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Abstract

Cell lineage tree reconstruction methods are developed for various tasks, such as
investigating the development, differentiation, and cancer progression. Single-cell
sequencing technologies enable more thorough analysis with higher resolution. We
present Scuphr, a distance-based cell lineage tree reconstruction method using bulk and
single-cell DNA sequencing data from healthy tissues. Common challenges of single-cell
DNA sequencing, such as allelic dropouts and amplification errors, are included in
Scuphr. Scuphr computes the distance between cell pairs and reconstructs the lineage
tree using the neighbor-joining algorithm. With its embarrassingly parallel design,
Scuphr can do faster analysis than the state-of-the-art methods while obtaining better
accuracy. The method’s robustness is investigated using various synthetic datasets and
a biological dataset of 18 cells.

Author summary

Cell lineage tree reconstruction carries a significant potential for studies of development
and medicine. The lineage tree reconstruction task is especially challenging for cells
taken from healthy tissue due to the scarcity of mutations. In addition, the single-cell
whole-genome sequencing technology introduces artifacts such as amplification errors,
allelic dropouts, and sequencing errors. We propose Scuphr, a probabilistic framework
to reconstruct cell lineage trees. We designed Scuphr for single-cell DNA sequencing
data; it accounts for technological artifacts in its graphical model and uses germline
heterozygous sites to improve its accuracy. Scuphr is embarrassingly parallel; the speed
of the computational analysis is inversely proportional to the number of available
computational nodes. We demonstrated that Scuphr is fast, robust, and more accurate
than the state-of-the-art method with the synthetic data experiments. Moreover, in the
biological data experiment, we showed Scuphr successfully identifies different clones and
further obtains more support on closely related cells within clones.

Introduction

Reconstructing cell lineage trees, from single-cell data, for healthy tissue is a
fundamental computational problem with enormous potential for studies of development
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and differentiation [1–6]. There are two related reconstruction problems for cancer
tumors: reconstruction of clonal trees and the reconstruction of tumor phylogenies from
single cells. Several data types, e.g., bulk DNA, single-cell DNA, and single-cell RNA,
have been used for the latter two problems [7–11]. All these reconstruction methods
exploit mutations and attempt to reconstruct trees in which the proximity between a
pair of cells, or clones, is correlated with the similarity between their patterns of
mutations. The somatic mutation rate in humans is 10−9 per locus per cell division [12],
and the copy number is not considered to carry substantial information regarding cell
lineage membership in healthy tissue. Therefore, mutations are scarce when
reconstructing lineage trees for healthy tissues, implying that more sophisticated models
and computational methods are needed to capitalize fully on the existing mutations.
This scarcity also highlights the need for single-cell DNA sequencing (scDNA-seq) data
since it reveals more point mutations than any other current data type [13].

Regardless of its potential to reveal mutations, scDNA-seq data comes with its
challenges [14–18]. Due to the small amount of genomic data available in a single cell,
the genome needs to be amplified before sequencing [19]. Unfortunately, the
whole-genome amplification methods, such as the multiple displacement amplification
(MDA) method [20] and the multiple annealing and looping-based amplification cycles
(MALBAC) method [21], introduce technical artifacts known as amplification errors
(AEs) that are hard to distinguish from mutations. Moreover, so-called allelic dropout
(ADO) events remain even after the amplification. In addition, the subsequent
sequencing of the amplified materials introduces sequencing errors [22–25].

There have been several methods explicitly made for scDNA-seq data, both for
identifying mutations (single nucleotide variant (SNV) callers) and for reconstructing
cell lineage trees, although several of them are targeting cancer data. Monovar [26] is an
SNV caller designed specifically for scDNA-seq data; for each position, it models the
ADO with a Bernoulli distribution, the AEs with independent and identically
distributed (i.i.d.) Bernoulli random variables and base-calling error probabilities
depend on Phred quality scores, [27, 28], while utilizing dynamic programming.
LiRA [29] and Conbase [30] are scDNA-seq SNV callers that leverage read-phasing,
while the latter does variant calling based on the population of single cells.

There has been a sequence of single-cell tree reconstruction methods targeting cancer
data, [31–36], leading up to the SCIΦ method [37]. Interestingly, for the cancer case, the
infinite sites assumption (ISA, [38–40]) may be violated due to segmental deletions.
However, for healthy tissue, the ISA is an appropriate assumption. So, since SCIΦ is
based on ISA, it is also relevant to the analysis of healthy tissue. SCIΦ has a
probabilistic model that allows joint SNV calling and tree reconstruction using the
Markov chain Monte Carlo (MCMC) method. More recently, the Phylovar [41] method
was shown to handle millions of loci and be faster than SCIΦ while having similar
accuracy.

Method overview

Scuphr is a distance-based phylogenetic inference method that reconstructs cell lineage
trees from scDNA-seq data, produced by experimental procedures that amplify the cells’
genomes, using amplification methods such as the MDA method [20] and the MALBAC
method [21]. Analyses of this data type need to distinguish somatic mutations from
sequencing errors and nucleotide substitutions caused by amplification. Therefore,
Scuphr relies on a probabilistic model of read-phasing and these two error sources.
Read-phasing is a technique applied to identify which allele the read comes from, which
is used to distinguish if the read could be from a mutated or a non-mutated segment.
We first describe our model without read-phasing and then introduce the details of the
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read-phasing.
The amplification process is modeled as a generalized Pólya urn process, in which a

drawn ball with an error probability is replaced by one of the same color and one of
another, in contrast to the ubiquitous replacement by two of the same color in the Pólya
urn. The observed Phred scores define the base-calling error probabilities. The model
also contains a probability for the ADO events. Another vital part of Scuphr is a
dynamic programming-based inference algorithm that, based on the error model,
computes the probability that two cells have different genotypes at any investigated
potential mutation site.

Scuphr processes the scDNA-seq data using a site selection method that identifies
the candidate sites that will be analyzed using the probabilistic model and contribute to
the distance. The distance is obtained by combining the probabilities of different
genotypes across the selected sites for each pair of cells. Finally, this distance is used as
an input to a distance-based phylogenetic method, the neighbor-joining (NJ)
algorithm [42].

