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Abstract

In order to maximize long-term rewards, agents must balance exploitation (choosing the
option with the highest payoff) and exploration (gathering information about options that
might have higher payoffs). Although the optimal solution to this trade-off is intractable,
humans make use of two effective strategies: selectively exploring options with high uncer-
tainty (directed exploration), and increasing the randomness of their choices when they are
more uncertain (random exploration). Using a task that independently manipulates these
two forms of exploration, we show that single nucleotide polymorphisms related to dopamine
are associated with individual differences in exploration strategies. Variation in a gene linked
to prefrontal dopamine (COMT) predicted the degree of directed exploration, as well as the
overall randomness of responding. Variation in a gene linked to striatal dopamine (DARPP-
32) predicted the degree of both directed and random exploration. These findings suggest
that dopamine makes multiple contributions to exploration, depending on its afferent target.
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Introduction

Any agent seeking to maximize long-term rewards faces an exploration-exploitation dilemma:
should it exploit the option with the highest observed payoff, or should it explore other op-
tions that might yield higher payoffs? This problem is, in general, intractable, but computer
scientists have developed simple and provably effective strategies (Ghavamzadeh et al., 2015).
Most of these strategies fall into one of two classes. The first class consists of directed strate-
gies such as Upper Confidence Bound (UCB; Auer et al., 2002), which add an “uncertainty
bonus” to the value estimate of each action, selecting action at on trial t according to:

at = argmax
k

Qt(k) + Ut(k), (1)

where Ut(k) is the uncertainty bonus. In one version of this model previously used to study
humans (Gershman, 2018a), the uncertainty bonus is proportional to the posterior standard
deviation σt(k) (Srinivas et al., 2010), where the posterior over values is updated using Bayes’
rule (see Materials and Methods). The second class consists of random strategies, such as
Thompson Sampling (Thompson, 1933), which increase randomness when value estimates
are uncertain. Specifically, Thompson sampling draws random values from the posterior
and then chooses greedily with respect to these random values. Both directed and random
strategies formalize the idea that an agent should gather information about actions when
it is uncertain about them, in order to more quickly discover which actions are the most
rewarding.

Humans appear to use both directed and random exploration strategies (Gershman,
2018a; Krueger et al., 2017; Wilson et al., 2014). These strategies appear to rely on different
neural systems (Warren et al., 2017; Zajkowski et al., 2017), follow different developmental
trajectories (Schulz et al., 2018; Somerville et al., 2017), and can be independently manip-
ulated (Gershman, 2018b). An important gap in this emerging picture concerns the role of
the neuromodulator dopamine, which plays a central role in reinforcement learning theories
(Glimcher, 2011). Some theories hypothesize that dopamine responses to novelty reflect an
uncertainty bonus consistent with directed exploration strategies (Kakade and Dayan, 2002),
whereas other theories hypothesize that dopamine controls the degree of random exploration
through gain modulation of striatal neurons (Friston et al., 2012; Humphries et al., 2012).
These two roles are not intrinsically in conflict, but no research has yet tried to disentangle
them empirically.

We pursue this question by studying single nucleotide genetic polymorphisms related
to dopamine function. A polymorphism in the gene encoding catechol-O-methyltransferase
(COMT), an enzyme that breaks down dopamine, has been shown to have a relatively
selective effect on dopamine transmission in prefrontal cortex (Slifstein et al., 2008). A
previous study by Frank et al. (2009) found that individuals with the methionine-encoding
allele, putatively associated with higher prefrontal dopamine levels, exhibited greater levels
of directed exploration. However, this study did not try to disentangle directed and random
exploration strategies, and its experimental design was not ideal for this purpose.

In this paper, we use a two-armed bandit task specifically designed to disentangle directed
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and random exploration strategies (Gershman, 2018b). Subjects receive information about
the riskiness of each arm; a “risky” arm pays off stochastically, whereas a “safe” arm pays
off deterministically (Figure 1). By allowing each arm to be either risky or safe in a block of
trials, the design allows us to separate the effects of directed and random exploration (Figure
2). Because directed exploration is based on the addition of uncertainty bonuses, the critical
variable is the relative uncertainty between the two arms. Thus, we can isolate the effect of
directed exploration by comparing trials in which one option is risky and the other is safe.
The uncertainty bonus accruing to the risky option will cause choice probability, plotted as
a function of the difference in value estimates between the two arms, to shift its intercept.
In contrast, random exploration is based on increasing stochasticity in proportion to total
uncertainty across the arms. This will manifest as a slope change in the choice probability
function, without altering the intercept.

