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Abstract

RNAseq technology provides unprecedented power in the assessment of the transcription abundance and can be
used to perform a variety of downstream tasks such as inference of gene-correlation network and eQTL discovery.
However, raw gene expression values have to be normalized for nuisance biological variation and technical
covariates, and different normalization strategies can lead to dramatically different results in the downstream study.
We describe a generalization of SVD-based reconstruction for which the common techniques of whitening, rank-k
approximation, and removing the top k principle components are special cases. Our simple three-parameter
transformation, DataRemix, can be tuned to reweight the contribution of hidden factors and reveal otherwise
hidden biological signals. In particular, we demonstrate that the method can effectively prioritize biological signals
over noise without leveraging external dataset-specific knowledge, and can outperform normalization methods that
make explicit use of known technical factors. We also show that DataRemix can be efficiently optimized via
Thompson Sampling approach, which makes it feasible for computationally expensive objectives such as eQTL
analysis. Finally, we apply our method to the ROSMAP dataset and we report what to our knwoledge is the first
replicable trans-eQTL effect in human brain.

Introduction
Genome-wide gene expression studies have become
a staple of large-scale systems biology and clinical
projects. However, while gene expression is the most
prevalent high-throughput technology, technical chal-
lenges remain. Raw gene expressio nvalues must be
normalized for any technical and nuisance biological
variation and the normalization strategy can have dra-
matic effects on the results of downstream analysis.
This is especially true in cases where the sought-
after gene expression effects are likely to be small
in magnitude, such as expression quantitative trait
loci (eQTLs). Increasingly sophisticated normalization
methods have been proposed and many are computa-
tional intensive and/or can have multiple free param-
eters that must be optimized (Leek & Storey 2007;
Stegle et al.. 2010; Listgarten et al.. 2010; Kang et al..
2008; Mostafavi et al.. 2013). Moreover, it is not un-
common for one dataset to yield multiple normalized
versions that maximize performance in a particular
setting (such as the discovery of cis- and trans-eQTLs
Battle et al.. 2014), highlighting the complexity of the
normalization problem.

Singular value decomposition (SVD) is one of the
most widely used gene expression analysis tools (Al-
ter et al.. 2000, 2003) that can also be used for data
normalization. Using the SVD we can simply remove
the first few principle components that are presumed
to represent technical factors such as batch-effects or
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other nuisance variation. In some cases this dramati-
cally improves downstream performance, for example
in the case of eQTL analysis (Mostafavi et al.. 2013).
The drawback of this method is that the exact number
of components to remove must be determined empir-
ically and some meaningful biological signals may be
lost in the process.

More sophisticated approaches attempt to partition
data structure into true biological and nuisance varia-
tion and remove only the latter (Leek & Storey 2007;
Stegle et al.. 2010; Listgarten et al.. 2010; Kang et al..
2008; Mostafavi et al.. 2013). These can improve on the
naive SVD-based normalization but require additional
input such as technical covariates, or the study design.
The success of these methods ultimately depends on
the availability and quality of such meta data and some
methods still rely on parameter optimization to max-
imize performance. These widely used normalization
approaches all have a common theme that they rely in
part on the intrinsic data structure. One key property
that contributes to the success of these approaches is
that for many biological questions of interest, nuisance
variation (of technical or biological origin) is larger
in magnitude than true biological variation. Our pro-
posed method, DataRemix, explicitly formalizes this
view of the data normalization problem.

In this work we demonstrate that biological util-
ity of gene expression datasets can be dramatically
improved with a simple three-parameter transforma-
tion, DataRemix. Our method does not require any
dataset specific knowledge but rather optimizes the
transformation with respect to some independent ob-
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jective of data quality, such as the quality of the gene-
correlation network or the number of trans-eQTL dis-
coveries. Because our method requires only the gene
expression data and biological validity objective, it can
be applied to any publicly available dataset. We focus
our study on gene expression data for which methods
for quantifying biological validity are well established,
but our approach can be readily applied to any high-
throughput molecular data for which similar quality
metrics can be defined. We show that this strategy can
outperform methods that make explicit use of dataset
specific factors, and can further improve datasets that
have been extensively normalized via an optimized,
parameter-rich model. We also show how the optimal
parameters of DataRemix can be found efficiently by
Thompson Sampling with a dual learning setup, mak-
ing the approach feasible for computationally expen-
sive objectives such as eQTL analysis.

