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Abstract 
Single-cell RNA-sequencing has become a widely used, powerful approach for studying cell populations. 
However, these methods often generate multiplet artifacts, where two or more cells receive the same barcode, 
resulting in a hybrid transcriptome. In most experiments, multiplets account for several percent of 
transcriptomes and can confound downstream data analysis. Here, we present Scrublet (Single-Cell Remover 
of Doublets), a framework for predicting the impact of multiplets in a given analysis and identifying problematic 
multiplets. Scrublet avoids the need for expert knowledge or cell clustering by simulating multiplets from the 
data and building a nearest neighbor classifier. To demonstrate the utility of this approach, we test Scrublet on 
several datasets that include independent knowledge of cell multiplets. 
 
 
Introduction 
Single-cell RNA-sequencing (scRNA-seq) is a powerful and accessible approach for studying complex 
biological systems. It is quickly becoming a standard tool for unbiased characterization of tissue cell types and 
high-resolution reconstruction of differentiation trajectories [1]. Droplet microfluidic [2-4] and well-based [5-8] 
technologies now enable the relatively inexpensive, high-throughput isolation and barcoding of cell 
transcriptomes. However, these methods suffer from the problem of cell multiplets, where a mixture of two or 
more cells is reported as a single cell in the data.  
 
Most scRNA-seq technologies co-encapsulate cells and barcoded primers in a small reaction volume (droplets 
or wells), thereby associating the mRNA of each cell with a unique DNA barcode. Multiplets arise when two or 
more cells are captured within the same reaction, generating a hybrid transcriptome (Fig. 1A). Cell multiplets 
are a concern when interpreting the outcome of scRNA-seq experiments, because they suggest the existence 
of intermediate cell states that may not actually exist in the sample. Such artifactual states can confound 
downstream analyses by appearing as distinct cell types, bridging cell states, or interfering in differential gene 
expression tests and inference of gene regulatory networks (Fig. 1B). 
 
In a typical scRNA-seq experiment, at least several percent of all capture events are multiplets [2-5]. Multiplets 
can form as a result of cell aggregates or through random co-encapsulation of more than one cell per droplet 
or well. The rate of random co-encapsulation can be reduced by processing very dilute cell suspensions. 
However, in practice it is often favorable to work with high cell concentrations in order to capture a large 
number of cells within a short amount of time and to reduce reagent costs. Additionally, multiplets resulting 
from cell aggregates cannot be eliminated by simply reducing cell concentration. Pre-sorting cells into wells 
can overcome these problems [9, 10], but at a cost in throughput. Thus, rather than avoiding multiplets, it 
would be useful to identify them, either computationally or through experimental means.  
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The case for a computational approach to multiplet inference 
Ideally, one would identify multiplet events experimentally through appropriate assay designs. At the time of 
writing, we noted five existing experimental strategies for multiplet detection, summarized in Table 1. However, 
none of the existing methods can yet be implemented routinely for all scRNA-seq experimental designs (see 
“Limitations” in Table 1). It would therefore be useful to have a computational strategy to infer the identity of 
multiplets directly from data. 
 
Table 1. Experimental methods for multiplet detection. 

 
Until now, two simple computational methods have been implemented to exclude putative multiplets: (1) 
exclude cell barcodes with unusually high numbers of detected transcripts; and (2) manually curate data, 
excluding cell clusters that co-express marker genes of distinct cell types [1]. Both of these methods have 
drawbacks. As we will show later, the former method often performs poorly because it assumes that cells 
contain similar amounts of RNA, when in reality samples with diverse cell types or cells in different cell cycle 
stages are expected to have a wide range in the number of transcripts per cell. The latter method requires 
expert knowledge and careful annotation of the data. Below, we propose a computational approach, Scrublet 
(Single-Cell Remover of Doublets), for identifying multiplets and apply the method to several datasets that 
include some measure of ground truth labels for cell multiplets.  
 
Briefly, our method involves two steps. First, doublets (multiplets of just two cells) are simulated from the data 
by combining random pairs of observed transcriptomes. Second, each observed transcriptome is scored based  

Method name 
and references 

Approach Limitations 

Species mixing  
[2, 3] 

Cells from different species (e.g., mouse and human) 
are mixed and barcoded. Multiplets are detected as cell 
barcodes associated with transcripts from both species. 
Assuming 1:1 mixing, the identified multiplets represent 
half of all multiplets, as the remaining half are intra-
species multiplets.  
 

• Measures multiplet rate but does 
not facilitate detection of multiplet 
cell states in typical experimental 
samples from a single organism 

Natural genetic 
variation 
[11] 

By mixing together cells from comparable samples from 
multiple genotyped individuals, genetic variants in 
transcripts can be used to assign each cell barcode to 
one individual, or in the case of multiplets, to multiple 
individuals. Only inter-individual multiplets can be 
identified, so the fraction of detectable multiplets 
increases with the number of individuals.  
 

• Limited to samples with high 
genetic diversity 

• Only possible if samples from 
different individuals can be pooled 
and assayed simultaneously 

 

Genetic labeling 
[12-14]  
 

Unique, expressed, genetic labels are introduced into 
the cell sample prior to collection. Multiplets can then be 
detected as cell barcodes with multiple distinct genetic 
labels.  

• Introduction of genetic labels is 
currently possible only for cultured 
cells or limited in vivo conditions 

• Labeling may perturb the cells  
 

Cell “hashing” 
[15, 16] 

Cells are split into multiple wells, and each is labeled 
with sample-specific oligonucleotide tags, using 
antibodies or chemical approaches. Samples are then 
pooled prior to scRNA-seq. Multiplets are identified as 
cell barcodes associated with multiple oligo sequences.  
 

• Not well suited for very small or 
fragile samples that cannot be split 
and recombined 

Cell 
encapsulation 
at multiple cell 
concentrations 

After processing the same input sample at multiple cell 
concentrations, multiplet-specific cell states can be 
detected by finding cell states whose proportion 
increases with the cell concentration.  
 

