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Abstract 46 
 47 
Constructing networks has become an indispensable approach in understanding 48 

how different taxa interact. However, methodologies vary widely among studies, 49 
potentially limiting our ability to meaningfully compare results. In particular, how network 50 
architecture is influenced by the extent to which nodes are resolved to either taxa or 51 
taxonomic units is poorly understood. To address this, here we collate nine datasets of 52 
ecological interactions, from both observations and DNA metabarcoding, and construct 53 
networks under a range of commonly-used node resolutions. We demonstrate that 54 
small changes in node resolution can cause wide variation in almost all key metric 55 
values, including robustness and nestedness. Moreover, relative values of metrics such 56 
as robustness were seen to fluctuate continuously with node resolution, thereby 57 
potentially confounding comparisons of networks, as well as interpretations concerning 58 
their constituent ecological interactions. These findings highlight the need for care when 59 
comparing networks, especially where these differ with respect to node resolution. 60 
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Introduction 61 

The construction of ecological networks has become an indispensable approach 62 
in understanding how different taxa interact with each other, as well as how such 63 
interactions are affected by biotic and abiotic factors (Baldock et al. 2015; Orford et al. 64 
2016). It has become routine to generate networks to study diverse relationships, from 65 
mutualism (Jordano et al. 2003) to parasitism (Wirta et al. 2015) to carnivory (Lafferty et 66 
al. 2006) and indirect interactions (Melian & Bascompte 2002). 67 

Despite their increasing use, ecological networks almost always include 68 
unresolved nodes where species identities are not known (Montoya et al. 2006). Yet 69 
while the impacts of unresolved nodes and thus mixed resolution have been cited as a 70 
fundamental problem in network ecology (Ings et al. 2009), their consequences for the 71 
analysis and interpretation of ecological data have been largely overlooked. In 72 
particular, we have little knowledge of how standard network-level metrics that are 73 
commonly generated to quantify network topology (Dormann et al. 2009) are affected by 74 
taxonomic resolution. This is unfortunate because studies increasingly use such metrics 75 
to make comparisons between different networks (Flores et al. 2016).  76 

The potential problems surrounding imperfect node resolution are an issue for 77 
traditional networks that typically rely on morphology, and are often unable to 78 
distinguish among cryptic taxa. Mounting numbers of studies have used molecular 79 
methods to identify species interactions as an alternative. For example, DNA has been 80 
shown to reveal more nodes in host-parasitoid networks than could be seen from 81 
rearing data alone, with measurable changes in network structure (Kaartinen et al. 82 
2010; Wirta et al. 2014). However DNA sequences that are used to delimit nodes may 83 
also contain limited taxonomic information, similarly raising a problem of mixed 84 
resolution in networks. 85 

The development of high throughput sequencing (HTS) provides new 86 
opportunities in ecology. In particular, network ecologists are now able screen samples 87 
for multiple taxa and thereby obtain data from often numerous interactions at the same 88 
time (Pompanon et al. 2012). These “metabarcoding” techniques overcome the difficulty 89 
of observing some ecological interactions (Clare et al. 2009), and/or of inferring these 90 
where samples such as stomach contents from liquid feeding contain no identifiable 91 
remains (Piñol et al. 2014). Despite these advantages, and calls for the incorporation of 92 
metabarcoding data in interaction networks (e.g. food webs) (Ji et al. 2013; Evans et al. 93 
2016), there are very few examples of metabarcoding being used to resolve nodes 94 
(Toju et al. 2014, 2015).  95 