Result
The DataRemix framework
We formulate DataRemix as a simple parametrized
version of SVD which can be directly optimized to
improve the biological utility of gene expression data.
Given a gene-by-sample matrix X, SVD decomposi-
tion can be thought of as a solution to the low-rank
matrix approximations problem defined as:

min
Uk,Σk,Vk

∥∥X − UkΣkV
T
k

∥∥2

F
(1)

where U and V are unitary matrices. With the SVD
decomposition UΣV T , the product of k-truncated ma-
tricies UkΣkV

T
k gives the rank-k reconstruction of X.

We introduce two additional parameters p and µ to
define a new reconstruction:

DataRemix{k,p,µ}(X) = UkΣpkV
T
k +µ(X−UkΣkV

T
k )

(2)

Here, k is the number of principle components of SVD
and p ∈ [−1, 1] is a real number which alters the scaling
of each singular value. For p = 1, this approach reduces
to the original SVD-based reconstruction . For p = 0,
the transformation gives the frequently used whiten-
ing operation (Friedman 1987). As depicted in Figure
1, generally, different choices of p reweigh the con-
tribution of each variance component, possibly mak-
ing some low-variance biological signals visible while
down-weighting technical and other systematic noise.
The parameter µ is a non-negative weight that adds
the residual back to the reconstruction in order to
make the transformation lossless.

Raw data DataRemix, p=0.5 DataRemix, p=−0.1
Useful
variation

Nuisance
variation

Figure 1: Visual representation of DataRemix transformation. We
simulate a 2-dimensional dataset where the nuisance variation con-
tributes more variance than true biological variation. Different
power parameters p reweigh the contributions of the two variance
axes, making the true biological variation more “visible”.

Intuitively, we expect this approach to succeed be-
cause sophisticated normalization methods that use
both data structure and some external variables, such
as technical covariates, can be thought of as implicit
regularizations on the naive SVD-based normalization
(which simply removes the first k components), and
this formulation simply makes this explicit.

A new set of parameters λt = (kt, pt, µt)

Get the new reconstruction: DataRemix{kt,pt,µt}(X)

Evaluate the downstream biologi-
cal objective and get the metric yt

Determine the next most promising point
λt+1 to improve y based on

⋃t
i=1(λi, yi)

Figure 2: The workflow of DataRemix.

The general workflow of DataRemix is shown in Fig-
ure 2. The downstream biological objective depends on
your study. For example, if you focus on trans-eQTL
analysis, the biological objective will be to increase the
number of trans-eQTLs detected from the DataRemix-
normalized gene expression profile and the metric y
will be the number of trans-eQTLs deemed significant.
The parameter optimization step which determines the
next point to check is detailed in the Methods section.

Quality of the correlation network derived from the
GTEx gene expression study.
The GTEx datasets (Lonsdale et al.. 2013) is com-
prised of human samples from diverse tissues, many of
which were obtained post-mortem and there are many
technical factors which have considerable effects on the
gene expression measurements. On the other hand this
rich dataset provides an unprecedented multi-tissue
map of gene regulatory networks and has been exten-
sively analyzed in this context. It is natural to assume
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that a dataset that is better at recovering known path-
ways is likely to yield more credible novel predictions.
Thus, we use DataRemix to optimize the known path-
way recovery task as a function of the correlation net-
work computed on a Remixed dataset.
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Figure 3: A The improvement in performance of DataRemix trans-
form of the pathway prediction task visualized as a function of k and
p parameters (µ is fixed at 0.01). Performance is measured as the
mean AUC across all pathways in the “canonical” mSigDB dataset
and the red contours indicate improvement over the performance on
untransformed data. B Per-pathway performance improvement for
the DataRemix transformation corresponding to the optimal point
in A.