• Requires at least two runs for each 
sample  

• Requires sufficient cells 
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on the relative densities of simulated doublets and observed transcriptomes in its vicinity. Because doublets 
formed by cells with divergent expression profiles may be easier to detect and have more significant 
consequences on downstream analyses than those formed by similar cells, we incorporate this distinction into 
Scrublet by predicting the fraction of doublets that belong to each class. The next section discusses these two 
classes of doublets in greater detail.  
 
Defining Type A and Type B multiplet-associated errors 
Multiplets can have varying consequences for downstream analyses, depending on, in part, whether they arise 
from averaged measurements of cells of the same or different types (Fig. 1B). We accordingly define two 
classes of multiplet-associated errors: 
 
“Type A” errors: multiplets arising from combination of cells that are similar in gene expression. These are 
expected to result in quantitative changes in the gene expression and abundance of a cell cluster that is 
otherwise dominated by singlets (i.e., transcriptomes of single cells). We would expect the impact of Type A 
errors to be small if multiplet events are rare, because multiplets that become embedded in a manifold already 
dense with singlets will have little effect on gene expression or population abundance estimates. 
 
“Type B” errors: multiplets arising from combination of cells with distinct gene expression. Type B errors 
generate new features in single-cell gene expression data, such as clusters, “branches” from an existing 
cluster, or “bridges” between clusters, and thus are more likely to lead to qualitatively incorrect inferences from 
the data.  
 
In practice, the degree to which multiplets can be cleanly associated with these two categories will depend on 
the precise structure of the single-cell manifold, so the classification should be taken as a functional distinction 
with respect to a specific manifold construction approach used in data analysis. For example, a multiplet state 

Figure 1. A computational approach for identifying doublets in single-cell RNA-seq data. 
(A) Schematic of doublet formation. Multiple cells are co-encapsulated with a single barcoded bead, either randomly or as aggregates, 
resulting in the generation of a hybrid transcriptome. (B) Multiplets involving highly similar cells (“Type A”) may be difficult to distinguish 
from single cells, while multiplets of dissimilar cells (“Type B”) generate qualitatively new features, such as distinct clusters (left) or 
bridges (right). (C) Overview of the Scrublet algorithm. Doublets are simulated by randomly sampling and combining observed cells, 
and the local density of simulated doublets, as measured by a nearest neighbor graph, is used to calculate a doublet score for each 
observed cell. 
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might be absorbed within a large singlet cluster in one analysis (creating a Type A error) but be detectable as a 
separate structure in another (Type B error). Therefore, a doublet detection method capable of both predicting 
doublets and estimating the Type B error rate for a given analysis method would be a powerful tool.  
 
Method 
The approach we developed, Scrublet, focuses on Type B errors. It estimates the fraction of multiplets that are 
predicted to generate Type B errors and offers a method to identify and remove these multiplets. We restrict 
ourselves specifically to doublets, since these make up >97% of multiplets in an experiment with a <5% 
multiplet rate with full cell dissociation. However, in principle the approach could be readily extended to higher-
order multiplets.  

 
Our method is motivated by three assumptions. First, we assume that gene expression space is high-
dimensional and sparsely populated by cells, such that that doublets between cells of two distinct types will 
likely fall into an otherwise unoccupied region of gene expression space. Second, we assume that among all 
observed transcriptomes, multiplets are relatively rare events. The third assumption is that all cell states 
contributing to doublets are also present as single cells elsewhere in the data. Conditions under which these 
assumptions might be invalidated are considered in the Discussion. 

 
With these assumptions, putative Type B doublets can be identified through the following steps (Fig. 1C):  
(1) Generate “simulated doublets” through linear combination of pairs of randomly sampled observed cell 
transcriptomes. 
(2) Merge observed transcriptomes (which include yet-unknown doublets) and simulated doublets and embed 
on a single-cell state manifold. 
(3) For each observed transcriptome 𝑖 or simulated doublet 𝑖", define the doublet score 𝑓$, 𝑓$&, as the 
abundance ratio of simulated doublets to observed transcriptomes in the neighborhood of 𝑖 or 𝑖" on the cell 
state manifold. 
(4) Set a doublet score threshold, 𝜃, based on the bimodal distribution of 𝑓$&. A bimodal distribution of 𝑓$& arises 
because rare Type B doublets will have a significantly higher fraction of simulated doublet neighbors than 
individual cells or Type A doublets, which are surrounded by a higher density of true single cells. Simulated 
doublets with 𝑓$& < 𝜃 correspond to Type A doublets and those with 𝑓$& > 𝜃 to Type B doublets.  
(5) Calculate the “detectable doublet fraction”, ϕD, defined as the fraction of simulated doublets with 𝑓$& > 𝜃. ϕD 
is an estimator for the fraction of observed doublets to generate Type B errors with respect to the chosen 
embedding. 
(6) Classify observed transcriptomes with 𝑓$ > 𝜃 as putative Type B doublets. 
 
In the Extended Methods, we present a more detailed description of our algorithm, including a discussion of 
setting the doublet score threshold.  
 
Our strategy avoids the need to cluster data or predefine cell state marker genes and belongs to a broader 
class of “target-decoy” classification methods used to filter poor quality data [17]. As with other such methods, 
it is useful, though not always necessary, to have an independent expectation for the error rate (here, the 
doublet rate estimated during sample collection).  
 
In our specific implementation of this approach, we construct a low-dimensional embedding (Step 2 above) by 
applying principal component analysis (PCA) to the observed transcriptomes and simulated doublets. We then 
build a k-nearest-neighbor (kNN) graph to measure the density of simulated doublets in the vicinity of each cell 
(Step 3), calculating the doublet score for each transcriptome as the fraction of its k neighbors that are 
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simulated doublets (Fig. 1C). This implementation is suitable for routine use, with classification of datasets of 
tens of thousands of cells requiring only a few minutes.  
 