We leverage this task to re-examine the role of COMT in different exploration strategies.
Although the study of Frank and colleagues (Frank et al., 2009) suggested that COMT me-
diates directed exploration, another prominent theory of COMT suggests that it controls the
gain of prefrontal neurons (Durstewitz and Seamans, 2008), which would lend naturally lend
itself to the modulation of random exploration. Thus, prior work indicates the plausibility
of COMT involvement in both directed and random exploration.

In addition to COMT, our study also examines a polymorphism in the gene encoding
the DARPP-32 phosphoprotein, which controls the excitability and plasticity of dopamine
neurons in the striatum (Fienberg et al., 1998). Individuals with two copies of the T allele
have greater DARPP-32 mRNA expression in striatum, which has been linked to differences
in learning from rewards, but not to differences in exploration strategy (Frank et al., 2009).
Based on biophysical modeling of striatal neurons (Humphries et al., 2012), we hypothesized
that DARPP-32 would play a role in random exploration. On the other hand, pharmaco-
logical (Stopper et al., 2013) and electrophysiological (Naudé et al., 2018) experiments have
suggested that striatal dopamine transmission mediates a bias towards risky choice, consis-
tent with an effect on directed exploration. Thus, DARPP-32, like COMT, could plausibly
be involved in both directed and random exploration.

Results

We analyzed the choice behavior of 116 individuals participating in the risky-safe two-armed
bandit described above (see Materials and Methods for more details), using mixed-effects
probit regression. We first sought to replicate whether the results of the previous study
using this task (Gershman, 2018b). Consistent with that study, we found a significant
effect of the relative uncertainty manipulation on the intercept parameter [RS vs. SR,
F (1, 34752) = 40.46, p < 0.001], but not on the slope parameter (p = 0.08), and a significant
effect of the total uncertainty manipulation on the slope parameter [SS vs. RR, F (1, 34752) =
71.65, p < 0.001], but not on the intercept parameter (p = 0.25). Thus, our results confirm
the theoretical predictions of a hybrid model (Gershman, 2018b) in which manipulating
relative uncertainty affects directed exploration, while manipulating total uncertainty affects
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Figure 1: Task design. (Left) On each trial, subjects choose between two options and
receive reward feedback in the form of points. Safe options are denoted by “S” and risky
options are denoted by “R.” On each block, one or both of the options may be safe or risky.
(Right) The rewards for risky options are drawn from a Gaussian distribution that remains
constant during each block. The rewards for safe options are deterministic. Both the mean
for the risky option and the reward value of the safe option are drawn from a zero-mean
Gaussian distribution that is resampled at each block transition.

random exploration.
We next asked how genetic variation in dopamine neuromodulation affected the different

exploration strategies, using the genotype clusters from a previous study (Frank et al., 2009).
As shown in Figure 3, variation in COMT had two distinct effects. First, subjects with the
Met allele (associated with higher levels of prefrontal dopamine) showed a larger effect of the
relative uncertainty manipulation on the intercept parameter [F (1, 34744) = 8.06, p < 0.005].
In other words, subjects with putatively higher levels of prefrontal dopamine exhibited a di-
rected exploration strategy that was more sensitive to the relative uncertainty manipulation,
a pattern that can be seen visually in Figure 4 (top panels). We did not find a signifi-
cant interaction between COMT and total uncertainty for the slope parameter (p = 0.37),
indicating that COMT did not influence the degree of random exploration.

In addition to its effect on directed exploration, variation in COMT was also associated
with an overall change in slope across experimental conditions. Specifically, carriers of the
Met allele had a lower slope compared to Val/Val carriers, indicating that choice was more
random (independent of relative or total uncertainty) for subjects with putatively higher
levels of prefrontal dopamine. Note that we reserve the term “random exploration” to refer
to the effect of total uncertainty on choice randomness, which is distinct from the overall
randomness across conditions, akin to what is captured by the inverse temperature in a
standard softmax policy. Thus, Met carriers were overall more random without modulating
their randomness as a function of total uncertainty.