We formally define the objective as the average AUC
across “canonical” mSigDB pathways (which include
KEGG, Reactome and PID) (Subramanian et al..
2005) using guilt-by-association. Specifically, the genes
are ranked by their average Pearson correlations to
other genes in the pathway (excluding the gene when
the gene itself is a pathway member). Figure 3A de-
picts the results of grid search for the parameters k and
p (with µ fixed at 0.01) and the contour plot shows a
clear region of increased performance. Using the opti-
mal transformation found by grid search, we plot per-
pathway AUC improvement in Figure 3B and find that
the AUC is substantially increased for almost every
pathway.
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Figure 4: We compare our DataRemix approach to other common
normalization strategies with respect to correlation network quality.
Here, we consider different normalizations of the GTEx dataset and
the details are described in Table. 2. We compute several “naive”
normalizations which simply remove known factors (tech), top k
principle components where k is optimized for the task (PC) or both
(tech+PC). We also consider “Hidden Covariates with Prior” (HCP)
which is a mixed linear model that takes known factors into account
and has been shown to outperform other methods in various normal-
ization tasks (Mostafavi et al.. 2013) . The four hyper-parameters in
HCP are optimized by grid search. Each box plot shows the distribu-
tion in AUCs or AUPRs across the “canonical” mSigDB pathways.
P-values compare the results achieved by DataRemix against others
using the Wilcoxon ranksum test. DataRemix’s performance sur-
passes all naive methods and is comparable to HCP while using no
technical covariates and considerably less computation ( see text for
details) .

In Figure 4 we systematically evaluate the perfor-
mance of DataRemix against alternative methods. For
the purpose of evaluation we include the naive method
of simply removing known and hidden factors from
the data. We consider removing principle componentes
(Remove PC), removing known technical variables
(Remove tech), and a combination of the two (Remove
tech and PC). Since the number of hidden factors is not
known, we optimize the number of PCs removed to the
specific network quality objective (see Methods for fur-
ther details). We also include a penalized mixed linear
model method “Hidden Covariates with Prior” (HCP)
which takes known covariates as input. In addition to
the number of hidden components, this method has
3 hyper-parameters that were optimized to maximize
the network quality objective via grid search. HCP
has been extensively benchmarked perviously and has
been shown to outperform both naive methods and the
widely used PEER approach (see (Stegle et al.. 2010)
for PEER and (Mostafavi et al.. 2013) for HCP in-
cluding performance comparison). Moreover, HCP is
considerably faster than PEER making an extensive
hyper-parameter search feasible.

We find that on this dataset DataRemix is able to
outperform all naive methods including ones that make
use of known technical covariates, achieving perfor-
mance that is comparable to that of HCP. In summary,
our DataRemix framework is able to match the per-
formance of the best competing method, HCP, while
using no technical covariates. It is worth pointing out
that once a truncated SVD decomposition is com-
puted, a single DataRemix evaluation requires only
two matrix multiplications while HCP is an optimiza-
tion problem which needs to be solved iteratively with
two matrix inversions at each step.

eQTL discovery in the DGN dataset.
We also consider the task of discovering cis- and
trans-eQTLs on the Depression Gene Networks (DGN)
dataset (Battle et al.. 2014). In the original analysis
this dataset was normalized using the Hidden Covari-
ates with Prior (HCP) (Mostafavi et al.. 2013) with
four free parameters that were separately optimized for
cis- and trans-eQTLs. The rationale behind separate
cis and trans optimized normalization can be under-
stood in terms of which variance components represent
true biological vs. nuisance variation in the two con-
texts. Specifically, cis-eQTLs represent direct effects of
genetic variation on the expression of a single gene. On
the other hand, trans-eQTLs represent network level,
indirect effects that are mediated by a regulator. Thus,
trans-eQTLs are reflected in systematic variation in
the data which becomes a nuisance factor when only
direct effects are of interest. It thus follows that the
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data should be more aggressively normalized for cis-

eQTL discovery. The original analysis of this dataset

optimized the HCP parameters separately for the cis

and trans tasks yielding two different datasets that we

refer to as DHCP−cis and DHCP−trans.