Results 
The results are organized into five sections. First, we test Scrublet on simulated datasets in order to assess its 
performance and limitations under simplified conditions where there is perfect knowledge of singlet and doublet 
identity. We then apply Scrublet to three experimental datasets, each of which provides some form of 
independent “ground truth” for doublet identity. Finally, we apply Scrublet to our own recently published 
hematopoiesis dataset, which presents a complex continuum of well-characterized cell states and where 
doublets can be identified through prior knowledge. 
 
Performance on simulated data 
Using pedagogical tests on simulated data, our goal is to demonstrate that (a) it is possible to use the 
proposed approach as a classification scheme; and (b) the detectable doublet fraction, ϕD, can be used to 
estimate the sensitivity of the classifier, i.e., the fraction of true doublets that one might be able to identify using 
this approach alone. 
 
Using the Splatter package [18], we simulated single-cell data in the form of distinct cell clusters or as a 
continuum of cell states (Fig. 2A). Varying the number and size of simulated cell clusters, the doublet detector 
accurately identified up to 99% of doublets that were generated between cells from different clusters (Type B 
doublets) with 99% precision, but only if clusters were sufficiently well-separated (Fig. 2B,C). For poorly 
separated groups of cells that did not form distinct clusters, the recall dropped below 10%. As expected, 
doublets formed by cells from within the same cluster (Type A doublets) were virtually indistinguishable from 
singlets using our method. However, Scrublet’s estimate for the detectable doublet fraction (ϕD), i.e., the 
fraction of simulated doublets above the doublet score threshold, accurately predicted the recall, suggesting 
that it serves as a useful tool for measuring the impact of doublets in a given analysis (Fig. 2E,F).  
 
The doublet detector also performed well when predicting doublets in a continuum of cell states: in a simulation 
of two paths diverging from the same starting state, up to 92% of doublets formed by cells from divergent 
states (>10% of the way towards opposite endpoints) were identified at a precision of 98% (Fig. 2D). As 
expected, doublets forming near the point of divergence were poorly identified. In summary, these results 
illustrate the basic concepts of the classifier in idealized settings with known inputs.  
 
Performance on dataset #1: human-mouse cell mixture 
We tested the Scrublet on a publicly available dataset consisting of a mixture of human (HEK293T) and mouse 
(NIH3T3) cells (Fig. 3A). This dataset, though not representative of most single-cell experiments, provides a 
useful test case because the differences between human and mouse genomic sequence provide an 
independent way to detect doublets [2, 3]. We defined a partial “ground truth” on doublet identity according to 
whether a cell barcode associates with transcripts from both species (a doublet), or just one species (Fig. 3B). 
Because doublets arising from the encapsulation of two human or two mouse cells cannot be identified as 
such, we expected our doublet detector to correctly predict all “ground truth” labeled doublets, since they arise 
from distinct human and mouse cell types.  
 
After hiding species labels and restricting to orthologous genes (Fig. 3C), Scrublet estimated the detectable 
(Type B) doublet fraction at ϕD = 54%, close to the 50% expected for cross-species doublets given equal input 
of mouse and human cells (Fig. 3D). Furthermore, the detector accurately identified human-mouse doublets 
with a receiver-operator characteristic (ROC) area under the curve (AUC) of 0.99 (recall of 98% of human- 
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mouse doublets with precision of 96%) (Fig. 3E,F). In contrast, predicting doublets on the basis of total 
transcript counts was less effective (AUC=0.88), since the average human cell contained nearly twice as many 
transcripts as the average mouse cell; to achieve a recall of 90%, the precision dropped to just 15% (Fig. 3F). 
 
Performance on dataset #2: peripheral blood cells from multiple individuals 
To test the doublet detector in a more typical experimental context, we evaluated its performance using a 
published dataset generated from a mixture of eight genotyped human donors’ mature blood cells (peripheral 
blood mononuclear cells, PBMCs) [11]. The authors identified “ground truth” multiplets as cell barcodes 
associated with reads containing polymorphisms from more than one individual (Fig. 4A). Given that the data 
represent a similar number of cells from each individual, roughly 7 out of 8 doublets should occur between 
individuals and can be identified using this approach. Thus, the “ground truth” is close to perfect, but 12.5% of 
true doublets are expected to be undetected.  
 
To make use of this orthogonal method for multiplet detection, we compared Scrublet predictions to the ground 
truth doublets and also generated a ground truth score by calculating the fraction of each cell’s neighbors that 
were mixed genotype doublets (Fig. 4B). Because this score reflects the density of doublets in a region of 
gene expression space, it is directly comparable to the score computed using Scrublet. We then applied  

Figure 2. Application of Scrublet to simulated data. 
(A) Schematic summary of simulations for testing Scrublet. d, inter-cluster variance; s, intra-cluster variance; n1, size of larger cluster; 
n2, size of smaller cluster; h, inter-branch variance. (B) Evaluation of doublet detector performance for varying numbers of clusters and 
cluster separation. After thresholding doublet scores based on the simulated doublet rate (5%), the recall (true positive rate) was 
measured using all doublets (left) or between-cluster doublets only (right). Error bars are standard deviation of 10 independent 
simulations. (C) Evaluation of doublet detector performance for varying cluster size asymmetry. Panels as in (B). Error bars are 
standard deviation of 10 independent simulations. Gray points correspond to individual simulations. (D) Evaluation of doublet detector 
performance for a branching continuum with varying branch separation. Recall was measured for all doublets (left) and when limiting to 
doublets formed by cells from opposite branches (right). Error bars and gray points as in (C). (E) Prediction of the detectable doublet 
fraction, ϕD, using the distribution of scores for the synthetic doublets. (F) Comparison of predicted ϕD to observed doublet recall for the 
simulations in (B).  
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Scrublet to the transcriptomic data (Fig. 4C) and compared the Scrublet scores to these ground truth scores 
(Fig. 4D). This comparison showed a fair agreement: 89% of doublets with a high ground truth score (>0.4) 
were also identified by Scrublet, with a precision of 77%. The high-scoring cells for both methods co-localized 
in a low-dimensional visualization of the data (Fig. 4B,C), with undetected doublets scattered among other cell 
states. Furthermore, the recall of true doublets was accurately predicted by ϕD, the detectable doublet fraction 
as measured by the simulated doublet distribution (Fig. 4E). At the selected doublet score threshold, the recall 
of 49% was in good agreement with the ϕD of 55%, and this held true across a range of thresholds. This 
suggests that even though many doublets go undetected, the fraction of identifiable doublets can be accurately 
estimated. Though the precision was just 66%, this can be explained in part by the imperfect nature of the 
ground truth labels, since doublets formed by cells from the same individual are undetected.  
 
