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Abstract

Motivation: RNAseq technology provides unprecedented power in the assesment of the transcription
abundance and can be used to perform a variety of downstream tasks such as inference of gene-
correlation network and eQTL discovery. However, raw gene expression values have to be normalized for
nuisance biological variation and technical covariates, and different normalization strategies can lead to
dramatically different results in the downstream study.
Results: We describe a generalization of SVD-based reconstruction for which the common techniques
of whitening, rank-k approximation, and removing the top k principle components are special cases.
Our simple three-parameter transformation, DataRemix, can be tuned to reweight the contribution of
hidden factors and reveal otherwise hidden biological signals. In particular, we demonstrate that the
method can effectively prioritize biological signals over noise without leveraging external dataset-specific
knowledge, and can outperform normalization methods that make explicit use of known technical factors.
We also show that DataRemix can be efficiently optimized via Thompson Sampling approach, which
makes it feasible for computationally expensive objectives such as eQTL analysis. Finally we reanalyze
the Depression Gene Networks (DGN) dataset, and we highlight new trans-eQTL networks which were
not reported in the initial study.
Availability: DataRemix is an R package which is freely available at GitHub
(https://github.com/wgmao/DataRemix).
Contact: mchikina@pitt.edu

1 Introduction
Genome-wide gene expression studies have become a staple of large scale
systems biology and clinical projects. However, while gene expression
is the most prevalent high-throughput technology, technical challenges
remain. Raw gene expression values must be normalized for any technical
and nuisance biological variation and the normalization strategy can have
dramatic effects on the results of downstream analysis. This is especially
true in cases where the sought-after gene expression effects are likely to
be small in magnitude, such as expression quantitative trait loci (eQTLs).
Increasingly sophisticated normalization methods have been proposed and
many are computational intensive and/or can have multiple free parameters

that must be optimized (Leek and Storey (2007); Stegle et al. (2010);
Listgarten et al. (2010); Kang et al. (2008); Mostafavi et al. (2013b)).
Moreover, it is not uncommon for one dataset to yield multiple normalized
versions that maximize performance in a particular setting (such as the
discovery of cis- and trans-eQTLs Battle et al. (2014)), highlighting the
complexity of the normalization problem.

Singular value decomposition (SVD) is one of the most widely used
gene expression analysis tools (Alter et al. (2000, 2003)) that can also be
used for data normalization. Using the SVD we can simply remove the
first few principle components that are presumed to represent technical
factors such as batch-effects or other nuisance variation. In some cases this
dramatically improves downstream performance, for example in the case
of eQTL analysis (Mostafavi et al. (2013a)). The drawback of this method
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is that the exact number of components to remove must be determined
empirically and some meaningful biological signals may be lost in the
process.

More sophisticated approaches attempt to partition data structure into
true biological and nuisance variation and remove only the latter (Leek
and Storey (2007); Stegle et al. (2010); Listgarten et al. (2010); Kang
et al. (2008); Mostafavi et al. (2013a)). These can improve on the naive
SVD-based normalization but require additional input such as technical
covariates, or the study design. The success of these methods ultimately
depends on the availability and quality of such meta data and some methods
still rely on parameter optimization to maximize performance. These
widely used normalization approaches all have a common theme that
they rely in part on the intrinsic data structure. One key property that
contributes to the success of these approaches is that for many biological
questions of interest, nuisance variation (of technical or biological origin)
is larger in magnitude than true biological variation. Our proposed method,
DataRemix, explicitly formalizes this view of the data normalization
problem.

In this work we demonstrate that biological utility of gene expression
datasets can be dramatically improved with a simple three-parameter
transformation, DataRemix. Our method does not require any dataset
specific knowledge but rather optimizes the transformation with respect to
some independent objective of data quality, such as the quality of the gene-
correlation network or the number of trans-eQTL discoveries. Because
our method requires only the gene expression data and biological validity
objective, it can be applied to any publicly available dataset. We focus our
study on gene expression data for which methods for quantifying biological
validity are well established, but our approach can be readily applied to
any high-throughput molecular data for which similar quality metrics can
be defined. We show that this strategy can outperform methods that make
explicit use of dataset specific factors, and can further improve datasets that
have been extensively normalized via an optimized, parameter rich model.
We also show how the optimal parameters of DataRemix can be found
efficiently by Thompson Sampling with a dual learning setup, making the
approach feasible for computationally expensive objectives such as eQTL
analysis.