The HCP model takes various technical covariates

as input, and 20 of the covariates used in the original

study cannot be inferred from the gene-level counts.

In order to investigate how much improvement can be

achieved via DataRemix in the absence of access to

these covariates, we also consider a “naively” normal-

ized dataset, quantile normalization of log-transformed

counts, or DQN.

cis-eQTLs.

In this task we focus on optimizing the discovery of

cis-eQTLs. We define cis-eQTLs as a SNP-gene in-

teraction where the SNP is located within 50kb of the

gene’s transcription start site. The interaction is quan-

tified with Spearman rank correlation and deemed sig-

nificant at 10% FDR (Benjamini-Hochberg correction

for the total number of tests).

We perform our analysis in a cross-validation frame-

work, whereby we optimize DataRemix parameters

(using grid search or Thompson Sampling) using SNPs

on the odd chromosomes and then evaluate the pa-

rameters on the, held-out, even chromosome set. Since

there are no hyper-parameters to optimize the even

chromosome validation is performed exactly once.

The final results for both the train and test set

are depicted in Figure 5. As expected, the quantile-

normalized dataset DQN performs considerably worse

than DHCP−cis, which is specifically optimized for cis-

eQTL detection. However, the two datasets achieve

comparable performance after applying DataRemix.

Moreover, the final performance of the Remixed DQN

dataset is an improvement on DHCP−cis demonstrating

the near optimal normalization is possible without ac-

cess to technical covariates. Importantly, we find that

the optimal parameters are indeed generalizable as we

achieve a similar level of improvement on the train and

test chromosomes.
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Figure 5: Final results from DataRemix parameter search using
a cross-validation framework. cis-eQTL statistic is defined to be
number of SNP-gene interaction deemed significant at 10% FDR
(Benjamini-Hochberg correction for the total number of tests),
where the SNP is located within 50kb of the gene’s transcription
start site. Optimal parameters are determined using the odd chro-
mosome SNPs only and then tested on the even chromosome SNPs.
While the raw dataset is considerably worse than HCP, both are
improved to a similar level with DataRemix. We find that the
DataRemix transform does not overfit the objective as the degree
of improvement is similar across the test and train SNP sets. (Note,
the starting value of the raw or HCP dataset differ between the test
and train SNP set). Moreover, we find that Thompson Sampling is
able to match grid search results using only 100 evaluations.

trans-eQTLs.
In our second task, we optimize the discovery of trans-
eQTLs in the same DGN dataset. Ideally, trans-eQTLs
represent network-level effects and thus give some in-
sight about the regulatory structure of gene expres-
sion. However, in practice trans-eQTLs are simply de-
fined as SNP-gene associations where the SNP and
the gene are located on different chromosomes. While
this is a useful heuristic definition, it doesn’t guarantee
that the association is mediated at the network level.
One possible source of bias is mis-mapped RNAseq
reads which contaminate the quantification of the ap-
parently trans-associated gene with reads from a ho-
mologous locus that has cis association. Even in the
absence of technical artifacts, direct interchromsomal
interactions have been observed (see Williams et al..
2010 for a comprehensive review). In order to focus
on potential indirect effects, we apply an additional
filter to trans-eQTL discovery. Specifically we require
SNPs involved in a trans effect to be associated with
more than one gene at a FDR of 20% (Benjamini-
Hochberg correction for the total number of tests (ap-
proximately 8 × 109). We term these SNPs trans-
SNPs+. In comparison with same chromosome cis-
eQTLs, inter-chromosome trans-eQTLs are rare and
trans-SNPs+ (as defined above) are more rare still.
In fact, using the odd chromosome SNPs subsampled
at 20%, we find only 88 such SNPs using DHCP−trans

dataset and this is the default value we wish to im-
prove.