As with the previous dataset, we compared the doublet detector performance to alternative strategies: (1) 
identifying cells co-expressing curated marker genes of distinct cell types, and (2) identifying cells with high 
total transcript counts. For the former method, we created a list of highly specific marker genes of each cell 
type in this dataset and then calculated the amount of co-expression of marker genes from different cell types 
(Fig. 4F) to define a “marker co-expression score” (Extended Methods). Of the 773 true doublets correctly 
identified by Scrublet, 68% also had a high degree of marker gene co-expression. Overall, the “marker co-
expression score” did not perform as well as Scrublet (AUC 0.77 vs. 0.88) and required significant manual 
annotation.  

 
 

Figure 3. Doublet prediction for a mixture of human and mouse cells.  
(A) Schematic overview of species mixing experiment. (B) Identification of mixed-species doublets based on fraction of reads mapping 
to human or mouse transcriptome. (C) Principal component (PC) analysis of single-cell transcriptomes, restricting to human-mouse 
gene orthologs. (D) Histogram of doublet scores for simulated doublets. The bimodal distribution reflects the two types of doublets: 
undetectable intra-species Type A doublets (left peak) and inter-species Type B doublets (right peak). (E) Histograms of doublet scores 
for observed singlets (gray) and doublets (red). (F) Receiver-operator characteristic (ROC) curve for Scrublet and total transcript counts 
as predictors of inter-species doublets. AUC, area under the curve. 
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Figure 4. Doublet prediction for blood cells from eight genotyped human donors.  
(A) Schematic overview of genotyped cell mixing experiment. (B) Left: Force-directed graph layout of the profiled cells. Black points 
indicate ground truth doublets identified by demuxlet as barcodes associated with polymorphisms from more than one individual [11]. 
Right: Force-directed graph layout of ground truth doublet score, defined as the fraction of a cell’s neighbors that are mixed genotyped 
doublets. (C) Application of Scrublet to the transcriptomic data. After calculating doublet scores (i), the histogram of scores for 
simulated doublets was used to determine a threshold for detection of Type B doublets (ii). Applying this threshold to observed cell 
barcodes (iii) yielded doublet predictions for each transcriptome (iv). ϕd,	predicted detectable doublet rate; ϕ,	fraction of transcriptomes 
predicted to be doublets. (D) Comparison of Scrublet to the ground truth doublet score, colored by genotype-based doublet labels 
(singlets, gray; doublets, black). (E) Comparison of detectable doublet fraction (solid black line) and actual recall (dashed black line) for 
a range of doublet score thresholds, and the corresponding precision (red line). TP, true positives; FN, false negatives; FP, false 
positives. (F) Alternative doublet prediction based on co-expression of marker genes of distinct cell types. Upper: force-directed graph 
layout with cells colored by marker overlap score. Lower: histograms of marker overlap score for ground truth singlets (gray) and 
doublets (red). (G) Alternative doublet prediction based total transcript counts. Upper: force-directed graph layout with cells colored by 
total counts. Lower: histograms of total counts for ground truth singlets (gray) and doublets (red). (H) ROC curves (upper) and AUC 
scores (lower) for various doublet prediction methods. “S+TC” and “S+Local TC” are linear combinations of the Scrublet score and total 
counts or the Scrublet score and total counts relative to neighboring cells, respectively (see Extended Methods for details).  
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For the method relying on high total transcript counts, we found that true doublets did tend to have higher total 
transcript counts than singlets (AUC=0.81) (Fig. 4G,H). Because total counts appeared to be informative and 
did not require any manual annotation, we created a hybrid predictor by linear combination of each cell’s 
Scrublet score with its locally normalized total counts (Extended Methods). While this hybrid approach 
performed better than any other for this particular example (AUC=0.93) (Fig. 4H), its effectiveness may vary 
across datasets, and it required additional parameter fitting. 
  
Performance on dataset #3: peripheral blood cells at multiple concentrations 
In a third test, we turned to a dataset that offers a less direct independent strategy for detecting Type B 
doublets: namely, a single sample of PBMCs split and barcoded at two different cell concentrations, yielding 
either 4,352 (“PBMC-4k”) or 8,391 (“PBMC-8k”) transcriptomes. We reasoned that multiplet-specific cell states 
should be identifiable as clusters whose relative abundance increases with increasing input cell concentration, 
because in fully dissociated samples, a doubling of cell concentration doubles the probability of randomly 
encapsulating two cells into the same droplet. In the PBMC data, states comprised uniquely of doublets should 
double in relative abundance, with cell states that are predominantly singlets decreasing only incrementally 
(Fig. 5A).  
 