The summary of the Scuphr workflow is shown in Fig 1. The input to Scuphr
consists of bulk and single-cell DNA reads. First, candidate mutation sites are detected
using the site selection method, Fig 1a.These candidate mutation sites can consist of a
single base pair, like in most state-of-the-art methods, or two base pairs where the
candidate mutation site is accompanied by a nearby germline SNV (gSNV). We call
these site types singleton sites and paired sites, respectively. These site types will be
referred to as sites throughout the paper. Second, site-associated distance matrices are
calculated in parallel for each selected site, Fig 1b, Eq 3. Third, a single distance matrix
is obtained by combining the site-associated distance matrices, Fig 1c, Eq 1 and 2.
Finally, the cell lineage tree is reconstructed by applying the NJ algorithm to the final
distance matrix, Fig 1d.In addition, the site-associated distance matrices can be
sampled with replacement several times to obtain bootstrap lineage tree samples, which
could be used to get consensus trees and edge supports.

The read-phasing assists in identifying missing data and separating somatic
mutations and errors using patterns of co-occurrence of the nucleotides at the gSNV loci
and the candidate sites. Fig 1e shows an example of a non-mutated and a mutated cell’s
genome. Each cell has two alleles; one maternal and one paternal. The first locus is a
gSNV, where the nucleotides at the first and second allele differ. The second locus is
the candidate site, where the non-mutated cell has the reference nucleotide in both
alleles, and the mutated cell has a reference and an alternate nucleotide. The
non-mutated and mutated cells have the same second allele, and their difference is due
to the mutation located at the first allele. The mutation is associated with the blue
gSNV nucleotide. In Fig 1f, a read with the candidate site is shown. One cannot decide
if this read comes from a non-mutated or a mutated genome since no information is
available for the gSNV locus. Therefore, it cannot be attributed to any of the alleles. In
Fig 1g, a read from the site pair is observed. Since both nucleotides are observed, and
the blue gSNV nucleotide accompanies the candidate reference nucleotide, one can
conclude that the read comes from the non-mutated genome. However, in Fig 1h, the
reference nucleotide is accompanied by the pink gSNV nucleotide, which could come
from either of the genomes.

Results

The two state-of-the-art methods, SCIΦ [37] and Phylovar [41], can exploit amplified,
diploid scDNA-seq data. According to the recently published paper, SCIΦ and Phylovar
perform so similarly in terms of accuracy of SNV calling that it is hard to identify the
one with the highest accuracy, while Phylovar takes less time to complete its analysis by
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Fig 1. The workflow of Scuphr and the illustration of read-phasing. a-d: The
workflow of Scuphr. a: The sites are selected for analysis from bulk and single-cell DNA
sequencing data. b: The distance matrix of each chosen site is calculated independently.
c: The distance matrices are combined. d: The cell lineage tree is constructed from the
final distance matrix using the NJ algorithm. e-h: Illustration of read-phasing. The
first base pair is the gSNV locus and the second base pair is the candidate site. The
gSNV nucleotides are shown in blue and pink colors. The reference and the mutation
nucleotides are shown in gray and yellow, respectively. e: The non-mutated and
mutated genomes are displayed. The mutation is associated with the blue allele (blue
gSNV nucleotide). f: An example read covering both sites, but the gSNV information is
disregarded as in many methods of SNV calling and tree reconstruction. The reference
nucleotide is observed at the candidate site. The read might belong to either the
non-mutated or the mutated genome. g: An example read with available gSNV site
information. We can phase the read (identify which allele it originates from). The read
must come from the blue allele; in this case, the read comes from the non-mutated
genome. h: An example read with available gSNV site information. The read must
come from the pink allele; in this case, the read might belong to either the non-mutated
or mutated genome.

taking advantage of the efficient vectorized computations [41]. We compared the
performance of Scuphr with SCIΦ in terms of cell lineage tree reconstruction accuracy.
Moreover, we also demonstrate the potential of Scuphr in terms of runtime; its runtime
scales with the available number of cores, and we compare it with SCIΦ. This decision
is motivated since, with a sufficient number of cores, Scuphr would be faster than
Phylovar as well.

Accuracy evaluation of synthetic datasets

To evaluate the performance of cell lineage tree reconstruction, we compared the
topologies of the trees inferred by Scuphr and SCIΦ with the ground truth cell lineage
tree. We use a similarity measure defined as one minus the normalized Robinson-Foulds
(RF) distance.The similarity score is in [0, 1], where 1 means the tree topologies are the
same. We investigated the accuracy across several combinations of AE rates, ADO
rates, frequencies of loci with paired sites, and the number of cells. We investigated two
AE rates: 10−5, see Fig 2 and 10−3, see Fig 3. First, for each choice of other
parameters, the frequencies of loci with paired sites considered were 0.001, 0.01, 0.1, and
1. Second, for each choice of the other parameters, the ADO probabilities considered
were 0, 0.1, and 0.2. Third, all parameter configurations were investigated for inputs
having 10, 20, and 50 cells. Finally, Phred scores and read errors were generated. The
details are presented in Methods.

Both methods perform well for the lower error rate 10−5, Fig 2. However, with a few
exceptions, Scuphr has a higher mean accuracy, and other quantiles are higher for
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Fig 2. Similarities between the true and inferred trees for low amplification
errors. Top row: Results for 10 cells. Center row: Results for 20 cells. Bottom
row: Results for 50 cells.

Scuphr than for SCIΦ. This trend is accentuated for the case where the frequency of
loci with paired sites is 1.

For the higher error rate of 10−3, Fig 3 shows a readily noticeable difference between
the two methods. The average accuracy for Scuphr is always better than that of SCIΦ ,
and other quantiles are, in almost all cases, higher for Scuphr than for SCIΦ. In
particular, when all of the loci are paired, Scuphr exploits the paired sites for
read-phasing, but SCIΦ has more or less the same average accuracy for lower
frequencies of paired sites. In this case, the average accuracy of Scuphr is almost twice
as high as that of SCIΦ.