Here again we find that the dataset specifically
optimized for the task of trans-eQTL detection,
DHCP−trans, considerably outperforms the raw data
DQN, however DataRemix is able to improve both to
a similar performance. As is the case with the cis-
eQTL objective, the cross-validation procedure gives
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consistent results and no overfitting is observed for
either grid search or Thompson Sampling (Figure 6).
We note that Thompson Sampling is able to achieve a
better performance than grid search, though the im-
provement is small in absolute magnitude due to the
scarcity of trans-eQTLs. In this case, the optimal re-
gion for the DataRemix transformation is relatively
small (Supplementary Figure S3) and thus Thompson
Sampling has an advantage since it can search off the
grid.
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Figure 6: Final values for the eQTL statistics obtained from two
versions of datasets. trans-eQTL statistic is defined to be number
of SNPs involved in a trans effect and associated with more than
on gene at a FDR of 20% (Benjamini-Hochberg correction for the
total number of tests). Here we make a comparison between quantile
normalized DQN and HCP normalized DHCP−trans with parameters
optimized for trans-eQTL discovery. We find DataRemix is able to
improve upon either of starting datasets and the improvements on
both the train and test dataset are comparable which indicates that
overfitting is not a problem

DataRemix performance transfers across different
network objectives
It is well know that for statistical analyses of genomic
datasets, more significant associations do not neces-
sarily mean improved biological findings. However, it is
generally agreed that improvement in cis-eQTL detec-
tion cannot be achieved through artificial means but
indeed represents improved correction for confound-
ing factors (Stegle et al.. 2010; Mostafavi et al.. 2013).
There is no such consensus for trans-eQTLs which are
rare, and subject to many artifacts. Consequently, it
is important to further corroborate the biological va-
lidity of the trans-optimized dataset through indepen-
dent means.

Since trans-eQTLs are likely to reflect pathway-level
effects, we expect that a dataset that is optimally
transformed for trans-eQTL discovery should also pro-
duce better correlation networks. We thus investigate
if optimal DataRemix transform is transferable across
these tasks by verifying that the Remixed dataset op-
timized with respect to trans-eQTL discovery also im-
proves the network quality criterion. Similar to our
analysis of the GTEx datasets, we use the correlation
network to perform guilt-by-association pathway pre-
dictions and evaluate the results over 1,330 MSigDB
canonical pathways. Figure 7 shows scatter plots of
per-pathway AUPR (area under precision-recall curve)

for several comparisons with respect to the baseline
DHCP−trans dataset. In the first panel we contrast
the performance to DQN and observe that, as ex-
pected, DHCP−trans brings a considerable improvement
over the quantile normalized dataset. In the second
panel we contrast DHCP−trans with the Remixed ver-
sion of DQN (optimized for trans-eQTL discovery with
Thompson Sampling). We find that the pattern be-
comes opposite and the Remixed DQN dataset per-
forms consistently better that DHCP−trans. The final
panel shows the results of Remixing DHCP−trans itself
which also improves the performance.

Overall, we find that DataRemix improves multi-
ple criteria of biological validity as optimizing for the
trans-eQTL objective also results in improved correla-
tion networks.
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Figure 7: DataRemix-transformed datasets improve the pathway
prediction objective which is not explicitly optimized. Each plot
is a per-pathway AUPR (area under precision-recall curve) from
various datasets (y-axis) contrasted with the results from the opti-
mal covariate-normalized dataset DHCP−trans, which serves as the
baseline (x-axis). Panel A shows the contrast between DHCP−trans

and DQN. The performance of DHCP−trans is considerably better.
Panel B shows the results of the Remixed DQN datasets (optimized
for trans-eQTL discovery with Thompson Sampling). Even though
DQN starts out as considerably worse, the Remixed version is able
to outperform DHCP−trans. Panel C shows the results of Remixed
DHCP−trans. We choose to show AUPR instead of AUC because we
find that Remixed version matches but doesn’t further improve the
AUC performance of DHCP−trans

A major finding of our study is that for the eQTL
and pathway prediction tasks, the starting point of
normalizing DGN datasets appears to matter rel-
atively little. Even though the quantile-normalized
dataset performs considerably worse in the beginning,
after Remixing its performance matches that of the
optimal covariate-normalized datasets. Of course, if
covariates are available, it is preferable to use them
and in the case of DGN, slightly further improvement
can be achieved. However, our results indicate that in
some cases datasets can be effectively normalized even
in the absence of meta-data about quality control or
batch variables. This is an important consideration for
many legacy datasets where such information is not
available.