2 Result

The DataRemix framework

We formulate DataRemix as a simple parametrized version of SVD
which can be directly optimized to improve the biological utility of gene
expression data. Given a gene-by-sample matrix X , SVD decomposition
can be thought of as a solution to the low-rank matrix approximations
problem defined as:

min
Uk,Σk,Vk

∥∥∥X − UkΣkV
T
k

∥∥∥2

F
(1)

where U and V are unitary matrices. With the SVD decomposition
UΣV T , the product of k-truncated matricies UkΣkV

T
k gives the rank-k

reconstruction of X . We introduce two additional parameters p and µ to
define a new reconstruction:

DataRemix{k,p,µ}(X) = UkΣpkV
T
k + µ(X − UkΣkV

T
k ) (2)

Here, k is the number of principle components of SVD and p ∈ [−1, 1] is
a real number which alters the scaling of each eigenvalue. For p = 1, this
approach reduces to the original SVD-based reconstruction . Forp = 0, the
transformation gives the frequently used whitening operation (Friedman
(1987)). As depicted in Figure 1, generally, different choices of p reweigh

the contribution of each variance component, possibly making some low-
variance biological signals visible while down-weighting technical and
other systematic noise. The parameterµ is a non-negative weight that adds
the residual back to the reconstruction in order to make the transformation
lossless.

Raw data DataRemix, p=0.5 DataRemix, p=−0.1
Useful
variation

Nuisance
variation

Fig. 1: Visual representation of DataRemix transformation. We simulate a 2-dimensional
dataset where the nuisance variation contributes more variance than true biological variation.
Different power parameters p reweigh the contributions of the two variance axes, making
the true biological variation more “visible”.

Intuitively, we expect this approach to succeed because sophisticated
normalization methods that use both data structure and some external
variables, such as technical covariates, can be thought of as implicit
regularizations on the naive SVD-based normalization (which simply
removes the first k components), and this formulation simply makes this
explicit.

A new set of parameters λt = (kt, pt, µt)

Get the new reconstruction: DataRemix{kt,pt,µt}(X)

Evaluate the downstream biological
objective and get the metric yt

Determine the next most promising point
λt+1 to improve y based on

⋃t
i=1(λi, yi)

Fig. 2: The workflow of DataRemix.

The general workflow of DataRemix is shown in Figure 2. The
downstream biological objective depends on your study. For example,
if you focus on trans-eQTL analysis, the biological objective will be
to increase the number of trans-eQTLs detected from the DataRemix-
normalized gene expression profile and the metric y will be the number of
trans-eQTLs deemed significant. The parameter optimization step which
determines the next point to check is detailed in the Methods section.

Quality of the correlation network derived from the GTEx
gene expression study.

The GTEx datasets (Lonsdale et al. (2013)) is comprised of human samples
from diverse tissues, many of which were obtained post-mortem and there
are many technical factors which have considerable effects on the gene
expression measurements. On the other hand this rich dataset provides
an unprecedented multi-tissue map of gene regulatory networks and has
been extensively analyzed in this context. It is natural to assume that a
dataset that is better at recovering known pathways is likely to yield more
credible novel predictions. Thus, we use DataRemix to optimize the known
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pathway recovery task as a function of the correlation network computed
on a Remixed dataset.
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Fig. 3: A The improvement in performance of DataRemix transform of the pathway
prediction task visualized as a function of k and p parameters (µ is fixed at 0.01).
Performance is measured as the mean AUC across all pathways in the “canonical”
mSigDB dataset and the red contours indicate improvement over the performance
on untransformed data. B Per-pathway performance improvement for the DataRemix
transformation corresponding to the optimal point in A.

We formally define the objective as the average AUC across
“canonical” mSigDB pathways (which include KEGG, Reactome and PID)
(Subramanian et al. (2005)) using guilt-by-association. Specifically, the
genes are ranked by their average Pearson correlations to other genes in the
pathway (excluding the gene when the gene itself is a pathway member).
Figure 3A depicts the results of grid search for the parameters k, p (with
µ fixed at 0.01) and the contour plot shows a clear region of increased
performance. Using the optimal transformation found by grid search, we
plot per-pathway AUC improvement in Figure 3B and find that the AUC
is substantially increased for almost every pathway.