Variation in DARPP-32 also had two distinct effects (Figure 3). First, there was a
significant interaction between genotype cluster and the total uncertainty manipulation for
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Figure 2: Choice probability functions. (A) Illustration of how the probability of choos-
ing option 1 changes as a function of the experimental condition and form of uncertainty. V
represents the difference between the expected value of option 1 and the expected value of
option 2. (B) Empirical choice probability functions. Lines show probit model fits. Error
bars denote within-subject standard error of the mean.

the slope parameter [F (1, 34744) = 21.33, p < 0.0001], such that T/T carriers (associated
with higher striatal D1 transmission) had a higher difference in slope (less randomness)
between the SS and RR conditions, a finding confirmed visually in the choice probability
functions (Figure 5). As shown in Figure 3, this was primarily driven by higher slope in the
SS condition for T/T carriers.

Second, there was a significant interaction between genotype cluster and the relative
uncertainty manipulation for the intercept parameter [F (1, 34744) = 5.24, p < 0.05], such
that T/T carriers showed a reduced effect of relative uncertainty on directed exploration.
Thus, whereas putatively higher prefrontal dopamine predicted a larger “uncertainty bonus,”
this bonus was smaller for putatively higher striatal dopamine.
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Figure 3: Regression results. Slope and intercept parameter estimates broken down by
genotype cluster and experimental condition. Error bars represent standard errors.

Discussion

The findings of this study indicate that two dopaminergic genes (COMT and DARPP-32)
have multifaceted roles in the orchestration of exploration strategies. A single nucleotide
polymorphism in the COMT gene, which has been found to influence prefrontal dopamine
transmission, was associated with changes in directed exploration, such that greater puta-
tive prefrontal dopamine transmission (carriers of the Met allele) produced a larger effect
of relative uncertainty on directed exploration, consistent with the idea that COMT medi-
ates an “uncertainty bonus” for exploration (Frank et al., 2009). In addition, Met carriers
appeared to choose more randomly across all conditions (i.e., have a lower inverse tem-
perature), independent of relative and total uncertainty. By contrast, a single nucleotide
polymorphism in the DARPP-32 gene, which has been found to influence striatal dopamine
transmission, was associated with changes in both directed and random exploration: T/T ho-
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Figure 4: Choice probability functions: COMT. Choice probabilities broken down by
genotype cluster and experimental condition. Lines show probit model fits. Error bars
represent within-subject standard error of the mean.
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Figure 5: Choice probability functions: DARPP-32. Choice probabilities broken down
by genotype cluster and experimental condition. Lines show probit model fits. Error bars
represent within-subject standard error of the mean.
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mozygotes, for whom striatal dopamine transmission is putatively higher, exhibited reduced
directed exploration (a smaller uncertainty bonus) as well as reduced random exploration
(less uncertainty-induced choice stochasticity).

These findings are consistent with several existing theoretical ideas about prefrontal
dopamine and COMT. Durstewitz and Seamans (2008) proposed that prefrontal dopamine
(regulated by COMT) determines the shape of the energy landscape for network activity.
When dopamine levels are low, dopamine primarily binds to D2 receptors, which flattens en-
ergy barriers between attractors, allowing the network to be more flexible. When dopamine
levels are relatively high, dopamine primarily binds to D1 receptors, which deepens energy
barriers, allowing the network to maintain a tonic activity state. When dopamine levels are
even higher, the network returns to a D2-dominated state characterized by shallow energy
barriers. Because of this non-monotonicity, COMT Met carriers could be more flexible or
less flexible than Val carriers (Durstewitz and Seamans, 2008, argue that they will typically
be less flexible). If we view choice stochasticity as one form of flexibility, then the effect of
COMT on inverse temperature across conditions suggests that the Val/Val homozygotes are
in a D1-dominated state (low flexibility) while the Met carriers are in a D2-dominated state
(high flexibility). This appears to be at odds with the argument of Durstewitz and Seamans
(and experimental data reported by Colzato et al., 2010), although the inverted-U depen-
dence of flexibility on dopamine makes this argument a bit slippery. Bilder et al. (2004),
by contrast, have argued that the Met allele is associated with lower flexibility, due to its
combined effects on cortical and striatal dopamine activity.