Novel Biological Findings
New trans-eQTL effects in the DGN dataset
At the optimal DateRemix parameters for DQN, we
find 3000 gene-SNP trans associations at a Benjamini-
Hochberg FDR of 0.2 where in contrast to 1691 for
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DHCP−trans. We verified the replication of these as-
sociations in an independent dataset, NESDA and
find that 1013 (33%) of the DataRemix associations
had a replication FDR of < 0.2 while for the de-
fault DHCP−trans dataset the same number was 707
(41%). The replication rate was somewhat smaller on
the Remixed dataset, which is expected as the repli-
cation was performed on raw NESDA data. However,
the total number of replicated effects was greater.

We highlight an example of new regulatory module
recovered via DataRemix that appears to be biologi-
cally credible based on independent replication and the
known functions of the genes involved. We find that
SNP rs11145917 located near CARD9 gene is associ-
ated with three genes in the alpha interferon response.
The locus has been associated with Crohn’s disease
(Franke et al.. 2010) and Ulcerative colitis (Anderson
et al.. 2011) though to our knowledge no mechanism
has been proposed. We find that rs11145917 has a cis
effect on CARD9 and the trans effects are partially me-
diated by CARD9 expression. In summary, our analy-
sis suggests that CARD9 may affect baseline activity
of the alpha interferon pathway, which is a testable
prediction with potential clinical importance.

Analysis of the Religious Orders Study and Memory
and Aging Project (ROSMAP) Study
We sought to apply our method to the Religious Or-
ders Study and Memory and Aging Project (ROSMAP)
Study dataset which consists of 370 human samples
with paired gene expression and genotype informa-
tion. To our knowledge no trans-eQTLs have been
reported for human brain and indeed we could not
detect any genome-wide significant trans effects in the
ROSMAP dataset. Since no trans-eQTLs can be de-
tected, there is no variance in this objective and thus
our method cannot be applied directly. However, using
the DGN dataset we have shown that optimizing for
trans-eQTL discovery also optimizes the network qual-
ity objective demonstrating that the two objectives are
related. Thus, for the ROSMAP dataset we can opti-
mize network quality (which is quantitative and thus
always has some variance across DataRemix param-
eter settings) and hope to implicitly optimize trans-
eQTL discovery. Figure 8 A shows the change in mean
AUC and mean AUPR for the network objective af-
ter applying DataRemix (see Methods for details). We
find that while the mean AUC changes modestly the
mean AUPR is nearly doubled. Applying trans-eQTL
analysis to the Remixed ROSMAP dataset we detect
a single significant effect between CYP2C8 (chr10)
and rs10821352 (chr9). This effect was replicated in
the CommonMind Consortium dataset (Fromer et al..
2016) with a p-value of 3.1382e-16 (Spearman rank

correlation). The interaction passed all quality checks.
Specifically, all CYP2C8 30-mers mapped back to
CYP2C8 indicating that artifacts from mismapped
reads were unlikely and furthermore the eQTL effect
was consistent across all 8 exons (Figure S1). To our
knowledge this is the first replicated trans-eQTL re-
ported in human brain data.
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Figure 8: A. Improvement in the network quality objective after
running DataRemix with Thompson sampling. B. Manhattan plot of
associations with CYP2C8 expression. The CYP2C8 gene is located
on chromosome 10. A single SNP on chromosome 9 shows a strong
trans effect with a p-value that is notably smaller than the group of
cis-effect SNPs on chromosome 10.