 

 
 
 
 
 

Figure 5. Doublet prediction using multiple concentrations of blood cells. 
(A) Schematic overview of how multiple concentrations of the same cell sample can be used to identify doublet-specific states. (B) 
Scrublet score histogram (upper) and force-directed graph layout (lower) for the low cell concentration (PBMC-4k) sample. ϕ,	fraction of 
transcriptomes predicted to be doublets. Expected ϕ	was estimated using the expected doublet rate and the predicted detectable 
doublet fraction. (C) Same as (B), but for the high cell concentration (PBMC-8k) sample. (D) Comparison of relative sizes of cell 
clusters in PBMC-4k and PBMC-8k samples to identify doublet-specific clusters. After clustering the PBMC-4k cells (left), each PBMC-
8k cell was mapped to its most similar PBMC-4k cell, and the proportions of cells from each sample in each cluster were compared 
(center). This relative cluster abundance was then compared to the Scrublet predictions (right). 
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As expected, the doublet detector identified roughly twice as many doublets in the PBMC-8k sample (4.1%) as 
in PBMC-4k (1.8%) (Fig 5B,C). Furthermore, when we compared the PBMC-8k cells to their most similar 
PBMC-4k counterparts, the predicted doublet states were present at a higher relative abundance, while singlet 
states changed little or decreased (Fig. 5D). This test again suggests that the doublet detector correctly 
identifies Type B doublets. 
 
Prediction of doublets in a cell state continuum 
The above examples demonstrate Scrublet’s ability to correctly identify Type B doublets from datasets 
consisting of distinct cell types. In a final example, we applied it to a continuum of cell states by analyzing 
transcriptomes of Kit+ hematopoietic progenitors from the mouse bone marrow [19] (Fig. 6A). These cells form 
a continuum from multipotent progenitors to unilineage committed cells. Several groups of doublets were 
readily distinguishable (Fig. 6B-C) and formed “bridges” between different committed progenitor types. Here 
we lack a ground truth for confirming the identity of the doublets, but since such bridges are inconsistent with 
our current understanding of hematopoiesis, it is likely that our doublet detector is correct in identifying them.  
 
We again compared Scrublet to other approaches based on marker genes or total counts. As before, predicted 
doublets consistently expressed combinations of marker genes for distinct maturing progenitor states (Fig. 
6D), while only some predicted doublets had above average total transcript counts (Fig. 6E).  
 

 
 

Figure 6. Prediction of doublets in a continuum of differentiating hematopoietic progenitors. 
(A) Force-directed graph layout of Kit+ mouse bone marrow cells profiled by scRNA-seq. Cells are colored by expression of established 
marker genes. E, erythroid; Ba, basophil/mast cell; Meg, megakaryocyte; MPP, multipotent progenitor; Ly, lymphoid; D, dendritic cell; 
M, monocyte; GN, granulocytic neutrophil. Adapted from [19]. (B) Force-directed graph layout colored by Scrublet score (left) and 
histogram of Scrublet scores (right).	ϕ,	fraction of transcriptomes predicted to be doublets. (C) Predicted doublets localized on force-
directed graph layout. Gray, predicted singlets; black, Scrublet-predicted doublets; red, likely erythroblast-macrophage doublets (C1qa+ 
Hba-a1+), undetected by Scrublet due to absence of macrophage singlets in the Kit+ data. (D) Alternative doublet prediction based on 
co-expression of marker genes of distinct cell types. Upper: force-directed graph layout with cells colored by marker overlap score. 
Lower: histograms of marker overlap score for Scrublet-predicted singlets (gray) and doublets (red). (E) Alternative doublet prediction 
based on total transcript counts. Upper: force-directed graph layout with cells colored by total counts. Lower: histograms of total counts 
score for Scrublet-predicted singlets (gray) and doublets (red). 
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This dataset was also instructive in highlighting a shortcoming of our approach when one of its assumptions is 
violated. Namely, Scrublet can detect cell aggregate doublets only if both parent cell types are observed as 
singlets elsewhere in the dataset. Through manual curation, we identified a small group of transcriptomes co-
expressing markers of erythroblasts and mature macrophages (Fig. 6D). Macrophages and Kit+ erythroblasts 
are known to physically associate in the bone marrow in erythroblastic islands [20] and have been observed in 
other scRNA-seq datasets [21]. Since macrophages do not express the cell surface receptor Kit, used for cell 
purification in this experiment, they appear only in the form of doublets in this dataset. Unfortunately, such 
aggregates might confound other methods for doublet detection, including all of the experimental methods in 
Table 1. They may, however, be identifiable by combining multiple datasets in order to provide the full set of 
singlet states for Scrublet.  
 
Discussion  
We proposed and tested a classification scheme for cell multiplets, focusing on cell doublets, as these are 
expected to form the majority of multiplets in all but specialized cases. The classifier is trained using the data 
itself and reasonable assumptions about the structure of gene expression space. The application to simulated 
data, and then to four empirical datasets, demonstrates that the approach can accurately identify doublets 
formed by cells from distinct states, as assessed by formal estimates of recall and precision where possible. 
The cell transcriptomes that scored as doublets with highest confidence were also those found after manual 
curation of the data to co-express marker genes of distinct cell states. The classification approach 
outperformed manual curation and simple total counts-based approaches, although it benefitted from being 
combined with total counts information. 
 
Although the method appears to perform well, its underlying assumptions do impose some limitations. First, the 
method assumes that multiplets are rare. This is required (1) to justify the study of doublets rather than all 
multiplets and (2) for the doublets simulated by the classifier to overwhelmingly reflect doublet states rather 
than higher-order states. Second, the method strictly requires that every cell state contributing to a doublet also 
be represented as a singlet state in the dataset. If a particular singlet cell state is excluded experimentally, it 
trivially cannot be detected as part of a multiplet state, because the missing parent state does not contribute to 
the simulated doublet pool used for doublet classification. This limitation could be appreciated in the final 
dataset, from cells purified conditional on expression of a cell surface protein, Kit. We found that cell doublets 
resulting from incomplete dissociation of a Kit+ erythroid cell and a Kit- macrophage could not be detected by 
the classifier, because no singlet macrophage state was present in the dataset. An extension of this limitation 
is that the method could underperform if cell clumps with a stereotyped composition occur in a sample. 
Scrublet performs best for doublets resulting from random co-encapsulation because the frequency of such 
doublet states can be predicted by the frequency of singlet states. Doublets from incomplete dissociation can 
still be effectively detected provided that they are rare and that the singlet states are well represented in the 
data.  
 
