and single tissue analysis, matching data between fractions was 

disabled.  

Quantitative analysis of transcriptomes and proteomes 

The quantitative analyses of proteomic and transcriptomic data were performed at the gene level. 

To evaluate gene expression level, the total abundance of each gene in all individual sample was 

used. The data was log transformed (base 10) and normalized using median centering across 

tissues. The genes were classified into ‘Tissue enriched’, ‘Group enriched’, ‘Tissue enhanced’, 

‘Expressed in all’ and ‘Mixed’ as described by Uhlén et al (Uhlén et al. 2015, 2016). Gene ontology 

analysis of genes only identified in transcriptomes and proteomes, and the elevated proteins 
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expressed in each tissue was performed using the R package ‘clusterProfiler’ and p-values were 

adjusted according to the method by Benjamini-Hochberg (BH)(Yu et al. 2012). The resulting 

(redundant) gene ontology terms (biology process) of elevated genes were removed using the 

‘simplify’ function in clusterProfiler based on GOSemSim (Yu et al. 2010). The list of 1,158 

mitochondrial genes was obtained from MitoCarta 2.0 (Calvo, Clauser, and Mootha 2016). Essential 

genes (n=583) were assembled from three human essential genes studies using CRISPR-Cas9 and 

retroviral gene-trap genetic screens (T. Wang et al. 2015; Hart et al. 2015; Blomen et al. 2015). 

Diseases related genes (n=3,896) and kinase genes (n=504) were obtained from Uniprot. Cancer 

genes (n=719) were downloaded from Cosmic (Futreal et al. 2004). Drug target genes (n=784) were 

obtained from Drugbank (Wishart et al. 2018) and restricted to proteins directly related to the 

mechanism of action for at least one of the associated drugs. GPCR genes (n=1,410) were obtained 

from HGNC and phosphatase genes (n=238) were from DEPOD (Duan, Li, and Köhn 2015). 

Transcription factor genes (IF, n=1,639) were obtained from the HumanTFs collection (Lambert et 

al. 2018).  

The Spearman correlation coefficient was used for correlating transcriptome and proteome levels of 

single tissues. The slopes were estimated by ranged major-axis (RMA) regression, which allows 

errors in both variables and is symmetric, using the R package ‘lmodel2’ (Csárdi et al. 2015). The 

protein-mRNA Spearman correlation coefficients of 9,485 genes which were at least expressed in 

10 tissues at both mRNA and protein level were calculated. Based on the correlation coefficients, 

KEGG pathway enrichment analysis was conducted using the Kolmogorov-Smirnov test using the R 

package ‘fgsea’. The p-value of each pathway was adjusted by the Benjamini-Hochberg method 

and the cutoff significance was set to 0.05. The Co-inertia analysis (CIA) was performed using the 

‘cia’ function in the ‘made4’ R-package (Culhane et al. 2005). 9,485 genes which were expressed in 

at least 10 tissues at both mRNA and protein level were considered and the remaining missing 

values were replaced with a positive value 1×104 times smaller than the lowest expression value in 

each dataset.  

Construction of sample-specific protein sequence databases from RNA-Seq data 

RNA sequencing data was aligned to the human reference genome (GRCh38, v83) using 

Tophat2.0.8b. FPKM values were calculated using Cufflinks v2.1.1 as a proxy for transcript 

expression level. Rvboost was used for variant calling. All transcripts with FPKM>1 were translated 

into protein sequences and included in the search database. Each tissue was searched against its 

matched RNA-Seq database using MaxQuant as described above. The match between runs 

function was disabled. The MaxQuant output data were used for the isoform analysis.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 27, 2018. ; https://doi.org/10.1101/357137doi: bioRxiv preprint 

https://paperpile.com/c/ffsVtv/78Nv
https://paperpile.com/c/ffsVtv/0Cwp
https://paperpile.com/c/ffsVtv/GLma
https://paperpile.com/c/ffsVtv/qFQd+ybUp+gSka
https://paperpile.com/c/ffsVtv/tIew
https://paperpile.com/c/ffsVtv/F2f6
https://paperpile.com/c/ffsVtv/OKig
https://paperpile.com/c/ffsVtv/12wT
https://paperpile.com/c/ffsVtv/12wT
https://paperpile.com/c/ffsVtv/Nqv7
https://paperpile.com/c/ffsVtv/WbiJ
https://doi.org/10.1101/357137