In Figure 4 we systematically evaluate the performance of DataRemix
against alternative methods. For the purpose of evaluation we include
the naive method of simply removing known and hidden factors from
the data. We consider removing principle componentes (Remove PC),
removing known technical variables (Remove tech), a combination of the

two (Remove tech and PC). Since the number of hidden factors is not
known, we optimize the number of PCs removed to the specific network
quality objective (see Methods for further details). We also include a
penalized mixed linear model method “Hidden Covariates with Prior”
(HCP) which takes known covariates as input. In addition to the number
of hidden components, this method has 3 hyper-parameters that were
optimized to maximize the network quality objective via grid search.
HCP has been extensively benchmarked perviously and has been shown
to outperform both naive methods and the widely used PEER approach
(see Stegle et al. (2010) for PEER and Mostafavi et al. (2013b) for HCP
including performance comparison). Moreover, HCP is considerably faster
than PEER making an extensive hyper-parameter search feasible.

We find that on this dataset DataRemix is able to outperform all naive
methods including ones that make use of known technical covariates,
achieving performance that is comparable to that of HCP. In summary,
our DataRemix framework is able to match the performance of the best
competing method, HCP, while using no technical covariates. It is worth
pointing out that once a truncated SVD decomposition is computed, a
single DataRemix evaluation requires only two matrix multiplications
while HCP is an optimization problem which needs to be solved iteratively
with two matrix inversions at each step.

eQTL discovery in the DGN dataset.

We also consider the task of discovering cis- and trans-eQTLs on the
Depression Gene Networks (DGN) dataset (Battle et al. (2014)). In the
original analysis this dataset was normalized using the Hidden Covariates
with Prior (HCP) (Mostafavi et al. (2013b)) with four free parameters
that were separately optimized for cis- and trans-eQTLs. The rationale
behind separate cis and trans optimized normalization can be understood in
terms of which variance components represent true biological vs. nuisance
variation in the two contexts. Specifically, cis-eQTLs represent direct
effects of genetic variation on the expression of a single gene. On the
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Fig. 4: We compare our DataRemix approach to other common normalization strategies with respect to correlation network quality. Here, we consider different normalizations of the GTEx
dataset. We compute several “naive” normalizations which simply remove known factors (tech), top k principle components where k is optimized for the task (PC) or both (tech+PC). We also
consider “Hidden Covariates with Prior” (HCP) which is a mixed linear model that takes known factors into account and has been shown to outperform other methods in various normalization
tasks (Mostafavi et al., 2013b) . The four hyper-parameters in HCP are optimized by grid search. Each box plot shows the distribution in AUCs or AUPRs across the “canonical” mSigDB
pathways. P-values compare the results achieved by DataRemix against others using the Wilcoxon ranksum test. DataRemix performance surpasses all naive methods and is comparable to
HCP while using no technical covariates and considerably less computation ( see text for details) .
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other hand, trans-eQTLs represent network level, indirect effects that are
mediated by a regulator. Thus, trans-eQTLs are reflected in systematic
variation in the data which becomes a nuisance factor when only direct
effects are of interest. It thus follows that the data should be more
aggressively normalized for cis-eQTL discovery. The original analysis
of this dataset optimized the HCP parameters separately for the cis and
trans tasks yielding two different datasets that we refer to as DHCP−cis

and DHCP−trans.
The HCP model takes various technical covariates as input, and 20

of the covariates used in the original study cannot be inferred from the
gene-level counts. In order to investigate how much improvement can be
achieved via DataRemix in the absence of access to these covariates, we
also consider a “naively” normalized dataset, quantile normalization of
log-transformed counts, or DQN.

cis-eQTLs.
In this task we focus on optimizing the discovery of cis-eQTLs. We define
cis-eQTLs as a SNP-gene interaction where the SNP is located within
50kb of the gene’s transcription start site. The interaction is quantified
with Spearman rank correlation and deemed significant at 10% FDR
(Benjamini-Hochberg correction for the total number of tests).

We perform our analysis in a cross-validation framework, whereby
we optimize DataRemix parameters (using grid search or Thompson
Sampling) using SNPs on the odd chromosomes and then evaluate the
parameters on the, held-out, even chromosome set.