Our finding that COMT Met carriers have a larger uncertainty bonus is related to prior
work on dopaminegic control of risk preferences. Onge et al. (2011) found that blockade of
prefrontal D1 receptors decreased the preference for a risky option in rats, and microdialysis
methods using the same task demonstrated that prefrontal dopamine levels track in the risky
reward probabilities (Onge et al., 2012). Risk-seeking can also be increased by chemogenetic
activation of the mesocortical pathway (Verharen et al., 2018). These findings converge with
evidence that prefrontal dopamine, and the COMT gene in particular, plays an important
role in uncertainty-directed exploration (Blanco et al., 2015; Frank et al., 2009).

Turning now to striatal dopamine and DARPP-32, our results also fit with some existing
theories. Using detailed biophysical simulations, Humphries et al. (2012) argued that ex-
ploration could be controlled by D1 receptor-mediated changes in the excitability of striatal
neurons; higher levels of D1 receptor activation result in an increase of the input-output gain,
which in turn decreases the entropy (i.e., randomness) of the action selection probability dis-
tribution. This view broadly fits with our observation that DARPP-32 T/T homozygotes
show less random exploration, although Humphries et al. (2012) did not directly address the
question of uncertainty-based exploration. More closely related is the Bayesian framework
developed by Friston et al. (2012), according to which dopamine encodes precision (inverse
variance), ultimately acting as an uncertainty-based gain modulation mechanism (see also
Friston et al., 2015). Our finding that DARPP-32 T/T homozygotes showed a reduced
uncertainty bonus is harder to reconcile with some previous pharmacological and electro-
physiological findings, which have associated striatal dopamine with a stronger preference
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for risk (Naudé et al., 2018; Stopper et al., 2013).
While this study suggests distinct computational roles for prefrontal and striatal dopamine

in uncertainty-based exploration, it is also important to acknowledge that prefrontal cortex
and striatum interact in complex ways, with different dopamine regulatory dynamics (Bilder
et al., 2004). An important task for future research is to develop a more mechanistic and
biologically plausible account of how dopaminergic genes could control directed and random
exploration. More broadly, it has been recognized that dopamine plays a fundamental and
multifaceted role in uncertainty computations (Babayan et al., 2018; Costa et al., 2015; Daw
et al., 2006a; Friston et al., 2012; Gershman, 2017; Starkweather et al., 2017), raising the
important question of whether there exists a deeper principle that ties these computations
together.

Materials and Methods

Participants

We recruited participants from openSNP, an open database where individuals publish raw
data of their existing direct-to-consumer (DTC) genetic tests as performed by 23andMe,
FamilyTreeDNA or AncestryDNA (Greshake et al., 2014). We emailed 867 members of
openSNP who had published genetic data that include the variants rs4680 in the COMT
gene and rs907094 in the DARPP-32 gene. Of those contacted, 121 members participated
in the experimental task through an online interface. The experiment was approved by the
Harvard University Institutional Review Board.

We excluded 5 participants who had very low accuracy (selecting the optimal choice less
than 55% of the time). The remaining 116 participants (60 females) had an age range of
15-90 (median: 41) and were 98% Caucasian.

Genotyping

The genetic tests that analyzed these variants were performed in the laboratories of 23andMe
and/or AncestryDNA using the companies’ respective DNA micro arrays. Because the geno-
typing methods of those companies are not publicly available, we cannot report them here.
Neither genotype deviated significantly from Hardy-Weinberg equilibrium, according to a
chi-squared test.