The gene, CYP2C8, is a member of the cytochrome
P450 and is thought to be involve in the metabolism
of polyunsaturated fatty acid and lipophilic xeon-
biotics. The xenobiotic metabolism function is sup-
ported by the correlation network around CYP2C8.
Among its top neighbors is GSTA4 (rank 1, Spear-
man ρ =0.68), CES4A (rank 4, Spearman ρ =0.66)
two other genes implicated in xenobiotic metabolism.
The precise mechanistic nature of how genotype in
the rs10821352 locus affects CYP2C8 expression is un-
clear. No cis-eQTLs for rs10821352 could be detected
in ROSMAP and none are reported in the GTex brain
data.

Simulation Study
In order to evaluate the performance of DataRemix
when different variance components align with the true
biological signals, we performed a simulation study fo-
cusing on three representative cases. The cases are:
1) only high-variance components encode biological
signals (high-variance Figure 9), 2) only low-variance
components encode biological signals (low-variance)
and 3) both high- and low-variance components cor-
respond to useful variations (general case). We simu-
lated gene expression profile along with ground-truth
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Table 1: The association of rs11145917 with genes in the alpha interferon pathway is replicated in an independent dataset. We note that
the FDRs for the NESDA dataset represent a correction for the total number of replication test performed, that is only gene-SNP pairs
that passed an FDR < 0.2 in the DGN dataset. Since the fraction of true positives in the the replication scenario is higher, the FDRs are
lower than the genome wide FDRs at the same p-value.

SNP Gene Method Spearman rho p-value FDR(B.H.)
DataRemix -0.1782 5.1052E-08 0.0889

SIGLEC1 Raw -0.1510 4.1326E-06 >0.2
NESDA replication -0.0414 8.1499E-02 0.2148
DataRemix -0.1783 5.0403E-08 0.0881

rs11145917 IEIT1 Raw -0.1627 6.7749E-07 >0.2
NESDA -0.07919 8.6260E-04 0.0050
DataRemix -0.1830 2.1867E-08 0.0451

ISG15 Raw -0.1541 2.5755E-06 >0.2
NESDA replication -0.07451 1.7229E-03 0.0088

pathways and evaluated whether DataRemix could im-

prove the recovery of the simulated pathways (AUC

and AUPR) using guilt-by-association.

We simulated gene expression profile with 5000

genes, 300 samples and 50 latent factors based on the

following linear model.

X = WH + E

We set W and H to be positive. Each column of W and

each row of H was drawn from a Normal distribution

with mean equal to zero, and the variance parameters

were drawn from Exponential distribution with 1e-3

as rate. In this way, the singular values can decrease

gradually as the rank increases and each latent factor

can have a non-negligible effect when recovering sim-

ulated pathways. The matrix E ∈ N (0, 2) represents

random noise.

The gene expression profile is consistent across three

cases and a different pathway matrix is generated sep-

arately according to each assumption. In the high-

variance case, we select the top 25 latent factors.

In the low-variance case we pick up the last 25 la-

tent factors and randomly sample 25 latent factors

for the general case. Then for corresponding columns

in W , we randomly select a threshold between 0.01

and 0.1 with 0.01 as the step size. With the threshold

value, we pick up the corresponding highest quantile

of genes to construct the pseudo geneset as ground

truth. The simulated data is used to construct a gene-

correlation network which is evaluated according to

guilt-by-association recovery of the ground-truth path-

ways, a commonly accepted network quality metric.

We evaluate both the raw data and the optimized

Remixed result. In all 3 cases DataRemix was able to

substentially improve network quality metrics.
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Figure 9: We simulate gene expression data with a low rank approx-
imation so that the component variance distribution approximates
that which is typically seen in gene expression data (top row). Ac-
cording to our assumptions only some of the low rank components
represent useful biological variation. The left, middle and right panel
depict the general, high-variance and low-variance case with the pink
points denoting the factors with biological variations. These factors
are used to construct the ground truth pathway membership matrix.
In the second row, we compare the AUC and AUPR for recovering
the pathway co-membership via guilt-by-association analysis on the
correlation network. DataRemix is able to improve this metric by
reweighing the contribution of different variance components.