The final results for both the train and test set are depicted in Figure 5.
As expected, the quantile-normalized datasetDQN performs considerably
worse than DHCP−cis, which is specifically optimized for cis-eQTL
detection. However, the two datasets achieve comparable performance
after applying DataRemix. Moreover, the final performance of the
Remixed DQN dataset is an improvement on DHCP−cis demonstrating
the near optimal normalization is possible without access to technical
covariates. Importantly, We find that the optimal parameters are indeed
generalizable as we achieve a similar level of improvement on the train
and test chromosomes.
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Improvement in cis eQTL statistics

Fig. 5: Final results from DataRemix parameter search using a cross-validation framework.
Optimal parameters are determined using the odd chromosome SNPs only and then tested
on the even chromosome SNPs. While the raw dataset is considerably worse than HCP both
are improved to a similar level with DataRemix. We find that the DataRemix transform
does not overfit the objective as the degree of improvement is similar across the test and
train SNP sets. (Note, the starting value of the raw or HCP dataset differ between the test
and train SNP set). Moreover, we find that Thompson Sampling is able to match grid search
results using only 100 evaluations.

trans-eQTLs.
In our second task, we optimize the discovery of trans-eQTLs in
the same DGN dataset. Ideally, trans-eQTLs represent network-level
effects and thus give some insight about the regulatory structure of
gene expression. However, in practice trans-eQTLs are simply defined
as SNP-gene associations where the SNP and the gene are located on
different chromosomes. While this is a useful heuristic definition, it
doesn’t guarantee that the association is mediated at the network level. One
possible source of bias is mis-mapped RNAseq reads which contaminate

the quantification of the apparently trans-associated gene with reads from a
homologous locus that has cis association. Even in the absence of technical
artifacts, direct interchromsomal interactions have been observed (see
Williams et al. (2010) for a comprehensive review). In order to focus
on potential indirect effects, we apply an additional filter to trans-eQTL
discovery. Specifically we require SNPs involved in a trans effect to be
associated with more than one gene at a FDR of 20% (Benjamini-Hochberg
correction for the total number of test (approximately 8× 109). We term
these SNPs trans-SNPs+. In comparison with same chromosome cis-
eQTLs, inter-chromosome trans-eQTLs are rare and trans-SNPs+ (as
defined above) are more rare still. In fact, using the odd chromosome
SNPs subsampled at 20%, we find only 88 such SNPs usingDHCP−trans

dataset and this is the default value we wish to improve.
Here again we find that the dataset specifically optimized for the

task of trans-eQTL detection, DHCP−trans, considerably outperforms
the raw data DQN, however DataRemix is able to improve both to a
similar performance. As is the case with the cis-eQTL objective, the
cross-validation procedure gives consistent results and no overfitting is
observed for either grid search or Thompson Sampling (Figure 6). We
note that Thompson Sampling is able to achieve a better performance than
grid search, though the improvement is small in absolute magnitude due
to the scarcity of trans-eQTLs. In this case, the optimal region for the
DataRemix transformation is relatively small (data not shown) and thus
Thompson Sampling has an advantage since it can search off the grid.
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Fig. 6: Final values for the eQTL statistics obtained from two versions of datasets.
Here we make a comparison between quantile normalized DQN and HCP normalized
DHCP−trans with parameters optimized for trans-eQTL discovery. We find DataRemix
is able to improve upon either of starting datasets and the improvement on both the train
and test dataset are comparable which indicates that overfitting is not a problem

DataRemix performance transfers across different network objectives
It is well know that for statistical analyses of genomic datasets, more
significant associations do not necessarily mean improved biological
findings. However, it is generally agreed that improvement in cis-eQTL
detection cannot be achieved through artificial means but indeed represents
improved correction for confounding factors (Stegle et al., 2010; Mostafavi
et al., 2013b). There is no such consensus for trans-eQTLs which are rare,
and subject to many artifacts. Consequently, it is important to further
corroborate the biological validity of the trans-optimized dataset through
independent means.