Currently a major challenge in metabarcoding in general is making sense of the 96 
millions of sequences generated, which are normally not possible to identify due to the 97 
lack of reference sequences from known taxa. A common solution is to classify 98 
sequences into Molecular Operational Taxonomic Units (MOTUs) (Floyd et al. 2002; 99 
Clare et al. 2016), which are used as taxonomic proxies (including as nodes in 100 
interaction networks). MOTUs are best thought of as equivalent pools of genetic 101 
diversity partitioned by a uniformly-applied threshold of genetic divergence, but which 102 
may not be equivalent to accepted taxonomic levels. Previous results have shown that 103 
the generation of MOTUs can be sensitive to the choice of thresholds as well as to the 104 
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algorithms used and other parameters; consequently, MOTU counts can vary by orders 105 
of magnitude (Flynn et al. 2015; Clare et al. 2016), with substantial differences in 106 
associated diversity estimates (Bachy et al. 2013; Egge et al. 2013). While many 107 
methods for inferring MOTUs use a default 3% sequence divergence (Brown et al. 108 
2015), based upon bacterial studies (Yang et al. 2013), more relaxed thresholds have 109 
also been applied (Salinas-Ramos et al. 2015) to limit MOTU inflation. Studies may 110 
similarly vary in other aspects that will inform the choice of MOTU threshold, including 111 
type of genetic marker (Wang et al. 2010), genomic region (Huber et al. 2009; 112 
Engelbrektson et al. 2010), target taxa (Pentinsaari et al. 2016), and expected level of 113 
sequencing error (Clare et al. 2016). 114 

 The impact of altering MOTU threshold (and thus number of nodes) on the 115 
results of metabarcoding studies has rarely been investigated. In a study of dietary 116 
overlap, Clare et al (2016) found that altering clustering parameters significantly altered 117 
MOTU number but had minimal effect on measures of niche overlap. In contrast, 118 
networks are likely to be more sensitive to such changes, given that topology is critically 119 
dependent on the level of connectance among nodes, and that stability is thought to 120 
arise from the buffering effect of weak interactions. The unknown effects of node 121 
resolution are also likely to apply to some traditional (observation based) networks, in 122 
which nodes may be resolved to different taxonomic levels within a single network (Ings 123 
et al. 2009), for example, in the presence of cryptic taxa (e.g. Carvalheiro et al. 2008; 124 
Heleno et al. 2010; Pocock et al. 2012). 125 

To establish the impact of node delimitation on network architecture and its 126 
consequence for interpreting differences among networks, we collated multiple datasets 127 
of ecological interactions including both traditional observation-based and 128 
metabarcoding based data. For each dataset we then built networks for varying node 129 
resolutions and compared them using some of the most commonly-used network level 130 
metrics (Dormann et al. 2009). We made two predictions; first, that altering the 131 
resolution at which nodes are inferred would lead to similar changes in network 132 
structure based on both data types. Second, we predicted that the relative order of any 133 
given metric would be robust to these changes, and so our interpretation of how these 134 
networks differ from each other would not be affected. Our findings, however, revealed 135 
unexpected and inconsistent responses across our datasets, highlighting potentially 136 
serious caveats in comparative studies of network dynamics. 137 
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Methods 138 

To assess the impact of resolution on network measurements we collated and 139 
constructed networks from nine datasets of ecological interactions. Seven of these 140 
datasets were of predator-prey relationships and were generated from DNA 141 
metabarcoding of guano obtained from insectivorous bats. The other two datasets were 142 
published and comprised mutualistic interactions based on visual observations of plants 143 
and vertebrate seed dispersers (Nogales et al. 2016). 144 

Metabarcoding-based networks 145 

To generate the seven molecular datasets, we analysed guano samples 146 
collected from bats surveyed as part of other unpublished studies conducted at sites in 147 
the USA, Jamaica, Costa Rica and Malaysia. All bats were captured under permit in 148 
either mist-nets or harp traps. For details of sites and trapping methods see Supporting 149 
table 1. To generate predator-prey datasets, we undertook metabarcoding of guano 150 
from individual insectivorous bats. Molecular procedures have been published 151 
elsewhere and PCR details are described in the Supporting Information (Supporting 152 
information 1). In brief, DNA was extracted using the QIAamp Stool Mini Kit (Qiagen, 153 
UK) with protocol modifications from Zeale et al., (2011) and Clare et al., (2014). 154 
Amplification, gel electrophoresis, amplicon size selection, clean up and sequencing 155 
were conducted at the Biodiversity Institute of Ontario, University of Guelph (Canada) 156 
using COI primers ZBJ-ArtF1c and ZBJ-ArtR2c (Zeale et al. 2011) modified with the 157 
dual adaptor system (Clare et al., 2014). Sequencing was performed on the Ion Torrent 158 
(Life Technologies) sequencing platform following Clare et al., (2014) with 192 samples 159 
(2 x 96 well plates) in a run using a 316 chip and following the manufacturer’s guidelines 160 
but with a 2x dilution. 161 