19 

 

Exome sequencing and variant calling 

The exome of tonsil tissue was enriched using the Agilent SureSelectXT kit (v5) and sequenced on 

an Illumina HiSeq4000 sequencer. The raw data was aligned to the human reference genome 

(hg38) using bwa (v0.7.12) and duplicate reads were marked using Picard Tools (v2.4.1). Genomic 

variants were called and filtered using the GATK (v.3.6) HaplotypeCaller and VariantFitration 

modules, respectively, according to the best practice guide 

(https://software.broadinstitute.org/gatk/best-practices/). Furthermore, variants at sites with a read 

depth <10x were removed. We also removed any I/L variation as these cannot be distinguished by 

mass spectrometry. The resulting variants were annotated using the Ensembl Variant Effect 

Predictor (v85). The RNA sequencing data was aligned to the human reference genome (hg38) 

using STAR aligner (v2.5.2) and duplicate reads were marked using Picard Tools (v2.4.1). Variants 

were called using the GATK (v.3.6) HaplotypeCaller module, according to the aforementioned best 

practice guide. 

A variant fasta formatted database was created by the ‘customProDB’ package from the exomic 

variants (X. Wang and Zhang 2013). Mascot searching of the ultra-deep mass spectrometry data 

was performed against this database together with protein databases from UniProt and Ensembl 

using the following parameters: peptide mass tolerance set at 10 p.p.m., MS/MS tolerance set at 

0.05 Da, carbamidomethylation of cysteine defined as fixed modification, oxidation of methionine 

and acetylation defined as variable modification. Trypsin, LysC, ArgC and LysN digested peptides 

allowed up to 2 missed cleavages. AspN digested peptides with up to 3 cleavages were considered. 

GluC (V8-DE in Mascot search engine) and chymotrypsin digested peptides were allowed to have a 

maximum of 3 missed cleavages. Resulting PSMs were analysed using Percolator (v3.01) and an 

overall FDR cut-off of 1% was applied.  

A custom python script was used to identify PSMs covering variant sites and showing either the 

variant or the canonical genotype. All initial candidate variant peptides had meet the following 

criteria: i) Mascot ion scores of at least 25; ii) a Mascot delta score of at least 10; iii) the peptide 

must only map to the variant database; iv) the peptide must map to a single genomic position only; 

v) for missense variants, the peptide must either show the variant amino acid or it must be cleaved 

according to a novel protease cleavage site arising from the variant; vi) for nonsense variants, the 

peptide must end at the novel C-terminus. For canonical genotypes, the same criteria were applied 

except: i) at least one protein the peptide maps to must not be from the variant database; ii) for 

missense variants, the peptide must show the wild-type amino acid; iii) for nonsense variants, the 

end of the peptide must be after the novel C-terminus (after nonsense variant sites). The resulting 

candidate peptides were mapped against UniProt using BLAST to exclude other obvious 

explanations. To further consolidate the variants peptides and to reduce false positives, peptide 

identification by MaxQuant was performed in parallel. Using the customized exomic variant 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 27, 2018. ; https://doi.org/10.1101/357137doi: bioRxiv preprint 

https://paperpile.com/c/ffsVtv/e9sY
https://doi.org/10.1101/357137


20 

 

database with the same parameters used in Ensembl database searches described above. The list 

of candidate variant peptides for the spectra angle analysis required the identification by both 

Mascot and MaxQuant.  