Since trans-eQTLs are likely to reflect pathway-level effects, we expect
that a dataset that is optimally transformed for trans-eQTL discovery
should also produce better correlation networks. We thus investigate
if optimal DataRemix transform is transferable across these tasks by
verifying that the Remixed dataset optimized with respect to trans-
eQTL discovery also improves the network quality criterion. Similar to
our analysis of the GTEx datasets, we use the correlation network to
perform guilt-by-association pathway predictions and evaluate the results
over 1,330 MSigDB canonical pathways. Figure 7 shows scatter plots
of per-pathway AUPR (area under precision-recall curve) for several
comparisons with respect to the baseline DHCP−trans dataset. In the
first panel we contrast the performance to DQN and observe that, as

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 5, 2019. ; https://doi.org/10.1101/357467doi: bioRxiv preprint 

https://doi.org/10.1101/357467
http://creativecommons.org/licenses/by-nc-nd/4.0/


DataRemix 5

expected, DHCP−trans brings a considerable improvement over the
quantile normalized dataset. In the second panel we contrastDHCP−trans

with the Remixed version of DQN (optimized for trans-eQTL discovery
with Thompson Sampling). We find that the pattern becomes opposite and
the RemixedDQN dataset performs consistently better thatDHCP−trans.
The final panel shows the results of Remixing DHCP−trans itself which
also improves the performance.

Overall, we find that DataRemix improves multiple criteria of
biological validity as optimizing for the trans-eQTL objective also results
in improved correlation networks.
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Fig. 7: DataRemix-transformed datasets improve the pathway prediction objective which
is not explicitly optimized. Each plot is a per-pathway AUPR (area under precision-recall
curve) from various datasets (y-axis) contrasted with the results from the optimal covariate-
normalized dataset DHCP−trans , which serves as the baseline (x-axis). Panel A shows
the contrast between DHCP−trans and DQN . The performance of DHCP−trans is
considerably better. Panel B shows the results of the Remixed DQN datasets (optimized
for trans-eQTL discovery with Thompson Sampling). Even though DQN starts out as
considerably worse, the Remixed version is able to outperform DHCP−trans . Panel
C shows the results of Remixed DHCP−trans . We choose to show AUPR instead of
AUC because we find that Remixed version matches but doesn’t further improve the AUC
performance ofDHCP−trans

A major finding of our study is that for the eQTL and pathway
prediction tasks, the starting point of normalizing DGN datasets appears
to matter relatively little. Even though the quantile-normalized dataset
performs considerably worse in the beginning, after Remixing its
performance matches that of the optimal covariate-normalized datasets.
Of course, if covariates are available, it is preferable to use them and in the
case of DGN, slightly further improvement can be achieved. However, our
results indicate that in some cases datasets can be effectively normalized
even in the absence of meta-data about quality control or batch variables.
This is an important consideration for many legacy datasets where such
information is not available.

Novel Biological Findings

At the optimal DateRemix parameters for DQN, we find an additional 24
loci that have significant associations with more than one gene and are not
in linkage disequilibrium with those significant hits in the DHCP−trans.
We highlight two examples of new regulatory modules recovered via
DataRemix that appear to be biologically credible based on the known
functions of the genes involved. One of the newly significant interactions
involves the SNP rs2331413 located in proximity of the ERN1 gene, which
functions as a sensor of unfolded protein in the endoplasmic reticulum and
triggers an intracellular signalling pathway termed the unfolded protein
response. Three downstream genes associated with rs2331413 are likewise
endoplasmic reticulum proteins. The ERN1 locus has been associated
with several phenotypes in GWAS studies, most notably drug induced
hepatotoxicity (Petros et al. (2017)).

We also find an SNP rs11145917 located near INPP5E gene which
is associated with two genes in the alpha interferon response. Even
though only two genes show genome-wide significances, several other
canonical members of the alpha interferon response are just slightly short
of the significance threshold suggesting that the locus affects the upstream
signaling components. The INPP5E locus has been implicated in a

variety of autoimmune diseases as well as blood immune-cell composition
phenotype (de Lange et al. (2017); Astle et al. (2016)), though to our
knowledge no mechanism has been proposed. Our analysis suggests that
INPP5E may affect baseline activity of the alpha interferon pathway, which
is a testable prediction with potential clinical importance.