A third limitation of the approach is its sensitivity to the structure of the single-cell state manifold. Scrublet 
performs best in identifying doublets formed between distinct parent states. This limitation is quantified for any 
given dataset by the calculated detectable doublet fraction, ϕD, which is expected to be high if singlet states 
are distributed among many discrete, well-separated states; it is only 50% if cells form two discrete and equal-
sized clusters, and it can be lower than 50% for complex continuum manifolds. Countering this shortcoming is 
the notion that rare doublet states are only important to exclude if they form novel features on a cell state 
manifold, which would in turn make them detectable using the proposed approach. Therefore, the doublet 
detector provides a useful tool for both estimating the potential impact of doublets on downstream hypothesis 
generation through the magnitude of ϕD, and for identifying bona fide doublet states for exclusion. 
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Availability  
Python code and examples implementing the doublet detector are provided at 
github.com/AllonKleinLab/scrublet. Scrublet has also been incorporated into SPRING 
(kleintools.hms.harvard.edu/tools/spring.html), an interactive tool for single-cell data exploration [22].  
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Extended Methods 
 
The Scrublet algorithm 
 
General approach 
Starting with a raw counts matrix, 𝑋, where 𝑋$,+ is the number of detected transcripts of gene 𝑗 in cell 𝑖, 

1. Pre-filter cell barcodes to exclude background, typically barcodes with insufficient total transcripts 
detected. 

2. Simulate doublets by combining the counts from random pairs of cells: the counts for gene 𝑗 in doublet 
𝑖′ with parent cells 𝑎 and 𝑏 is 𝑋$&,+ = 𝑋1,+ + 𝑋3,+. 

3. Build a k-nearest-neighbor (kNN) classifier, labeling observed cells as 0 and simulated doublets as 1. In 
detail, construct a kNN graph using the union of observed cells and simulated doublets and calculate 
the doublet score as the fraction of neighbors that are simulated doublets.  

4. Remove likely doublets by thresholding the doublet scores or by clustering observed cells and 
identifying clusters with uniformly high scores. 

 
Detailed method 
Throughout this paper, and in the code provided online at github.com/AllonKleinLab/scrublet, we 
implement the above approach as follows. 
 
Preprocessing: 
Starting with a background-filtered, UMI-based counts matrix for the observed cells, we perform normalization, 
gene filtering, and principal components analysis (PCA):  

1. Normalize each cell by its total counts, setting the post-normalization total to the average total of all 
cells. 

2. Identify highly variable genes, keeping genes with ≥ 𝑛6  counts in ≥ 𝑛7 cells and in the top 𝑞9: 
percentile of most variable genes, as measured by V-score (baseline-corrected Fano factor) [2]. 

3. Z-score normalize at the gene level. 
4. Run PCA. 

 
Doublet simulation: 
Because PCA is a linear transformation, we simulate doublets by averaging the PCA coordinates of the 
randomly sampled parent cells, weighting by the total transcripts in each parent. That is, if doublet 𝑖′ is 
generated by parent cells 𝑎 and 𝑏 with transcript count totals 𝑡1 and 𝑡3 and PCA coordinates 𝑃1 and 𝑃3, then 
the PCA coordinate for doublet 𝑖′ is 𝑃$& =

9=>=?9@>@
9=?9@

. 
 
kNN classifier: 
Following PCA, a kNN graph is built using Euclidean distance in the combined PCA embedding of the 
observed and simulated cells. Because both the number of neighbors, 𝑘, and the ratio of the number of 
simulated doublets to observed cells, 𝑟, are user-provided parameters, 𝑘 is scaled by 𝑟, and the adjusted 
number of neighbors, 𝑘1C+ = round(𝑘 ⋅ (1 + 𝑟)), is used to construct the graph.  
 
Next, 𝑓$ and 𝑓$&, the doublet scores for the observed cells 𝑖 and simulated doublets 𝑖′, respectively, are 
calculated by finding the fraction of each cell’s (or simulated doublet’s) neighbors that are simulated doublets, 
adjusting for 𝑟 accordingly. We also rescale the scores by the expected doublet rate 𝑑, though this information 
is not essential for obtaining an interpretable result (a default of 𝑑 = 0.1 is reasonable; see below for additional 
details). For cell 𝑖 with 𝑛$ observed cell neighbors and 𝑚$ simulated doublet neighbors, the doublet score is  

𝑓$ =
𝑑𝑚$/𝑟

𝑑𝑚$/𝑟 + 𝑛$
 

and similarly for 𝑓$&. 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/357368doi: bioRxiv preprint 

https://doi.org/10.1101/357368
http://creativecommons.org/licenses/by/4.0/


 14 

Setting the doublet score threshold: 
After computing the doublet scores 𝑓$ and 𝑓$&, a threshold 𝜃 is set based on the distribution of 𝑓$&, and 
observed transcriptomes with 𝑓$ > 𝜃 as predicted as doublets. In all of the presented examples, the distribution 
of 𝑓$& was bimodal, reflecting the differences between Type A and Type B doublets, and the threshold was set 
by eye to lie between the two peaks of the histogram of 𝑓$&.  
 
The role of the expected doublet rate: 
While the expected doublet rate 𝑑 does not directly influence the doublet predictions, it does play a role in two 
ways: 

1. Rescaling the doublet scores: setting 𝑑 near the true doublet rate results in a more bimodal distribution 
of 𝑓$& and, similarly, better separation of the observed doublet scores. 