Identification of peptides translated from non-coding regions 

A database of products from possible alternative translation initiation sites (aTIS) was constructed 

by searching the 5’ UTR of GENCODE transcripts (v25) for putative alternative start codons and in-

silico translating these “novel coding sequences”. This resulted in 474,991 aTIS “proteins” > 6 

amino acids. The lncRNAs products databases was generated by three-frame-translating the 

GENCODE (v25) lncRNA database, resulting in 29,524 sequences. The standard 29 tissue 

proteomics data sets were supplemented with two tissues for which only proteome data was 

available (bone marrow, pituitary gland), in total 48 samples (including replicates of some organs) 

was searched against concatenated sequence collections comprising the aTIS and lncRNA 

databases, GENCODE (v25), UniProt (downloaded 03. February, 2017) and sample specific RNA-

Seq based databases using Mascot to identify peptides from known proteins. The search 

parameters were the same as described for the exome variant peptide identification. The resulting 

PSMs were processed using Percolator and an overall FDR cut-off of 1% was applied. A custom 

python script was used to identify PSMs from putative translated lncRNAs or aTIS the database. 

Candidate peptides had to meet the following criteria: i) the PSM must map to a single database 

only, i.e. aTIS or lncRNA but no any other; ii) the Mascot score must be at least 25; iii) the Mascot 

delta score must be at least 10; iv) the original underlying transcript must be expressed in at least 

one of the tissues (RNA-Seq FPKM >1). The resulting PSMs were then mapped against UniProt 

using BLAST to exclude other explanations for the novel peptide (e.g. peptides arising from a novel 

tryptic cleavage site due to a genomic variant). To consolidate the list of candidate aTIS and 

lncRNA peptides and to reduce false positives, the raw MS data was also searched by MaxQuant 

(using the same parameters as described for searches using Ensembl). Only those peptides were 

allowed to pass to the stage of spectral contrast angle analysis if they were identified by both 

Mascot and MaxQuant. 

Validation of variant and non-coding peptides by synthetic reference peptides 

All peptides which passed the filter criteria for Mascot described above were synthesized at JPT 

Berlin using Fmoc-based solid-phase synthesis. The details of peptide synthesis, sample 

preparation and MS measurement were as described (Zolg et al. 2017) . Normalized Spectral 

contrast angle (SA) analysis was performed to compare endogenous and synthetic peptides using 

in-house Python scripts (Toprak et al. 2014). Candidates passed if i) they showed SA values of ≥0.7 

(Pearson of ~0.9), ii) the endogenous peptide had a Mascot score of 50 or higher or iii) manual 
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spectrum inspection substantiated the candidate peptide sequence assignment. In parallel, the 

tandem MS spectra of all candidate peptides were also inspected manually. 

Data availability 

Transcriptome sequencing and quantification data are available at 

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/.The raw mass spectrometric data and the 

MaxQuant result files are available from PRIDE (accession number: PXD010154).  
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Main figure legends 

Figure 1 | Comprehensive proteomic and transcriptomic analysis of 29 human tissues from 

healthy donors. (A) Body map of analysed tissues. (B) Number of genes detected on protein and 

mRNA level in each tissue. (C) Abundance distribution of all transcripts detected in all tissues 

(grey); the fraction of detected proteins is shown in blue and the fraction of transcripts for which no 

protein was detected is shown in orange. (D) Distribution of selected functional classes of 

transcripts and proteins across the expression categories shown in panel B. Colors are the same as 

in panel B. 

Figure 2 | Analysis of protein and transcript expression levels within and across tissues. (A) 

Distribution of global transcript and protein abundance in all tissues. It is apparent that the dynamic 

range of protein expression vastly exceeds that of mRNA expression. (B) Protein to mRNA 

abundance plot for brain tissue. The slope of the regression line indicates that high abundance 

mRNAs give rise to more protein copies per mRNA than low abundance mRNAs. (C) Ranked 

abundance plot of proteins and transcripts in human heart. While the 10 most abundant transcripts 

cover almost 70% of all transcripts in this tissue, the corresponding proteins only represent about 

20% of the total protein. (D) Analysis of the number of genes that are shared among the 100 most 

abundant transcripts and proteins. Regardless of the tissue, the fraction of shared genes rarely 

exceeds 20%. (E) Correlation analysis of the expression of proteins across all tissues. Almost 90% 

of all proteins show a positive correlation across tissues. (F) Examples for proteins that show high 

(SYK, left panel) or no (EIF4A3, right panel) correlation of protein expression across tissues. While 

the former indicates that different tissues express different quantities of SYK, EIF4A3 expression 

appears to be similar in all tissues. 