HERC5 ISG15

rs2331413−−ERN1

SEC61A1 HYOU1 SEC24C

rs11145917−−INPP5E

A B

ERN1 endoplasmic reticulum to nucleus signaling 1
SEC61A1 Sec61 translocon alpha 1 subunit

HYOU1 hypoxia up-regulated 1
SEC24C SEC24 homolog C, COPII coat complex component
INPP5E inositol polyphosphate-5-phosphatase E
HERC5 E3 ubiquitin protein ligase , alpha interferon induced

ISG15 ISG15 ubiquitin-like modifier, alpha interferon induced

Fig. 8: Clusters of trans-eQTLs detected by DataRemix that were not significant in the
original dataset. Panel A. Both the cis and trans genes are involved in ER biology and
specifically unfolded protein response. Panel B. Both of the trans genes are canonical
targets of alpha interferon. The upstream cis gene, INPP5E, is a signaling molecule that
mediates cell responses to various stimulation and its locus has been implicated in a variety
of autoimmune diseases as well as blood immune-cell composition phenotypes.

Thompson Sampling Performance

We find that Thompson Sampling matches the best grid-search
performance in under 100 steps giving a 40-fold reduction in the number
of evaluations. We also note that it is possible for the Thompson sampling
to surpass the grid-search results since the parameter combinations are not
constrained by the choice of grid.
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Fig. 9: Objective evaluations as a function of iteration number for the trans-eQTL and
cis-eQTL objectives using the quantile normalized DQN dataset. Red lines indicate the
maximum value that was obtained by grid-search and blue lines indicate the cumulative
maximum of Thompson Sampling.

Discussion
We have proposed DataRemix, a new optimizable transformation for gene
expression data. The transformation is able to improve the biological
validity of gene expression representations and can be used for effective
normalization in the absence of any knowledge of technical covariates.
One limitation of the DataRemix approach is that it works best on
data that is well approximated by a single Gaussian. However, it is
relatively straightforward to adapt the approach to matrix decompositions
different from SVD that are more suitable for non-Gaussian data, such
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as independent component analysis. We also note that it is possible to
introduce additional parameters that specify more complex weighting
schemes. However, as the number of parameters is increased, there is
a potential for over-optimization of a specific objective above others.
We emphasize that in our simple parametrization, we observe that
multiple metrics of biological validity improve when only one is explicitly
optimized. Specifically we find that optimizing for trans-eQTL discovery
also improves the correlation network as measured by guilt-by-association
pathway prediction. This property is less likely to be preserved as the
number of parameters is increased.

Methods

GTEx Dataset

We downloaded the complete gene-level TPM data (RNASeQCv1.1.8)
from the GTEx consortium (Lonsdale et al. (2013)). These data were
quantile normalized to create the raw dataset. We subsequently subjected
the dataset to several different normalization approaches that account for
hidden and known technical factors.

DataSet Description
Remove PC We keep removing first several (up to 300)

principle components (PCs) until the network
quality metrics (mean AUC and mean AUPR)
no longer improve.

Remove tech We remove the technical covariates by ridge
regression with cross validation.

Remove tech +
PC

We remove the technical covariates as above
and subsequently remove residual PCs until
the network performance metrics no longer
improve.

DataRemix DataRemix normalization is performed with
k ranging from 1 to 100. p ∈ [−1, 1] and
µ ∈ [0, 1]

HCP HCP normalization is performed with
following parameter settings. k ∈
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80

, 90, 100], λ ∈ [1, 5, 10, 20], σ1 ∈
[1, 5, 10, 20] and σ2 ∈ [10, 20]. We run
grid search to pick up the best combination
of parameters.

The technical covariates selected were those with the median values
of the variance they explained across genes that were above 0.01. The 8
variables that met this threshold were: SMTS (Tissue type, area from which
the tissue sample was taken), SMTSD (Tissue type, more specific detail of
tissue type), SMUBRID (Uberon ID), SMNABTCHT (Type of nucleic acid
isolation batch), SMEXNCRT (Exonic Rate: the fraction of reads that map
within exons), SMGNSDTC (Genes detected), SMTRSCPT (Transcripts
detected) and SMNTRNRT (Intronic Rate: the fraction of reads that map
within introns).

Correlation network evaluation

We evaluated the quality of the correlation network derived from
a particular dataset using guilt-by-association pathway prediction.
Specifically, the genes were ranked by their average Pearson correlation
to other genes in the pathway (excluding the gene when the gene itself is
a pathway member). The resulting ranking was evaluated for performance
using AUC or AUPR metric. For pathway ground-truth, we used the

“canonical” pathways dataset from MSigDB, comprising 1,330 pathways
(Subramanian et al. (2005)).