In order to simplify the statistical analysis and ensure comparability with previous re-
sults, we clustered genotypes into two groups using the same clusters as Frank and colleagues
(Frank et al., 2009), which in this case also maps onto putative differences in regionally spe-
cific dopamine transmission. The COMT genotype was clustered into Val/Val (putatively
low prefrontal dopamine transmission, N = 27) and Val/Met + Met/Met (putatively high
prefrontal dopamine transmission, N = 89) groups. The DARPP-32 genotypes was clus-
tered into C/C + C/T (putatively low striatal dopamine transmission, N = 48) and T/T
(putatively high striatal dopamine transmission, N = 68) groups.
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Experimental Procedure

Participants played 30 two-armed bandits, each for one block of 10 trials. On each trial, par-
ticipants chose one of the arms and received reward feedback (points). They were instructed
to choose the “slot machine” (corresponding to an arm) that maximizes their total points.
On each block, the mean reward µ(k) for each arm was drawn from a Gaussian with mean 0
and variance τ 20 (k) = 100. The arms were randomly designated “safe” or “risky,” indicated
by an S or R (respectively), and these designations were randomly resampled after a block
transition. When participants chose the risky arm, they received stochastic rewards drawn
from a Gaussian with mean µ(R) and variance τ 2(R) = 16. When participants chose the
safe arm, they received a reward of µ(S).

The exact instructions for participants were as follows:

In this task, you have a choice between two slot machines, represented by col-
ored buttons. When you click one of the buttons, you will win or lose points.
Choosing the same slot machine will not always give you the same points, but
one slot machine is always better than the other. Your goal is to choose the slot
machine that will give you the most points. After making your choice, you will
receive feedback about the outcome. Sometimes the machines are “safe” (always
delivering the same feedback), and sometimes the machines are “risky” (deliver-
ing variable feedback). Before you make a choice, you will get information about
each machine: “S” indicates SAFE, “R” indicates RISKY. Note that safe/risky
is independent of how rewarding a machine is: a risky machine may deliver more
points on average than a safe machine, and vice versa. You cannot predict how
good a machine is based on whether it is safe or risky. You will play 30 games,
each with a different pair of slot machines. Each game will consist of 10 trials.

Modeling

To derive estimates of expected value and uncertainty, we assume that subjects approximate
an ideal Bayesian learner. Given the Gaussian distributional structure underlying our task,
the posterior over the value of arm k is Gaussian with mean Qt(k) and variance σ2

t (k). These
sufficient statistics can be recursively updated using the Kalman filtering equations:

Qt+1(at) = Qt(at) + αt[rt −Qt(at)] (2)

σ2
t+1(at) = σ2

t (at)− αtσ
2
t (at), (3)

where at is the chosen arm, rt is the received reward, and the learning rate αt is given by:

αt =
σ2
t (at)

σ2
t (at) + τ 2(at)

. (4)

Note that only the chosen option’s mean and variance are updated after each trial. The
initial values were set to the prior means, Q1(k) = 0 for all k, and the initial variances were
set to the prior variance, σ2

1(k) = τ 20 (k). The value of τ 2 was set to 16 (its true value) for
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risky options, and to 0.00001 for safe options (to avoid numerical issues, the variance was
not set exactly to 0). Although the Kalman filter is an idealization of human learning, it
has been shown to account well for human behavior in bandit tasks (Daw et al., 2006b;
Gershman, 2018a; Schulz et al., 2015; Speekenbrink and Konstantinidis, 2015).

Previous work (Gershman, 2018a) showed that Thompson sampling can be formalized as
a probit regression model of choice:

P (at = 1|w) = Φ(w1Vt + w2Vt/TUt), (5)

where Vt = Qt(1)−Qt(2) is the estimated value difference, TUt =
√
σ2
t (1) + σ2

t (2) denotes
total uncertainty, and Φ(·) is the cumulative distribution function of the standard Gaussian
distribution (mean 0 and variance 1). In contrast, UCB, assuming Gaussian noise corrupting
the value estimates, can be formalized as the following probit regression model:

P (at = 1|w) = Φ(w1Vt + w2RUt), (6)

where RUt = σt(1)− σt(2) denotes relative uncertainty.
In this paper, we focused on analyzing choices as a function of experimental condition

(i.e., RS, SR, RR, SS):

P (at = 1|w) = Φ
(∑

j w
j
1πtj + wj

2πtjVt

)
, (7)

where and πtj = 1 if trial t is assigned to condition j, and 0 otherwise. We refer to the w1

terms as intercepts and the w2 terms as slopes. For the full model, we specify genotype clus-
ters as fixed effects that interact with condition type, such that was have separate intercepts
and slopes for each genotype cluster. These parameters were estimated using a generalized
linear mixed-effects model implemented in Matlab (version R2017b).
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