Figure 3 | Correlation analysis of protein and transcript expression levels. (A) Global 

correlation analysis of proteomes and transcriptomes across human tissues. It is apparent that 

proteomes correlate stronger between tissues than transcriptomes. (B) Co-inertia analysis of 

transcriptome and proteome levels of all 29 tissues (arrow base: transcriptome; arrow head: 

proteome) showing that some tissues show similarities in transcript and protein expression profiles. 

(C) Average cellular compositions of selected tissues showing that the similarities found in panel B 

are largely driven by similarities in cell types. 

Figure 4 | Proteogenomics exploration for protein-level detection of isoforms, single amino 

acid variants and alternative translation sites. (A) Searching the tonsil proteomic data (trypsin 

alone or all enzymes) against a tissue-specific sequence database constructed from RNA-Seq data 

drastically reduces the number of individual protein sequences in protein groups compared to 

searches against Ensembl, allowing for the more efficient detection of protein isoforms. (B) Number 

of single amino acid variants detected by whole exome sequences, RNA-Seq, mass spectrometry 
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and validation using synthetic peptide spectra comparisons. It is apparent that only a very small 

fraction of all variants detected at the DNA or RNA level can be detected at the proteome level. (C) 

Analysis of which proteomic workflow contributed to the confident detection of single amino acid 

variants. (D) Results of the detection of non-canonical coding regions using proteomics data (left 

panel) and the alternative start codon identified by acetylated N-terminal peptides (right panel). The 

majority of cases are N-terminal extensions of annotated genes. All but one of the detected 

alternative translation start sites correspond to point mutations of the first base of the classical AUG 

codon. (E) Validation of a novel translation start site for the protein PLS3. The upper panel shows 

the novel translation site position within the amino acid sequence context and the lower panel 

shows the tandem mass spectra of the endogenous N-terminally acetylated peptide and the 

corresponding synthetic peptide spectrum.  

Expanded view figure legends 

Figure EV1 | Further characterization of human proteomes and transriptomes. (A) Number of 

identified protein groups in all 29 tissues. (B) Number of genes in all tissues that were detected at 

the transcript but not at the protein level. (C) Comparison of genes covered by either transcripts or 

proteins. (D) Abundance distribution of all proteins detected in human brain (grey). Proteins in blue 

are expressed in all 29 tissues and proteins in orange show elevated expression in brain. (E) 

Clustering of gene ontology terms (biological process) for proteins and transcripts that show the 

most divergent expression across all tissue. Boxes give examples of GO terms for four different 

tissues (appendix, brain, heart, and testis). 

Figure EV2 | Relationships between mRNA and protein expression. (A) Slopes of protein vs 

mRNA abundance plots (see main Fig 2B) for all tissues. (B) Number of genes that are shared 

among the 5,000 most abundant transcripts or proteins in all tissues. (C, D) Ranked abundance 

plots for transcripts and proteins in spleen and lung showing different characteristics in the 

abundance distributions (see also main Fig 2C and Appendix Fig S2 for all tissues). (E) Clustering 

of protein abundances across all tissues. It is apparent that many proteins have similar expression 

levels across several/many tissues. 

Figure EV3 | Proteogenomic characterization of human tissues. (A) Distribution of peptide 

sequence coverage obtained for proteins by mass spectrometry in all tissues. (B) Analysis of the 

number of isoforms detected by transcriptomics or proteomics in all tissues. (C) Distribution of 

peptide sequence coverage obtained for proteins by mass spectrometry in tonsil tissue broken 

down by protease and fragmentation method used. (D) Number of identified proteins broken down 

by protease and fragmentation method used. Proteins covered by all workflows are marked in blue. 