DGN Dataset

Depression Gene Networks (DGN) dataset contains whole-blood RNA-
seq and genotype data from 922 individuals. The genotype data was
filtered for MAF>0.05. The genomic coordinate of each SNP was taken
from the Ensembl Variation database (version 90, hg19/GRCh37). SNP
identifiers that were not present in that release were excluded. After
filtering, there were 649,875 autosomal single nucleotide polymorphisms
(SNPs). Data is available upon application through NIMH Center for
Collaborative Genomic Studies on Mental Disorders. For gene expression
we used the gene-level quantified dataset. The dataset comes already
filtered for expressed genes and was further filtered for gene symbols
that were not present in Ensembl 90 leaving 13,708 genes. The dataset
comes in two covariate normalized versions with normalization parameters
optimized for cis- and trans-eQTL discovery separately. To create the
naive-normalized dataset, we applied a log transformation, log(x+ 1), to
the raw counts and quantile normalized the results.

eQTL mapping

eQTL association mapping was quantified with Spearman rank correlation.
For cis-eQTLs, testing was limited to SNPs which locate within 50kb of
any of the gene’s transcription start sites (Ensembl, version 90). cis-eQTl is
deemed significant at 10% FDR with Benjamini-Hochberg correction for
the total number of tests. For trans-eQTLs, the significance cutoff is 20%
FDR with Benjamini-Hochberg correction for the total number of tests.
Since the Benjamini-Hochberg FDR is a function of the entire p-value
distribution in order to ensure consistency comparisons, the rejection level
was set once based on the p-value that corresponded to 10% or 20% FDR in
the original cis-optimizedDHCP−cis and trans-optimizedDHCP−trans

dataset respectively. To reduce the computational cost of grid evaluations,
all the optimization computations were performed on a set of 100,000
subsampled SNPs.

Parameter Optimization

The parameters λ = (k, p, µ) need to be optimized with respect to a
particular biological objective. Grid search and random search (Bergstra
and Bengio (2012)) are among the most popular strategies, but these
methods have low efficiency. Most of the search steps are wasted and
the optimality of parameters is highly constrained by the step size and
available computing power. In order to utilize the search history and keep
a good balance between exploration and exploitation, we can formulate
parameter search as a dual learning task.

We define a general performance measure y = L(λ,D), with λ
representing the parameter tuple (k, p, µ), D as the data, L as the
evaluating process and y as the biological objective. Ideally we can
determine the optimal point argmaxλ L easily by gradient descent based
method, but usually L is derivative-free and it is time intensive. Thus
we introduce a surrogate model f(λ) which can directly predict L(λ,D)

only given λ. There are two conditions on f : argmaxλ f should be easy
to solve and f should have enough capacity.

With these two properties, we can sequentially update f with (λt, yt)

and propose to evaluate L at λt+1 = argmaxλ f in the next step. By
gradually updating f with newly evaluated samples (λ, y), argmaxλ f

approaches the true underlying optimal argmaxλ L as f can gradually
fit to the underlying mapping function L. This provides a more efficient
approach to explore the parameter space by exploiting the search history.
In this work, we model f as a sample from a Gaussian Process with
mean 0 and kernel k(λ, λ′), where λ = (k, p, µ)T . It is well known
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that the form of the kernel has considerable effect on performance. After
experimentation we settled on the exponential kernel as the most suited
for our application. The exponential kernel is defined as below (note the
difference from the squared-exponential or RBF kernel).

k(λ, λ′) = exp

(
−
‖λ− λ′‖2

2

)
(3)

We observe yt = f(λt) + εt, where εt ∼ N(0, σ2). For Bayesian
optimization, one approach for picking the next point to sample is to
utilize acquisition functions (Snoek et al. (2012)) which are defined such
that high acquisitions correspond to potentially improved performance.
An alternative approach is the Thompson Sampling approach (Basu and
Ghosh (2017); Agrawal and Goyal (2013b); Hernández-Lobato et al.
(2014)). After we update the the posterior distribution P (f |λ1:t, y1:t),
we draw one sample f from this posterior distribution as the optimization
target to infer λt+1. Theoretically it is guaranteed that λt converges
to the optimal point gradually (Agrawal and Goyal (2013a)). With this
theoretical guarantee, we focus on Thompson Sampling approach to
optimize parameters for DataRemix.