Interestingly, when SCIΦ is provided with the sites selected by our candidate site
selection method, its accuracy is improved in several cases. However, its accuracy is also,
in many instances, decreased. Moreover, for the biological data, it is, due to the number
of sites, that it takes an even longer time to run SCIΦ with the sites selected by our site
selection method. Therefore, in Fig 2 and 3, we presented the results of the entire SCIΦ
method, as described in [37]. The accuracy obtained when SCIΦ is provided with the
site selected by our candidate site selection method is described in the S1 Appendix.

Runtime analysis on synthetic datasets

In addition to the lineage tree reconstruction accuracy, we also compared the wall-clock
runtime of Scuphr to that of SCIΦ. All runtime experiments were performed on a single
cluster node with 32 CPU cores, and each configuration was repeated ten times. As
Scuphr can be used with default and estimated parameters, the runtime analysis for the
parameter estimation step was performed separately, and the results are presented in
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Fig 3. Similarities between the true and inferred trees for high amplification
errors. Top row: Results for 10 cells. Center row: Results for 20 cells. Bottom
row: Results for 50 cells.

the S1 Appendix. We ran both methods with the same sites to compare the runtimes.
The time used to obtain these sites is excluded from the runtimes reported here. We
run SCIΦ with both single and multiple cores. The runtimes were very similar across
the number of cores, and in this section, the single-core runtimes are presented for SCIΦ.
For the multiple core runs, we direct the reader to the S1 Appendix.

Fig 4 shows how the runtime changes across fractions of singleton sites and the
number of cores. The left, center, and right subfigures display the runtime analysis for
10, 20, and 50 cells, respectively. Since each distance matrix is calculated independently,
the main part of our proposed algorithm is embarrassingly parallel, i.e., the wall-clock
runtime scales linearly with the number of available cores, as seen in the figure.
Additionally, the algorithm’s runtime is linear in the number of sites. For 10 and 20
cells, our software infers the lineage tree faster than SCIΦ. Our software is faster for
singleton sites and 50 cells when at least two cores are used for computation.

The wall-clock runtime comparisons for paired sites are shown in Fig 5. Also, in this
case, the left, center, and right subfigures correspond to 10, 20, and 50 cells, respectively.
Our paired site analysis is slower than the singleton site analysis due to the number of
fragment types considered. Nonetheless, the method has the same scalability trend as in
the singleton site experiments. Our method is faster than SCIΦ for the 10 cells case
when at least eight cores are used and for the 20 and 50 cells datasets when at least 16
cores are used.

These runtime analyses were performed on a single cluster node. Nevertheless, one
can use multiple nodes to compute the distance matrices without communication
overhead. Consequently, Scuphr achieves a linear speedup in the total number of
available cores on a cluster. The final step of Scuphr, the lineage tree reconstruction,
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Fig 4. Runtime comparison for singleton sites. The x-axis is the number of sites,
and the y-axis is the wall-clock time in seconds. The red dashed line is the runtime of
SCIΦ using a single core. The remaining lines are the runtimes of the proposed method
for varying numbers of cores. The left, center, and right subplots are the results for
10, 20, and 50 cells datasets, respectively.

Fig 5. Runtime comparison for paired sites. The x-axis is the number of sites,
and the y-axis is the wall-clock time in seconds. The red dashed line is the runtime of
SCIΦ using a single core. The remaining lines are the runtimes of the proposed method
for varying numbers of cores. The left, center, and right subplots are the results for
10, 20, and 50 cells datasets, respectively.

runs on a single core; however, this step is very efficient and does not change the overall
asymptotic runtime.

Biological data analysis

In this section, the accuracy of Scuphr and SCIΦ are compared using a fibroblast
dataset previously used in [30].1 The dataset consists of scDNA-seq data for 18 cells
with a recent common origin and a known lineage tree topology. This single-cell DNA
data has been obtained by amplifying the DNA using MALBAC before the sequencing.
These cells are so closely related that very few mutations distinguish them; hence, it is
very hard to reconstruct the true lineage tree topology. The cells belong to two main
monophyletic groups, one containing cells 0-11 and one containing cells 12-17. The
dataset also includes a bulk DNA sample from the donor, which can be used as an
outgroup.

The data were preprocessed using the pipeline described in S1 Appendix, and the
sites of interest were identified as described in Methods. More than 3 million sites were
selected for analysis; the details are presented in S1 Appendix.

Since the fibroblast dataset is so hard that a reconstruction method would at most
identify the two main monophyletic groups correctly, we devised a test based on
bootstrapping, using the transfer bootstrap expectation (TBE) [43] edge supports. 100
bootstrap lineage trees were constructed by bootstrapping sites (hence, bootstrapping
the distance matrices). The TBE supports of the bootstrapped trees on the true lineage
tree topology were computed with the Booster software [43]. The TBE support of a
branch b is in the [0, 1] range where “0 means that the bootstrap trees contain the edge

1The dataset used in this study is a slightly modified version of the dataset in [30]. For details, see
S1 Appendix.
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b in a random fashion and 1 means that b appears in all bootstrap trees” [43].
Scuphr separates the two main monophyletic groups with very high TBE support,

0.8, Fig 6a. Also, all branches within two smaller monophyletic groups, cells 4-5 and
cells 10-11, respectively, are correctly inferred in all bootstrap rounds.

Fig 6. The TBE supports of bootstrap trees are projected onto true lineage
tree topology. The clones are marked with blue and beige colors. a: TBE supports of
Scuphr. b: TBE supports of SCIΦ.