Sequences were de-multiplexed according to forward and reverse MIDs (allowing 162 
two mismatches and two indels). MIDs, primers and adapters were then removed 163 
(http://hannonlab.cshl.edu/fastx_toolkit). Amplicons of 147-167 bp were retained (target 164 
amplicon length = 157bp) and collapsed into unique haplotypes 165 
(http://hannonlab.cshl.edu/fastx_toolkit). All of these steps were performed in Galaxy 166 
(http//main.g2.bx.psu.edu/root, Giardine 2005; Blankenberg et al. 2010; Goecks et al. 167 
2010). We then removed singletons using a custom-written script. 168 

For each dataset, we generated MOTUs using the Uclust algorithm (Edgar 2010) 169 
in QIIME (Caporaso et al. 2010) at 35 clustering similarity thresholds, from 0.91 to 0.98 170 
with increments of 0.002. Files were converted into binary interaction matrices, where a 171 
value of 1 for aij denotes a positive interaction, of predator i consuming prey item j. To 172 
generate networks, the resulting binary interaction matrices were simplified by 173 
combining columns containing bats of the same species (e.g. if two individuals of 174 
species i consumed prey item j, aij = 2). 175 

For each of the 245 networks (35 per dataset) we calculated each of the metrics 176 
under the function networklevel in the ‘Bipartite’ package (Dormann et al. 2008) using a 177 
custom script  that is available as the package ‘LOTUS’ 178 
(https://github.com/hemprichbennett/LOTUS, DOI: 10.5281/zenodo.1297081), compiled 179 
for R (R Core Team 2017). We did not estimate compartment diversity due to it only 180 
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being applicable to networks with more than 1 compartment. All metrics were either 181 
classified as qualitative or quantitative, based on whether they are binary or incorporate 182 
information on interaction strength (see Supporting information 1). The resulting metrics 183 
were transformed by log10 to linearise their fit, and converted to absolute values.  184 

Using data from seven bat-arthropod predator-prey networks, two sets of 185 
comparisons were made (see Supporting Information Table 1). In the most severe 186 
scenario seven networks from diverse groups of bats in multiple geographic regions, 187 
climatic conditions and habitat types are compared. Here, the large number of networks 188 
makes it more likely that differences in the responses of network metrics to different 189 
clustering thresholds will be detected. We also considered a scenario from an ecological 190 
comparison currently in review, in which we compare two networks from different 191 
seasons in the same sampling location, using the Guanacaste wet and dry data 192 
(Supporting Information Table 1) from Oliveira et al. (in review).  193 

To assess the effect sizes of the clustering threshold, individual dataset, and the 194 
interaction between these terms, we used two-factor ANOVAs in which the metric value 195 
was fitted as the response variable, and network (e.g. Malaysia or Texas) and clustering 196 
level as factors. The significance of the main effects is of little interest (we expect 197 
networks to have different structures and that using different clustering levels will affect 198 
the values of the metrics). Of interest here is the interaction term, since a significant 199 
network*threshold interaction suggests that the slopes of the networks (judged by the 200 
metric in question) vary as a consequence of changing clustering threshold. Thus, the F 201 
values of the interaction – the amount of variance in the model attributable to the 202 
interaction – is used as a measure of the extent to which the networks respond 203 
differently to changes in threshold (strictly, whether the slopes of the relationship 204 
between threshold and metric vary between networks). From this same analysis, we 205 
also looked at the ranges over which the rank order of the different networks was 206 
unchanged. 207 

To compare between metrics and the effect size of the interaction between 208 
dataset and clustering level, the effect sizes were standardised by dividing the effect 209 
size of the network’s identity by the effect size of the interaction between network 210 
identity and clustering level. All molecular analyses are available in the Github 211 
repository https://github.com/hemprichbennett/network_otus. 212 