Estimation of Hyper-Parameters
First we rely on the maximum likelihood estimation (MLE) to infer the
variance of noise σ2 (Rasmussen (2004)). Given the marginal likelihood
defined by (4), it is easy to use any gradient descent method to determine
the optimal σ2

log p(~y|~λ) =−
1

2
~yT (K + σ2I)−1~y −

1

2
log
∣∣K + σ2I

∣∣
−
t

2
log 2π

(4)

where ~y = y1:t = (y1, . . . , yt)T ,~λ = λ1:t = (λ1, . . . , λt)T and K is
the covariance matrix with each entry Kij = k(λi, λj).

Sampling from the Posterior Distribution
Since Gaussian Process can be viewed as Bayesian linear regression with
infinitely many basis functions φ0(λ), φ1(λ), . . . given a certain kernel
(Rasmussen (2004)), in order to construct an analytic formulation for
the sample f , first we need to construct a certain set of basis functions
Φ(λ) = (φ0(λ), φ1(λ), . . .), which is also defined as feature map of the
given kernel. Then we can write the kernel k(λ, λ′) as the inner product
Φ(λ)TΦ(λ′).

Mercer’s theorem guarantees that we can express the kernels in terms
of eigenvalues and eigenfunctions, but unfortunately there is no analytic
solution given the exponential kernel we used. Instead we make use of the
random Fourier features to construct an approximate feature map (Rahimi
and Recht (2008)). First we compute the Fourier transform p of the kernel
(see Supplemental Note for derivation).

p(~ω) =
1

(2π)3

∫
exp(−i~ωT ~∆) exp(−

∥∥∥~∆∥∥∥
2

2
)d~∆ (5)

=
8

π2(4 ‖~ω‖22 + 1)2

where ~ω = (ω1, ω2, ω3)T and ~∆ = λ − λ′. Then we draw mt
iid samples ω1, . . . , ωmt ∈ R3 by rejection sampling with p(ω) as the
probability distribution. Also we draw mt iid samples b1, . . . , bmt ∈ R
from the uniform distribution on [0, 2π]. Then the feature map is defined

by the following equation.

Φ(λ) =

√
2

mt
[cos(ωT1 λ+ b1), . . . , cos(ωTmt

λ+ bmt )]T (6)

where the dimension mt can be chosen to achieve the desired level of
accuracy with respect to the difference between true kernel values k(λ, λ′)

and the approximation Φ(λ)TΦ(λ′).

Thompson Sampling
Any sample f from the Gaussian Process can be defined by f(λ) =

Φ(λ)T θ, where θ ∼ N(0, I) and Φ(λ)T is defined by (6). In order to
draw a posterior sample f , we just need to draw a random sample θ from
the posterior distribution P (θ|~λ, ~y).

P (θ|~λ, ~y) ∝ P (~y|~λ, θ)P (θ) (7)

∝ N(A−1Φ(~λ)~y, σ2A−1)

where A = Φ(~λ)Φ(~λ)T + σ2I and Φ(~λ) = (Φ(λ1) · · ·Φ(λt)). (see
Supplemental Note for more details). The overall algorithm is summarized
as the following pseudo code.

Algorithm 1 Thompson Sampling for Searching λ

Extra Parameters
tmax: the maximum number of iteration steps
ξ: a pre-defined probability which ensures the search doesn’t get stuck
in a local optimum

1. Get a short sequence D1 = (λ, y) as seeds by random search.
2. Draw mt iid samples ω1, . . . , ωmt ∈ R3 and mt iid samples
b1, . . . , bmt ∈ R according to (5)
3. Iterate from t = 1 until λ converges or it reaches tmax

(1) At step t, estimate the hyper-parameter σ2 givenDt according to
(4)

(2) Draw a sample f given Dt according to (7) with feature map
determined by (6)

(3) λt+1 =

{
argmaxλf(λ) w.p. 1− ξ
random search w.p. ξ

(4) Evaluate yt+1 given λt+1

(5) Dt+1 = Dt
⋃

(λt+1, yt+1)
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