To compare accuracy, we also applied SCIΦ to the fibroblast data. Due to the input
format requirement (bulk and single-cell sequencing data in Mpileup format), we could
not run SCIΦ on the whole genome in a single run. Instead, we applied SCIΦ
independently to each chromosome, see S1 Appendix for details. We sampled 100
bootstrap trees from the lineage trees reported by SCIΦ for the chromosomes; the trees
were weighted by the number of identified mutations per chromosome. The TBE
supports are evaluated on the true lineage tree topology (Fig 6b). SCIΦ got the same
TBE supports for a subset of branches (separation of two clones and the subclone
consisting of cells 3, 9, 10, and 11). SCIΦ reported higher support for a single branch,
0.28, than Scuphr, 0.17. For the rest of the branches, Scuphr reported higher support or
equal support to that reported by SCIΦ. In the monophyletic group consisting of cells
0, 1, 4, 5, and 6, in contrast to SCIΦ, Scuphr inferred substantial subclonal structure.

Materials and methods

In this section, we describe the proposed model step-by-step. First, we present the
probabilistic graphical model of Scuphr in detail and outline important components and
formulas. Second, we describe how to reconstruct the cell lineage tree from the outcome
of the first part. Third, we describe the candidate loci selection criteria in detail.
Fourth, we show how the model parameters are estimated. Fifth, the simulated data
generation procedure is presented. Finally, two accuracy metrics, the similarity score,
and the TBE support, used in the study are described.
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The probabilistic model

First, we introduce some important concepts. Recall that, as most state-of-the-art
methods do, a set of candidate mutation loci is used for analysis. We call a candidate
locus that covers a single base pair a singleton site. Moreover, Scuphr can facilitate
gSNVs near candidate loci and do read-phasing. A candidate mutation locus paired
with a gSNV site is called a paired site. We will refer to all site types as sites
throughout the Methods section for brevity. Unless otherwise stated, the model
descriptions hold for all site types. Let Π be the set of sites selected for analysis and C
be the number of single cells.

The probabilistic graphical model

Fig 7 shows the probabilistic graphical model of Scuphr at π ∈ Π. a, b, and α are the
model hyperparameters. pado, pae, and pm are the model’s parameters and correspond
to the ADO, AE, and mutation probabilities. A set of reads, their corresponding
base-calling error probabilities, and the coverage of each cell c are observed and
represented by Rc,Qc, and Lc. Moreover, the bulk genotype, B, is observed. The
single-cell mutation status is represented with Gc; Gc, B, and the common mutation
type random variable, Z, define the single-cell genotype, Xc. The aforementioned
scDNA-seq specific challenges are modeled with D1

c , D
2
c , and Ac random variables; D1

c

and D2
c model the ADO events of each allele, and Ac represents the number of errors

that have happened during amplification. The fragment types generated at the end of
the amplification process and their counts are expressed by Fc and Nc, respectively.

Fc, Nc Rc Qc

Lc

Z

Gc

B

α

Xc

pm

a b

Acpae

D1
c D2

c

pado

c = 1, . . . , C

Fig 7. The graphical model of Scuphr for a site π. The shaded nodes are the
observed random variables.

The graphical model consists of cell lineage, DNA amplification, and read
sequencing.

• Cell lineage: At π, all the non-mutated cells have the bulk genotype, and all the
mutated cells must share the same mutation type under the ISA. This shared
mutation type is modeled with a Dirichlet-Categorical distribution with the

December 25, 2022 9/22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2022. ; https://doi.org/10.1101/357442doi: bioRxiv preprint 

https://doi.org/10.1101/357442
http://creativecommons.org/licenses/by-nc-nd/4.0/


hyperparameter α. The cells’ mutation statuses are modeled with i.i.d. Bernoulli
random variables with a mutation probability, pm. The mutation probability has
a Beta prior distribution with hyperparameters a and b. The mutation status
random variable, bulk, and mutation type variables define the genotype of the cell,
Xc.

• DNA amplification: Here, we model the ADO events of each allele with
Bernoulli random variables, with the same ADO probability pado. The number of
AEs that have happened during the amplification is modeled with a Binomial
random variable with probability pae, and its number of trials depends on the
ADO random variables and the observed read coverage. These ADO and AE
random variables, the observed read coverage, and the single-cell genotype form
the amplified fragments, Fc and their corresponding counts, Nc.

• Read sequencing: Finally, the amplified fragments are sequenced and create
observed reads. Since the read sequencing is an erroneous process, the observed
Phred scores are used to obtain the base-calling error probabilities, Qc, and the
uncertainty of read sequencing is modeled.

We briefly discussed the graphical model. More details of its components are
presented in the following parts of this section.

Distance matrix

For each selected site, π ∈ Π, we construct a symmetric nonnegative (C + 1)× (C + 1)
distance matrix Mπ. Mc,c′ is the distance between single-cells c and c′, computed by

Mc,c′ =

∑
π Mπ

c,c′ × 1[Lπ
c > 0, Lπ

c′ > 0]∑
π 1[Lπ

c > 0, Lπ
c′ > 0]

, ∀(c, c′) ∈ [C], (1)

where 1 is the indicator function, and Lπ
c is the coverage of c at π. Only the sites

where both cells have coverage are considered during distance computation. The
matrix’s last row and column are the distances between the cell and the non-mutated
bulk, b, computed by

Mc,b =

∑
π Mπ

c,b × 1[Lπ
c > 0]∑

π 1[Lπ
c > 0]

, ∀c ∈ [C]. (2)

Distance between two single-cells at π

The binary random variable Gπ
c represents the mutation status of single-cell c at π:

Gπ
c = 0 if the cell is not mutated and Gπ

c = 1 if the cell is mutated. The distance
between two single-cells at π is

Mπ
c,c′ = P (Gc = 0, Gc′ = 1|B,R1:C ,Q1:C , L1:C ,Θ)

+ P (Gc = 1, Gc′ = 0|B,R1:C ,Q1:C , L1:C ,Θ),
(3)

where B is the bulk genotype, Θ = {α, a, b, pado, pae} is the set of model parameters and
hyperparameters, and R1:C ,Q1:C , and L1:C are the observed reads, base-calling error
probabilities, and read coverages of single-cells.2 On the random variables of the
right-hand side of the above equation, we omit the π superscript and use the same
convention in the following parts.