The line indicates the cumulative number of proteins when adding data from the individual 

workflows. (E) Same as panel D but for peptides. Peptides covered by more than one workflow are 
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marked in grey, those exclusive for one workflow are marked in orange. (F) Number of experimental 

vs synthetic peptide reference spectra comparisons for candidate aTIS peptides (only the spectra 

with highest spectral angle of each peptide was plotted) after database searching using Mascot as a 

function of the spectral angle and Pearson correlation coefficient. Dotted lines mark spectral angles 

of 0.7, 0.8 and 0.9. (G) Same as panel F but showing only candidate peptides that were identified 

by both Mascot and Andromeda. 
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Appendix Table S1 Digestion conditions for each protease 
 

Proteases Resuspensio
n 
Buffer 

Dilution 
Buffer 

Dilution 
volume 

Protein: 
enzyme 
ratio 

Temperature 
And time 

Trypsin  
(Roche) 
  

50 mM HAc 50Mm 
Tris/HCl, 
pH 7.6 

Add 4 
volume  to 
urea ~1.6M 

50 : 1, 
Add 2 
times 

37°C 
4h, then 
overnight 

LysC  
(Wako) 
  

50mM Tris-
HCl, pH 8.5 

50 mM 
Tris/HCl, 
1mM 
EDTA, pH 
8.5 

Add 8 
volume  to 
urea~0.8M 

50 : 1, 
Add 2 
times 

37°C 
4h, then 
overnight 

ArgC  
(Promega) 
  

50 mM Tris-
HCl, 5mM 
CaCl2,2mM 
EDTA ,pH 7.6 

50 mM 
Tris/HCl, 
5mM 
CaCl2,2m
M 
EDTA(pH 
7.6) 
  
10× 
activation 
buffer: 
50mM 
Tris/HCl, 
50mM 
DTT,2mM 
EDTA, pH 
7.6 

Add 8 
volume  to 
urea ~ 
0.8M, add 
activation 
buffer to a 
final 
concentratio
n of 1× 

60:1, 
Add 2 
times 

37°C 
4h, then 
overnight 

GluC 
(Promega) 
  

Double-
distilled water 

50 mM 
Tris/HCl, 
pH 7.5 

Add 8 
volume to 
urea~0.8M 

50 : 1, 
Add 2 
times 

37°C 
4h, then 
overnight 

AspN 
(Promega) 
  

Double-
distilled water 

50Mm 
Tris/HCl, 
pH 7.5 

Add 8 
volume  to 
urea~0.8M 

100 : 1, 
Add 2 
times 

37°C 
4h, then 
overnight 
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LysN 
(Promega) 
  

50mM Tris-
HCl,pH 8.0 

50Mm 
Tris/HCl,     
pH 8.0 

Add 8 
volume  
urea~0.8M 

100 : 1, 
Add 2 
times 

37°C 
4h,then 
overnight 

Chymotrypsin  
(Promega) 

1 mM HCl 50 mM 
Tris/HCl, 
10mM 
CaCl2 ,pH 
8.0 

Add 8 
volume  to 
urea~0.8M 

50:1, 
Add 2 
times 

25°C 
4h,then 
overnight 
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Appendix Figure S1 Protein to mRNA abundance plots of 29 tissues 
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Appendix Figure S2 Abundance distribution of all proteins detected in 29 tissues 
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Appendix Figure S3 Searching the proteomic data of 29 tissues against their tissue-specific 
sequence databases constructed from RNA-Seq data drastically reduces the number of individual 
protein sequences in protein groups compared to searches against Ensembl 
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Appendix Figure S4 Number of experimental vs synthetic peptide reference spectra comparisons 
for candidate SAAV peptides (only the spectra with highest spectral angle of each peptide was 
plotted) after database searching using Mascot as a function of the spectral angle and Pearson 
correlation coefficient. Dotted lines mark spectral angles of 0.7, 0.8 and 0.9. 
 

 
 
Appendix Figure S5 Number of experimental vs synthetic peptide reference spectra comparisons 
for candidate SAAV peptides identified by both Mascot and Andromeda (only the spectra with 
highest spectral angle of each peptide was plotted) as a function of the spectral angle and Pearson 
correlation coefficient. Dotted lines mark spectral contrast angles of 0.7, 0.8 and 0.9.  
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