2. “Sanity checking” predictions: after setting the threshold 𝜃, the value of 𝑑 can be compared to the 
resulting predicted doublet rate. If ϕ	is the fraction of observed transcriptomes with 𝑓$ > 𝜃 and ϕD is the 
fraction of simulated doublets with 𝑓$& > 𝜃, then the predicted overall doublet rate is ϕ/	ϕD. This 
predicted doublet rate should roughly agree with 𝑑. 

  
 
Testing Scrublet 
 
Splatter simulations 
We used the Splatter R package (v1.0.3) [18] to simulate ground truth data for testing the doublet detector. 
For each set of parameters, we simulated 10 replicates with 5000 cells and 2000 genes, using default 
parameters except where noted below. Doublets were simulated at a rate of 5% by randomly sampling (without 
replacement) pairs of cells and summing their counts; cells used to generate doublets were then removed from 
the data. Table 2 summarizes the conditions simulated for Fig. 2.  
 
Table 2. 

 
Prior to predicting doublets, PCA was run using genes with at least 3 counts in at least 3 cells. For Fig. 2B,C, 
we used all PCs with eigenvalues that were at least 20% of the maximum eigenvalue. For Fig. 2D, the top 4 
PCs were used for all conditions. The doublet detector was run using 𝑘 = 40, 𝑟 = 5, and 𝑑 = 0.05. 
 
To determine the overall recall ( T>

T>?UV
; TP, true positives; FN, false negatives), we set a doublet score 

threshold based on the simulated doublet rate of 5%; that is, cells with doublet scores in 95th percentile or 
above were labeled as predicted doublets. Thus, the precision ( T>

T>?U>
; FP, false positives) is equal to the 

recall. The same procedure was used to measure the recall for between-cluster doublets, restricting to 
doublets formed by cells from different groups. For the branching continuum simulation, between-branch 
doublets were defined as doublets formed by cells on opposite branches and with Splatter pseudotime >10%. 
 
Human-mouse dataset 
Pre-processing and doublet detector parameters 
Separate pre-filtered counts matrices for human and mouse genes were downloaded from 10X Genomics 
(support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k), along with 
species assignments for each barcode (6,164 human cells, 5,915 mouse cells, and 741 mixed human/mouse 
multiplets). To create a single counts matrix blind to the species of origin, each cell’s UMI counts for genes with 

Panel Number of 
groups 

Group1 size /  
Group2 size 

Splatter 
parameter  
“method” 

Splatter parameter 
“mean.shape” 

Splatter parameter 
“de.prob” 

B 2, 3, 5, 10, 15 n/a (all uniform) groups 0.5 0.005, 0.01, 0.02, 0.03, 
0.04, 0.05, 0.1 

C 2 1, 1.5, 2.3, 4, 9, 19 groups 0.5 0.05 
D 2 1 path 0.5 0.01, 0.02, 0.05, 0.1, 

0.15, 0.25, 0.4 
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identical mouse and human names (n = 15,642 genes) were added together, and all other genes were 
excluded. For PCA, we used the top 20% most highly variable genes with ³3 counts in ³5 cells (n=2,372 
genes) and kept the first two PCs. Scrublet was run using	𝑘 = 50, 𝑟 = 10, and 𝑑 = 0.12 (twice the observed 
rate of human-mouse doublets). To classify cells as singlets or doublets, a threshold was set by eye using the 
histogram of doublet scores for simulated doublets (Fig. 3D). 
 
Demuxlet PBMC dataset 
Pre-processing and doublet detector parameters 
A filtered counts matrix (14,619 cells and 35,635 genes) was downloaded from GEO (accession ID 
GSM2560248), and demuxlet singlet/doublet calls were obtained from the paper’s GitHub page 
(github.com/yelabucsf/demuxlet_paper_code). For PCA, we used the top 25% most highly variable genes 
with ³2 counts in ³3 cells (n=3,197 genes) and kept the first 25 PCs. Scrublet was run using	𝑘 = 50, 𝑟 = 5, and 
𝑑 = 0.11 (the observed doublet rate). To classify cells as singlets or doublets, a threshold was set by eye using 
the histogram of doublet scores for simulated doublets (Fig. 4C). 
 
Ground truth doublet score 
The ground truth doublet score was created by building a kNN graph (𝑘 = 35) using the observed cells and 
calculating the fraction of each cell’s neighbors labeled as doublets by demuxlet. 
 
2-D visualization 
Transcriptomes were visualized using a force-directed layout of the four-nearest-neighbor graph of observed 
cells, where neighbors were identified using Euclidean distance in PC space.  
 
Marker gene co-expression score 
The marker gene co-expression score was created by identifying highly specific marker genes for each cell 
type, smoothing expression of these genes over the four-nearest-neighbor graph (see “Graph-based 
smoothing”, below), and summing the products of pairs of non-overlapping marker genes. In detail, we 
combined the following pairs of marker genes:  

- T-cell and NK cell: CD27 x SH2D1B, CD27 x IGFBP7, CD27 x KLRF1 
- T-cell and B-cell: CD27 x BANK1, CD27 x BLK, CD27 x MS4A1 
- T-cell and monocyte: CD27 x CST3 
- B-cell and NK cell: BANK1 x SH2D1B 

Letting 𝑋$,+∗  be the smoothed, normalized gene expression of gene 𝑗 in cell 𝑖, the composite score for a pair of 
genes 𝑎 and 𝑏 is 

𝑠$,1,3 =
𝑋$,1∗ 𝑋$,3∗

max(𝑋1∗)max	(𝑋3∗)
 

 
For a given cell type pair 𝑝 with gene pairs 1,2, … , 𝑛, the marker gene overlap score for cell 𝑖 is defined as  

𝑀$,b =
1
𝑛
c

𝑠$,1d,3d
maxe𝑠1d,3df

g

hij

 

 
And the composite marker gene overlap score for all cell type combinations (as shown in Fig. 4F) is ∑ 𝑀$,bb . 
 