The mutation status probability of two cells at a site satisfies

P (Gc, Gc′ |B,R1:C ,Q1:C , L1:C ,Θ) ∝ P (Gc, Gc′ ,R1:C |B,Q1:C , L1:C ,Θ).
2The distance to non-mutated bulk is simply

Mc,b =
∑1

i=0 P (Gc = 1, Gc′ = i|B,R1:C ,Q1:C , L1:C ,Θ).
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Lineage model

The ISA implies that (i) a site can be mutated at most once, and (ii) all the mutated
cells at the loci share the same mutation. We marginalize the mutation types

P (Gc, Gc′ ,R1:C |B,Q1:C , L1:C ,Θ)

=
∑
z

P (Z = z|B,α) P (Gc, Gc′ ,R1:C |Z = z,B,Q1:C , L1:C ,Θ),

where Z is the mutation type random variable and follows the Dirichlet-Categorical
distribution as described previously;

P (Z = z|B,α) =
B(
∑K

k=1 αk, 1)

B(αz, 1)
, (4)

where K is the number of possible mutation genotypes, α is the concentration
parameter, and B is the Beta function. Z differs from the non-mutated bulk genotype
by a single nucleotide, e.g., we may have B = (A,A) and Z = (A,G) for a singleton site
or B = (AA,AT ) and Z = (AA,GT ) for a paired site. See S1 Appendix for details.

Marginalization of other single-cells

Using the notation G1:C\{c,c′} for the mutation status random variables of all cells
except c and c′, the joint distribution of the reads and the mutation statuses of the
single-cells c and c′ can be expressed as

P (Gc, Gc′ ,R1:C |Z,B,Q1:C , L1:C ,Θ)

=
∑

G1:C\{c,c′}

P (G1:C |a, b) P (R1:C |G1:C , Z,B,Q1:C , L1:C , pae, pado)

=

C∑
m=0

∑
G1:C\{c,c′}:∑

i Gi=m

P (G1:C |a, b) P (R1:C |G1:C , Z,B,Q1:C , L1:C , pae, pado),

where m =
∑C

i=1 Gi ∈ [0, C] is the number of mutated cells at the site π. The
summation over mutation counts and mutation statuses in the above equation can be
computed efficiently using dynamic programming.

As mentioned earlier, we assign Beta prior distribution on the mutation probability,
pm, with the hyperparameters a and b. Given pm, the mutation statuses of all
single-cells are conditionally independent and are i.i.d. Bernoulli random variables. The
joint distribution of single-cell mutation statuses is

P (G1:C |a, b) =
∫
pm

P (G1:C |pm, a, b) P (pm|a, b) dpm

=
B(m+ a,C −m+ b)

B(a, b)
.

The derivation is presented in S1 Appendix.

Genotypes of single-cells

We define the auxiliary random variables, X1:C , to denote single-cell genotypes. The
genotype of a single-cell c is

Xc =

{
B, if Gc = 0

Z, if Gc = 1.
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The values of X1:C are deterministic functions of G1:C , Z, and B. From now on, we will
use X1:C notation instead of {G1:C , Z,B}, e.g.,

P (R1:C |G1:C , Z,B,Q1:C , L1:C , pae, pado) = P (R1:C |X1:C ,Q1:C , L1:C , pae, pado).

Conditional independence of single-cells

Given the genotypes of single cells, the amplification, and the allelic dropout
probabilities, the likelihoods of reads are conditionally independent. The read likelihood
is factorized by

P (R1:C |X1:C ,Q1:C , L1:C , pae, pado) =
C∏

c=1

P (Rc|Xc,Qc, Lc, pae, pado).

Introduction of fragments

We introduce the fragments created during the DNA amplification. The fragment types,
Fc, and their counts, Nc, are marginalized as follows;

P (Rc|Xc,Qc, Lc, pae, pado)

=
∑
Fc,Nc

P (Rc|Fc, Nc,Qc) P (Fc, Nc|Xc, Lc, pae, pado).

Amplification model

The DNA amplification is modeled with a generalized Pólya urn model. Two ADO
events determine the initial state of the urn. These ADO events are modeled by two
Bernoulli random variables with the same ADO probability, pado;

P (Fc, Nc|Xc, Lc, pae, pado)

=
1∑

D1
c=0

1∑
D2

c=0

P (D1
c , D

2
c |pado) P (Fc, Nc|D1

c , D
2
c , Xc, Lc, pae),

and

P (D1
c , D

2
c |pado) = p

D1
c+D2

c

ado (1− pado)
2−(D1

c+D2
c).

In the case of no ADO events, the process starts with one copy of each allele. The
process starts with the other allele if there is one ADO event.

One can describe the urn process as follows; the urn is initialized with one or two
colored balls. At each step, a ball is drawn from the urn, a copy of the ball is made, and
both the original and the copy is put back into the urn. The outcome of this process
can be represented by one or two lineage trees where the roots of the trees are the
original copies of the alleles. We will refer to these trees as amplification trees. Given
the initial state and the final number of balls in the urn, which is observed as the read
coverages, the total number of edges in amplification trees is3

ELc

D1
c ,D

2
c
=


2Lc − 2, if D1

c = 0, D2
c = 0

2Lc − 1, if D1
c = 0, D2

c = 1

2Lc − 1, if D1
c = 1, D2

c = 0

0, if D1
c = 1, D2

c = 1.

3An additional incoming edge to the root is introduced to account for subsampling.
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DNA amplification sometimes replaces a nucleotide; therefore, occasionally, the copy
of a ball has a different color than the original. Let Ac be the random variable
describing the number of AEs has happened during the DNA amplification,

P (Fc, Nc|D1
c , D

2
c , Xc, Lc, pae)

=
∑
Ac

P (Ac|D1
c , D

2
c , Lc, pae)

∑
Fc,Nc

P (Fc, Nc|D1
c , D

2
c , Ac, Xc, Lc).