Observation Networks 213 

To produce networks based on observation data, we obtained and reanalysed 214 
published interaction datasets for seeds and vertebrate dispersers from the Galapagos 215 
and the Canary Islands (Nogales et al. 2016). The authors compiled observations from 216 
literature surveys of frugivory and thus the networks were unusual in that all nodes were 217 
resolved at species-level. We then retrieved the corresponding order, family and genus 218 
level data from online databases using the package ‘taxize’ (Chamberlain & Szöcs 219 
2013).  220 

To determine the impact of incomplete node resolution on network architecture 221 
for each of these datasets, we reanalysed the interactions by relabeling a given 222 
proportion of randomly selected nodes so as to reduce the taxonomic resolution. 223 
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Species names were replaced with the corresponding genus. If two nodes then had the 224 
same identity, they were collapsed together to become a single node with the sum of its 225 
parent nodes’ interactions. Thus if Solanum lycopersicum and S. vespertilio were both 226 
simplified to become Solanum, there would now be a single Solanum node containing 227 
the sum of their interactions. For a given proportion of randomly selected nodes, re-228 
labelling was repeated 100 times, and this was then performed for increasing 229 
proportions at increments of 0.1, until all nodes were relabelled (i.e. 0.1 to 1.0). Finally, 230 
the whole procedure was then repeated twice more in order to further reduce taxonomic 231 
information, by replacing species with family, and then species with order.  232 

For both the Canary Island and Galapagos Island datasets we used the ‘Bipartite’ 233 
package (Dormann et al. 2008) to summarise structure of each of the 27,000 networks 234 
(nine increments for 1,000 iterations for three taxonomic levels) using the same sets of 235 
metrics as previously described for molecular networks. To determine the impact of 236 
incomplete node resolution on network structure, we ran mixed effects models using the 237 
R package ‘lme4’ (Bates et al. 2015) in which dataset and the proportion of nodes 238 
relabelled were both fitted as fixed effects, and the taxonomic level being relabelled was 239 
fitted as a random effect. All observational analyses are available in the Github 240 
repository https://github.com/hemprichbennett/network_clustering_observations. 241 

 242 
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Results 243 

Metabarcoding-based networks 244 

Our analyses of seven predator-prey networks revealed that the absolute values 245 
of most metrics were sensitive to the MOTU clustering threshold applied (Figure 1 and 246 
3), reflecting changes in underlying network structure. Trends in summary metrics with 247 
MOTU threshold were seen to differ in both the magnitude and/or the direction. For 248 
example, the metric ‘togetherness’ for the lower network level (i.e. prey) showed an 249 
increase with threshold for some networks, but a decrease for others, with a high F 250 
value associated with the interaction term (Figure 1). In contrast, the metric ‘extinction 251 
slope’ showed relatively consistent directional responses to threshold, as seen by a low 252 
F value (Figure 1), albeit at differing rates of change.  253 

Due to this variation in the behaviour of metrics with changes in threshold, the 254 
resulting final rank order to the networks was also seen to vary depending on the metric 255 
used for a given MOTU threshold. For example, while we observed no change in the 256 
rank order of the networks based on ‘togetherness’, the rank order based on extinction 257 
slope switched almost continuously throughout all thresholds used (Figures 3 and 4, 258 
respectively). Thus we found that in our largest comparisons between all molecular 259 
networks the outcome was critically dependent on the precise choice of threshold.  260 

Our more restricted comparison of two ecologically and spatially-matched 261 
networks that were generated from data collected in separate seasons (wet and dry), 262 
and thus predicted to be relatively similar, yielded considerably more robust 263 
conclusions. Specifically, of 41 metrics examined, only 28 showed a significant 264 
interaction between the dataset and clustering level used (Figure 2), while 12 showed 265 
switches in the rank order (Figure 4). Although absolute values of metrics typically 266 
varied in response to threshold, the rank order of metrics derived for the two networks 267 
was more stable than that recorded in the case of the seven networks. For example, the 268 
metric ‘connectance’ was always higher for the dry season than the wet season, thereby 269 
preserving the order (Figure 5), compared to the former comparison of seven networks 270 
in which the rank order of this metric varied considerably. 271 