Hybrid doublet score (Scrublet + total counts) 
For this dataset, we also tested whether combining total counts information with the Scrublet score would 
improve doublet classification, e.g., by enabling detection of Type A doublets (Fig. 4H). In both versions 
described below, the parameters (relative weights of Scrublet and total counts-based scores) were fit to 
maximize the AUC.  

1. We tested a simple linear combination of Scrublet (𝑓$) and total counts (𝑇$): 4𝑓$ + logjo(𝑇$). 
2. We created a “local total counts” (𝐿$) score, defined as a cell’s total counts divided by the average total 

counts of its simulated doublet neighbors, and combined it with Scrublet: 3𝑓$ + 𝐿$. 
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PBMCs at multiple concentrations 
Pre-processing and doublet detector parameters 
Filtered counts matrices were downloaded from 10X Genomics (PBMC-4k: 
support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k; PBMC-8k: 
support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k). For PCA, we 
used the top 15% most highly variable genes with ³3 counts in ³3 cells (PBMC-4k, n=1,129 genes; PBMC-8k, 
n=1,307 genes) and kept the first 30 PCs. Scrublet was run using 𝑘 = 50, 𝑟 = 5, and 𝑑 = 0.03 (PBMC-4k) or 
𝑑 = 0.06 (PBMC-8k), based on the expected doublet rates 
(support.10xgenomics.com/permalink/3vzDu3zQjY0o2AqkkkI4CC). To classify cells as singlets or 
doublets, a threshold was set by eye using the histogram of doublet scores for simulated doublets. 
 
2-D visualization 
Transcriptomes were visualized using a force-directed layout of the four-nearest-neighbor graph of observed 
cells, where neighbors were identified using Euclidean distance in PC space.  
 
Mapping PBMC-8k to PBMC-4k 
To map the PBMC-8k data to the PBMC-4k data, we TPM-normalized both datasets, ran PCA on the PBMC-4k 
cells, and used the same eigenvectors to transform the PBMC-8k data. The PBMC-4k cells were clustered 
using spectral clustering of the four-nearest-neighbor graph with 30 clusters. We then mapped each PBMC-8k 
cell to its nearest PBMC-4k cell (Euclidean distance) and calculated the number of PBMC-8k cells mapping to 
each PBMC-4k cluster. In Fig. 5D, we present the relative number of PBMC-8k cells per cluster; that is, if 𝑛+ is 
the number of PBMC-8k cells mapping to cluster 𝑗 and 𝑁sh and 𝑁th are the total number of PBMC-4k and 
PBMC-8k cells, then the relative mapping frequency for cluster 𝑗 is logu(𝑛+

Vvd
Vwd
). 

 
Hematopoietic progenitor dataset 
Pre-processing and doublet detector parameters 
The raw counts matrix was downloaded from GEO (GSM2388072). Restricting to cells from library batches 2, 
3, and 4, we also excluded cells with fewer than 700 total counts or with >15% mitochondrial gene counts 
(n=4,273 cells final). For PCA, we filtered genes using the same method as the original paper [19], keeping 
genes with mean expression >0.05 counts and a coefficient of variation >2 (n=7,255 genes), and kept the first 
40 PCs. Scrublet was run using	𝑘 = 50, 𝑟 = 5, and 𝑑 = 0.1. To classify cells as singlets or doublets, a threshold 
was set by eye using the histogram of doublet scores for simulated doublets. After removing high-scoring cells 
(Scrublet score >0.28, n=146 cells), we re-ran Scrublet and observed additional likely doublets that had been 
residing at the core of a dense doublet cluster in the original data (round 2 Scrublet score >0.28, n=34 cells). 
Following removal of these cells, a third round of Scrublet yielded no additional likely doublets. 
 
2-D visualization 
Transcriptomes were visualized using the force-directed graph layout appearing in the original publication, with 
minor modifications. Because the published plot was generated after removing doublets, we added doublets 
back to the visualization by building a kNN graph (k=4) with all transcriptomes (filtered as described above) 
and running a force-directed graph layout with the positions of the original cells fixed in place, allowing the 
remaining cells to relax.  
 
Marker gene co-expression score 
The marker gene co-expression score was created by identifying highly specific marker genes for each cell 
type, smoothing expression of these genes over the four-nearest-neighbor graph (see “Graph-based 
smoothing”, below), and summing the products of pairs of non-overlapping marker genes. The combined 
marker overlap score was calculated as described in the “Demuxlet PBMC dataset” section, above. 
 
We combined the following pairs of marker genes to identify doublets that were also detected by Scrublet (Fig. 
6D):  
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- Early erythroid and early neutrophil: Car1 x Mpo 
- Early erythroid and late neutrophil: Car1 x Ngp 
- MPP and late neutrophil: Cd34 x Ngp 

And to identify macrophage-erythroblast doublets (n=37 cells) undetected by Scrublet (Fig. 6C): 
- C1qa x Hba-a1 

 
Graph-based smoothing 
We used a diffusion-based method to smooth data over the kNN graph for the purposes of finding overlapping 
marker gene expression (Figs. 4F,6D). In detail, we computed the smoothing operator 𝑆 = 𝑒𝑥𝑝𝑚(−𝛽𝐿), where 
𝐿 is the Laplacian matrix of the kNN graph, 𝛽 is the strength of smoothing (𝛽 = 1 throughout), and 𝑒𝑥𝑝𝑚 is the 
matrix exponential (scipy.linalg.expm from the SciPy Python package). If 𝑋∗ is the smoothed version of 
gene expression vector 𝑋, then 𝑋∗ = 𝑆𝑋. 
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