The probability of the number of AEs is a Binomial distribution over the edges of
the amplification trees

P (Ac|D1
c , D

2
c , Lc, pae) =

(
ELc

D1
c ,D

2
c

Ac

)
pAc
ae (1− pae)

ELc
D1

c,D2
c
−Ac

,

where pae is the probability of an AE happening on an edge. In practice, pae is very
small (e.g., [10−6, 3× 10−4] [19, 30]); hence we neglect the cases where Ac > 1.

Marginalizing amplification trees

Let the fragment types and counts be Fc = (F 1
c , F

2
c , F

3
c ) and Nc = (N1

c , N
2
c , N

3
c ),

respectively. Let d(Fi||Fj) be the function that computes the Hamming distance
between two fragment types, Fi and Fj .

The first two elements of Fc are the cell genotype, (F 1
c , F

2
c ) = Xc, and the third

element is the fragment type caused by an AE. In the case of no AE, F 3
c = ∅. In the

case of one AE, F 3
c must differ a single nucleotide from its originating fragment, either

d(F 3
c ||F 1

c ) = 1 or d(F 3
c ||F 2

c ) = 1.
Similar to the Fc tuple, N1

c , N
2
c , and N3

c are the numbers of fragments of the first
allele, second allele, and fragments carrying a nucleotide introduced by the AE. The
total number of fragments is Lc = N1

c +N2
c +N3

c . In case of an AE event, N3
c > 0;

otherwise, N3
c is zero. Finally, the first two elements of fragment counts must satisfy the

ADO events, i.e., N1
c = 0 if D1

c = 1 and N2
c = 0 if D2

c = 1.
With the above conditions satisfied, given the cell genotype, read coverage, ADO,

and AE events, the probability of a fragment type and count pair is a product that
contains up to three important factors. The first factor regards dividing Lc fragments
into one or two amplification trees. There is a single way to partition if there is an ADO
event, e.g., (0, Lc) if the first allele is dropped out or (Lc, 0) if the second allele is
dropped. Otherwise, due to the Pólya urn, the number of reads follows a Beta-Binomial
distribution, and each partition, {(1, Lc − 1), (2, Lc − 2), . . . , (Lc − 1, 1)} has a
1/(Lc − 1) probability. See S1 Appendix for details. The second factor regards the AE
event; if an AE has happened, how many ways are there to get N3

c erroneous fragments?
Here we should note that, even though we know how Lc is partitioned into amplification
trees, we do not know the internal structure of the trees. We need to consider all
possible ways of forming the amplification trees (i.e., marginalization of the
amplification tree topologies). We model an amplification tree as described in S1
Appendix. Assuming a count configuration of Nc = (N1

c , N
2
c , N

3
c ) where N i

c > 0 for all
i ∈ {1, 2, 3} and that the AE is happening strictly on the first amplification tree, there
are C(N1

c +N3
c ) possible tree topologies of the first amplification tree, each with the

probability of 1/C(N1
c +N3

c ). Moreover, C(N1
c +N3

c , N
3
c ) out of E

Lc

D1
c ,D

2
c
edges satisfy

the specified count configuration in this marginalized amplification tree space. When all
these are combined, the second component becomes
C(N1

c +N3
c , N

3
c )/(C(N1

c +N3
c )×ELc

D1
c ,D

2
c
). We direct the reader to Tables 1 and 2 in S1

Appendix for all the count and fragment type configurations. The final component is
the probability of F 3

c given AE; in the case of no AE, the probability is
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P (F 3
c |Ac = 0) =

{
1, if F 3

c = ∅
0, otherwise,

and in the case of AE, the probability is 1/3 for the singleton sites (1× 3 = 3
different possible genotypes differ by 1 nucleotide), and 1/6 for paired sites (there are
2× 3 = 6 possibilities).

The product of the three components leads to the fragment type and counts
probability; P (Fc, Nc|D1

c , D
2
c , Ac, Xc, Lc), which is detailed in Tables 1 and 2 in S1

Appendix.

Read sequencing

Read sequencing is also erroneous and depends on sequencing technology [22–25]. We
use the Phred quality scores (ρ) to compute the base-calling error probabilities,
Q, [27, 28]; Q = 10−0.1 × ρ.

For a single read with a known originating fragment, the likelihood of the read at a
singleton site is

P (Rl
c|F l

c , Q
l
c = q) =

{
1− q, if no error
q
3 , if error,

(5)

and the likelihood of the read at a paired site is

P (Rl
c|F l

c , Q
l
c = (qs, qs

′
)) =


(1− qs) (1− qs

′
), if no errors

(1− qs) qs
′

3 , if error only at locus s
qs

3 (1− qs
′
), if error only at locus s′

qs

3
qs

′

3 , if errors at both positions.

(6)

We use dynamic programming to efficiently compute the likelihood of multiple reads,
P (Rc = R1:Lc

c |Fc, Nc,Qc = Q1:Lc
c ), of cell c. The pseudocode is shown in S1 Appendix.

Lineage tree reconstruction

The standard NJ algorithm [42] and its variants, such as FastNJ [44], are commonly
used for distance-based methods. In the final step of Scuphr, the standard NJ algorithm
is applied to the distance matrix to reconstruct the cell lineage tree using the
implementation in the Dendropy library [45]. The tree is re-rooted, so the bulk node
becomes the root and indicates the non-mutated state.

Site selection

We use several heuristics to identify candidate loci for analysis. Even though Scuphr
can run on the sites with no observed alternate nucleotides, these sites would not
contribute information about the topology of the lineage tree and waste computational
resources. Instead, we select a subset of the genome that could provide information
regarding the topology.
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Paired site selection

The main goal for the paired site selection is to find pairs of loci with a sufficient
amount of alternative nucleotides and a heterozygous site nearby that can be used for
read-phasing.