Observation networks 272 

Our analyses of two mutualistic networks showed that, for the majority of metrics, 273 
conclusions based on the rank order were sensitive to the proportion of nodes being 274 
collapsed. We found that the focal metrics appeared to differ in their sensitively to node 275 
collapse reflecting variation in the rank order of the two networks. Specifically, when 276 
relabelling species- to genus-level, the rank order based on nestedness and web 277 
asymmetry was seen to switch in at least some cases for every proportion of node 278 
collapse applied. Similarly, rank order based on 14 further metrics including 279 
connectance and robustness switched at very low proportions (0.1-0.25) of node 280 
collapse (Figure 6). In contrast, 10 metrics, including diversity-based indices such as 281 
generality and H2’ changed in absolute but not relative value, and thus rank order 282 
remained stable. Relabelling nodes to family- and order-level resulted in even greater 283 
levels of switching in network rank order (See Supporting Information figures 1 and 2). 284 
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For every network metric, the residuals in the mixed effects model were far larger 285 
than the effect size of the taxonomic level being clustered (full outputs for the mixed 286 
effects models available in Supporting information 2), confirming the high spread of data 287 
for each dataset even within the same taxonomic simplification and proportion of nodes 288 
being simplified. Metrics associated with switches in rank order typically had very similar 289 
values in the two published empirical datasets prior to modification (see Supporting 290 
table 4). 291 
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Discussion 292 

Our analyses of observational and molecular datasets reveal that node resolution 293 
in ecological networks critically impacts their structure, and that this can lead to wide 294 
variation in the magnitude and behaviour of commonly reported metric values. We 295 
further show that inherent instability can lead to erroneous conclusions in comparisons 296 
of networks, although these problems appear less evident in comparisons of 297 
ecologically-matched datasets. These findings therefore have important implications for 298 
the issue of node resolution, a long-standing challenge in network ecology that has 299 
become a topic of increasing interest in light of the proliferation of sequence data. 300 

Resolution and ecological network analysis 301 

Newly available DNA metabarcoding approaches are expected to be 302 
transformative in ecological network research by allowing large volumes of data to be 303 
generated rapidly (Kaartinen et al. 2010; Wirta et al. 2014; Evans et al. 2016). Unlike 304 
traditional approaches to network construction, in which interacting taxa are commonly 305 
identified based on observations, these methods rely on the concept of MOTUs. Despite 306 
these differences in methodology, our comparison of nine datasets revealed that both 307 
types of method are prone to related issues.  308 

A key result was that in both observation-based and metabarcoding-based 309 
networks, altering taxonomic resolution led to often dramatic changes in the numbers of 310 
nodes, which in the latter case varied by several orders of magnitude. This is worrying 311 
because the number of nodes, and their consequence for connectance, are widely 312 
considered strong determinants of multiple elements of network architecture (Poisot & 313 
Gravel 2014; Chagnon 2015). For example, higher numbers of nodes will increase the 314 
proportion of weak links in networks, whereas reducing nodes will cause networks to 315 
appear more generalized. Such trends also have broad implications for theoretical 316 
interpretations, with the distribution of link strength seen to play a pivotal role in the 317 
stability of ecosystems (McCann 2000; Sole & Montoya 2001).  318 

Other key network metrics that showed strong responses to node resolution 319 
included those related to nestedness, robustness, and diversity. In some cases, such as 320 
robustness, this led to widespread variation in the rank order of networks. Nestedness 321 
describes the extent to which interactions involving specialists comprise subsets of 322 
those involving generalists, and is a pattern seen across diverse networks in nature 323 
(Nielsen & Bascompte 2007). Our analyses show that nestedness decreased slightly 324 
with node threshold. In contrast, robustness for the higher level (and the corresponding 325 
extinction slope) showed a rapid increase with node resolution, and thus greater 326 
numbers of lower nodes (i.e. arthropod prey MOTUs) reduce the likelihood of extinction 327 
of higher node species (insectivorous bats). Robustness is commonly used in 328 
forecasting ecosystem resilience to species loss, and has been linked to ecological 329 
restoration (Pocock et al. 2012). 330 