First, we identify the gSNVs using the unamplified bulk reads taken from another
tissue. We run FreeBayes [46] software and set the read depth threshold to 10 and
alternative nucleotide frequency to 0.2. The sites with heterozygous genotypes are
considered the gSNV sites. Second, we check single-cell reads that cover the gSNV site
and ensure at least two single-cells display the gSNV; that is, both nucleotides must be
present in at least 20% of the reads from both cells. After this verification, we look for
the candidate mutation sites around the gSNV. Both gSNV and the candidate sites
must be covered with the same read to facilitate read-phasing.4 The reference nucleotide
of the candidate site is determined from bulk reads; the site must have at least 10 reads
in bulk data, and at least 80% of the reads are one nucleotide, which is referred to as
the reference. For a site to be picked, at least 2 and at most C − 1 cells must agree on
an alternative nucleotide (at least 20% of the reads should be different from the
reference).5 If multiple gSNVs are near the candidate site, the closest gSNV is used to
form the pair. Finally, one last gSNV check is done to ensure the single-cell reads (that
cover both the candidate and gSNV sites) meet the gSNV requirement described above.6

Singleton site selection

During the singleton site selection, the gSNV heuristics are omitted. The candidate
mutation site identification is performed using the same heuristics as the paired site
selection.

Hybrid site selection

In the hybrid case, the algorithm works with both paired and singleton sites. A
candidate mutation site is paired with a gSNV if the paired site criteria are met;
otherwise, the site is picked as a singleton site.

Parameter estimation and hyperparameter settings

We run the Metropolis-Hastings algorithm for 5, 000 iterations with three different
initial values to infer the parameters pado and pae. We discard the first 20% samples as
burn-in. The acceptance ratio of our Metropolis-Hastings algorithm is

A(Θ∗,Θ) = min

(
1,

q(pado, pae|p∗ado, p∗ae)
q(p∗ado, p

∗
ae|pado, pae)

P (p∗ado, p
∗
ae)

P (pado, pae)
L

)

= min

(
1,

P (p∗ado)P (p∗ae)

P (pado)P (pae)
L

)
,

where

L =

∏
π P (Rπ

1:C |p∗ado, p∗ae, Bπ,Qπ
1:C , L

π
1:C , α, a, b)∏

π P (Rπ
1:C |pado, pae, Bπ,Qπ

1:C , L
π
1:C , α, a, b)

.

The likelihood is calculated similarly to the earlier derivations in Methods;

4All nucleotides covered by a read come from the same allele.
5The signal from a single-cell or all single-cells does not contribute to the information for lineage tree

reconstruction.
6The further the candidate site is from the gSNV site, the fewer reads cover both sites.
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P (Rπ
1:C |pado, pae, Bπ, Qπ

1:C , L
π
1:C , α, a, b)

=
∑
z

P (Zπ|Bπ, α)∑
Gπ

1:C

P (Gπ
1:C |a, b) P (Rπ

1:C |Gπ
1:C , Z

π, pado, pae, B
π,Qπ

1:C , L
π
1:C).

We use a Gaussian random walk proposal in which each parameter is treated
independently, and samples are proposed using a Gaussian distribution with a 0.01
standard deviation. We set uniform prior probabilities for the parameters, calculate the
likelihood of the observed reads R1:Π

1:C based on our model, and accept or reject the
samples. The means of the samples are used as pado and pae parameters during the
analysis.

Scuphr has three hyperparameters; α, a, and b. α is the concentration parameter of
the Dirichlet-Categorical distribution used for the mutation type probabilities. We set α
to all-ones vector. The a and b hyperparameters are for the Beta prior to mutation
probability pm. We assigned uniform prior to the mutation probability by setting a = 1
and b = 1. However, the user can set these parameters and, thereby, modify the
algorithm’s tendency towards mutations.

For our experiments, we randomly picked 20 sites that are used to estimate the
parameters. We sampled the initial value of pado from U [0, 1] and pae from U [0, 0.1].
We set the initial range of pae to [0, 0.1] because the AE probabilities are reported to be
small [19, 30].

Simulation of synthetic datasets

We generated the synthetic dataset as follows. First, we generated random binary cell
lineage trees with C leaves. We assigned 2× (C − 1)× µ mutations, µ ∈ {10, 20}, to the
tree’s edges and ensured each edge had at least one mutation. For each dataset, we
generated a 1 million base pairs long diploid genome that was used for the bulk and the
single cells. We randomly picked mutation loci from odd-numbered bases in the genome.
For each of the phasing frequencies ρ ∈ {0.001, 0.01, 0.1, 1}, we picked ρ× 500, 000 base
pairs as gSNV sites and placed them randomly in even indexed locations in the genome.
So for ρ = 1, every second position in the genome is a gSNV site, and each read
containing a mutation has an accompanying gSNV site. This construction is sufficient
since the distance between sites does not affect the site selection or the subsequent
analysis. The gSNV sites are shared by the single-cell genomes, and the mutation sites
are shared according to their placement in the cell lineage tree. Further, we masked the
single-cell genomes to account for cell-specific ADO events. For each pair of sites (which
consists of consecutive positions, one even and one odd), we dropped the maternal and
paternal alleles independently with pado ∈ {0, 0.1, 0.2}.

The fragments were generated using the Pólya urn process for each site. The masked
single-cell genome determined the initial state of the urn. If both alleles are dropped
out, no fragments were generated. In the case of a single ADO, all the fragments are
generated from the non-dropped allele. If there is no dropout, the fragments are
simulated from both alleles, i.e., the urn was initialized with two balls of different colors.
The number of fragments per pair of sites was sampled from a Poisson distribution with
rate parameter λ ∈ {10, 20}, i.e., an interval that contains the read depth found in our
biological data. Whenever a fragment is copied, an AE occurs with pae independently.
So, even though we base our inference on assuming that there is at most one AE per
site, we allowed multiple errors during the data simulation. We use pae = 10−5 or
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pae = 10−3 for all cells of a dataset; throughout the paper, we refer to these datasets as
a dataset with low and high AEs, respectively.

We simulated how the fragments are sequenced so that reads are obtained, as follows.
Phred quality scores were sampled from a discrete Uniform distribution in the range
[30, 42]. A sequencing error was introduced based on the corresponding base-calling
error probability.

We used a straightforward approach for the bulk reads and replicated the bulk
genome 15 times. One can view this step as the bulk data is generated using 15
single-cell genomes without any mutations. This replication does not contain a DNA
amplification step since the bulk data consists of reads sequenced from unamplified
fragments.

Accuracy metrics

This section describes the two accuracy metrics used for the analysis.

The similarity score

The Robinson-Foulds (RF) distance [47] is a symmetric difference metric commonly
used for phylogenetic tree comparisons [36,48]. The metric calculates the total number
of bipartitions in either of the trees but not in both. We normalized the RF scores
(nRF) by the total number of non-trivial bipartitions in both tree topologies,7

nRF = RF/IB , where IB is the total number of internal edges in the two tree topologies.
Notice that the number of non-trivial edges of a tree depends on its topology, e.g.,
whether the tree is binary or not. We used a similarity score,

similarity score = 1− nRF,

in [0, 1]. If the trees have the same topology, the similarity score is 1. If the trees do
not have any common non-trivial bipartition, the similarity score is 0.

Transfer bootstrap expectation

The TBE is introduced as an alternative metric to compute the support of bootstrap
trees on a reference tree topology [43]. Compared to Felsenstein’s bootstrap
proportions [49], which checks how frequently an edge appears in the bootstrap trees,
the TBE metric penalizes the slight topological differences less. TBE metric computes
the number of operations (e.g., taxa removal) required to match an edge in the
bootstrap tree to the reference tree.

TBE score of an edge is in [0, 1], where 1 means the edge exists in all bootstrap trees
and 0 means the edge appears at random. The higher the TBE score of an edge, the
better.

Discussion

We evaluated the performance of Scuphr on a biological dataset and several simulated
datasets and compared it with SCIΦ. Our investigation focused on the algorithm’s
robustness for varying numbers of single-cells, read coverages, and technological
artifacts such as AEs, ADOs, and sequencing errors. We observed that for the low
amplification error datasets, Scuphr performs on par or better than SCIΦ in most cases.

7A leaf’s edge is considered trivial. If two tree topologies have the same leaf set, there will be edges
that define the same bipartition. There will be C identical bipartitions, regardless of the internal
structure of the trees.
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For the high amplification error datasets, Scuphr consistently outperforms SCIΦ. When
provided by the candidate mutation sites selected by our method, SCIΦ’s performance
becomes similar to Scuphr in most low amplification error datasets; however, Scuphr
continues to outperform SCIΦ in the high amplification error datasets.

In addition, we showed that the algorithm scales with the number of single cells and
sites. Moreover, it scales inversely with the number of cores. For instance, using a single
core, the main part of Scuphr takes approximately 1.6 hours for 20 cells and 1024
singleton sites. The time required for 100, 000 sites would be approximately 166.7 hours;
however, with a modest infrastructure of five compute nodes with 32 CPU cores each,
Scuphr’s runtime can be reduced to approximately 1 hour. This advantage makes it
possible to analyze millions of sites in the genome, whereas most state-of-the-art
methods can handle only a few thousand sites.

Finally, we evaluated the performance of Scuphr using a biological dataset of 18
single cells acquired from [30]. We selected approximately 3.4 million candidate sites for
analysis and used bootstrapping to obtain edge supports on the reference tree topology.
Although the biological dataset was challenging, Scuphr assigned high support values to
the edges that separate the two main clones and some closely related cells. Additionally,
Scuphr outperforms SCIΦ by obtaining higher edge supports for a subclone.

Conclusion

Single-cell DNA sequencing technologies enable detailed analyses of development and
cell differentiation [1–3]. We presented Scuphr, a probabilistic framework that
reconstructs cell lineage trees from healthy, diploid single-cells using whole-genome
amplified DNA sequencing data. Scuphr is designed with the challenges of the
scDNA-seq data in mind, it fits well with the biological findings, and in particular, it
obtains better accuracy with leveraging read-phasing.

In addition to the distance-based and MCMC-based methods, various variational
inference based methods have recently been developed for tree reconstruction
tasks [50–53]. These methods typically operate in the standard phylogeny setting and
require a good set of initial trees for their analysis. In the potential future development
of such methods where the domain moves toward the single-cell setting, Scuphr could
provide a good set of bootstrap trees as input quickly.

Scuphr is designed for healthy, diploid scDNA-seq data. However, it can be
enhanced to handle cancer data by incorporating copy number variations into its model.
We will investigate how the extended model handles the challenges of single-cell tumor
data and compare its performance with state-of-the-art methods in our future work.

Supporting information

S1 Appendix. Supplementary information. The file includes additional
formulations, biological dataset, and benchmarking details.
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48. Wang L, Bouchard-Côté A, Doucet A. Bayesian phylogenetic inference using a
combinatorial sequential Monte Carlo method. J Am Stat Assoc.
2015;110(512):1362–1374.

49. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap.
Evolution. 1985;39(4):783–791.

50. Zhang C, Matsen IV FA. Variational Bayesian phylogenetic inference. In: Int.
Conf. Learn. Represent.; 2018.

December 25, 2022 21/22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2022. ; https://doi.org/10.1101/357442doi: bioRxiv preprint 

https://doi.org/10.1101/357442
http://creativecommons.org/licenses/by-nc-nd/4.0/


51. Zhang C. Improved variational bayesian phylogenetic inference with normalizing
flows. ”Adv Neural Inf Process Syst”. 2020;33:18760–18771.

52. Zhang C, Matsen IV FA. A Variational Approach to Bayesian Phylogenetic
Inference. arXiv. 2022;.

53. Koptagel H, Kviman O, Melin H, Safinianaini N, Lagergren J. VaiPhy: a
Variational Inference Based Algorithm for Phylogeny. arXiv. 2022;.

December 25, 2022 22/22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2022. ; https://doi.org/10.1101/357442doi: bioRxiv preprint 

https://doi.org/10.1101/357442
http://creativecommons.org/licenses/by-nc-nd/4.0/