We also found that descriptors of ecological interactions among taxa at the same 331 
network level were also highly labile. For example, some metrics related to niche-use 332 
such as niche overlap (Rudolf & Lafferty 2011; Kéfi et al. 2012) and C-score (Stone & 333 
Roberts 1990; Toju et al. 2014) varied widely, possibly due to inflated resource 334 
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partitioning arising from the over-splitting of MOTUs (Clare 2014). On the other hand, 335 
we found that functional complementarity – an alternative measure of niche 336 
differentiation based on distance matrices (Devoto et al. 2012; Peralta et al. 2014) – 337 
was less sensitive to threshold used, giving fewer alterations in rank order.  338 

Our findings on the impact of node resolution complement previous assertions 339 
that network dimension and sampling intensity may affect multiple network metrics 340 
(Dormann et al. 2009). Fründ et al. (2016) demonstrated that qualitative metrics 341 
summarizing ecological specialisation (e.g. generality) are especially sensitive to 342 
sample size, but argued that where such biases were predictable, these metrics still 343 
hold value provided that interpretations are restricted to relative values. On the other 344 
hand, quantitative analogues that take account of interaction strength were reported to 345 
be more robust to sample sizes (Fründ et al. 2016), a result also supported by our own 346 
observations from node resolution. It is important to note, however, that frequencies 347 
based on presence-absence data inferred from DNA and summed across individual 348 
predators do not show the relative biomass in a given network interaction (Pompenon et 349 
al. 2012). 350 

These results show that resolution is a problem common to networks based on 351 
both DNA barcoding and observations. Although in the latter case our conclusions are 352 
somewhat limited by the small number of fully-resolved networks available for 353 
reanalysis, we nevertheless found that relabelling led to marked shifts in the magnitude 354 
of metric values. It is thus pertinent to draw attention to the fact that almost all such 355 
published networks include a mix of resolved and unresolved nodes, the consequences 356 
of which are not fully understood. These results highlight the need for network 357 
ecologists to identify all nodes to uniform resolution with the greatest level of precision 358 
that is possible and importantly to use identical methods and resolution for the 359 
comparisons of any networks. 360 

In the context of metabarcoding, which looks set to become an important tool in 361 
network ecology, the assigning of sequences to species is highly challenging, especially 362 
where sequences are short and contain limited information. Steps towards achieving a 363 
solution might involve combining data from multiple loci, or, where samples contain 364 
sufficiently intact DNA, generating longer sequences, though this is limited by the 365 
reduction in amplicon size currently being offered on sequencing platforms compared to 366 
those of a few years ago where size has been sacrificed for increased yield. Regardless 367 
it is important to recognize that one or few loci will rarely resolve species, and network 368 
ecologists will thus continue to rely on MOTUs for the foreseeable future. While most 369 
programs to date classify MOTUs by splitting genetic diversity according to a single 370 
threshold, it is well known that interspecific divergence will vary widely across both loci 371 
and taxonomic groups (Johns & Avise 1998; Pentinsaari et al. 2016). Emerging 372 
approaches offer the means to balance over-splitting of MOTUs against retaining 373 
sequencing errors (Frøslev et al. 2017), however, ultimately an adaptive approach- in 374 
which specific thresholds can be fitted to different taxonomic groups – might further aid 375 
taxonomic precision. As in traditional networks, it is vital that the exact same molecular 376 
and bioinformatics procedures be used in the comparison of any two networks. 377 

 378 
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Finally, we conclude that our ability to make meaning interpretations regarding 379 
ecological networks critically depends on the nature of the underlying data and its 380 
processing. We further show that precise metric values can be arbitrary, and while 381 
relative values in comparative studies may be more reliable, effect sizes are likely to be 382 
the most important criteria when deciding if these values are biologically meaningful. 383 
Overall we suggest that caution must be taken when comparing networks, especially 384 
where node resolution differs. 385 
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