Thompson Sampling Performance
We find that Thompson Sampling matches the best
grid-search performance in under 100 steps giving a 40-
fold reduction in the number of evaluations. We also
note that it is possible for the Thompson sampling
to surpass the grid-search results since the parameter
combinations are not constrained by the choice of grid.
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Figure 10: Objective evaluations as a function of iteration number
for the trans-eQTL and cis-eQTL objectives using the quantile nor-
malized DQN dataset. Red lines indicate the maximum value that
was obtained by grid-search and blue lines indicate the cumulative
maximum of Thompson Sampling.
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Discussion
We have proposed DataRemix, a new optimizable
transformation for gene expression data. The transfor-
mation is able to improve the biological validity of gene
expression representations and can be used for effec-
tive normalization in the absence of any knowledge of
technical covariates. One limitation of the DataRemix
approach is that it works best on data that is well
approximated by a single Gaussian. However, it is rel-
atively straightforward to adapt the approach to ma-
trix decompositions different from SVD that are more
suitable for non-Gaussian data, such as independent
component analysis. We also note that it is possible
to introduce additional parameters that specify more
complex weighting schemes. However, as the number
of parameters is increased, there is a potential for over-
optimization of a specific objective above others. We
emphasize that in our simple parametrization, we ob-
serve that multiple metrics of biological validity im-
prove when only one is explicitly optimized. Specifi-
cally we find that optimizing for trans-eQTL discovery
also improves the correlation network as measured by
guilt-by-association pathway prediction. This property
is less likely to be preserved as the number of param-
eters is increased.

Methods
GTEx Dataset
We downloaded the complete gene-level TPM data
(RNASeQCv1.1.8) from the GTEx consortium (Lons-
dale et al.. 2013). These data were quantile normal-
ized to create the raw dataset. We subsequently sub-
jected the dataset to several different normalization
approaches that account for hidden and known tech-
nical factors.

The technical covariates selected were those with the
median values of the variance they explained across
genes that were above 0.01. The 8 variables that met
this threshold were: SMTS (Tissue type, area from
which the tissue sample was taken), SMTSD (Tissue
type, more specific detail of tissue type), SMUBRID
(Uberon ID), SMNABTCHT (Type of nucleic acid iso-
lation batch), SMEXNCRT (Exonic Rate: the frac-
tion of reads that map within exons), SMGNSDTC
(Genes detected), SMTRSCPT (Transcripts detected)
and SMNTRNRT (Intronic Rate: the fraction of reads
that map within introns).

DGN Dataset
Depression Gene Networks (DGN) dataset contains
whole-blood RNA-seq and genotype data from 922 in-
dividuals. The genotype data was filtered for MAF>0.05.
The genomic coordinate of each SNP was taken

from the Ensembl Variation database (version 90,
hg19/GRCh37). SNP identifiers that were not present
in that release were excluded. After filtering, there
were 649,875 autosomal single nucleotide polymor-
phisms (SNPs). Data is available upon application
through NIMH Center for Collaborative Genomic
Studies on Mental Disorders. For gene expression we
used the gene-level quantified dataset. The dataset
came already filtered for expressed genes and was fur-
ther filtered for gene symbols that were not present in
Ensembl 90 leaving 13,708 genes. The dataset comes in
two covariate normalized versions with normalization
parameters optimized for cis- and trans-eQTL discov-
ery separately. To create the naive-normalized dataset,
we applied a log transformation, log(x+1), to the raw
counts and quantile normalized the results.

ROSMAP dataset
The raw data was obtained from Synpase (syn3219045).
The data was optimized for the network quality ob-
jective using the canonical pathway genesets from
MSigDB (Subramanian et al.. 2005). The data was
corrected for sex, age and 10 genotype principle com-
ponents. In order to quantify exon-level effects we used
the Synapse BAM files to quantify exon-level FPKMs
using featureCounts (Liao et al.. 2013).

NESDA
The NESDA (Netherlands Study of Depression and
Anxiety) dataset was obtained from dbGAP (phs000486.v1).
Following suggestions from study authors, the NESDA
dataset was normalized for sex,age, and the first 10
genotype PCs using linear regression. Genotypes were
imputed using Michigan Imputation Server (Das et al..
2016) using 1000 Genome Phase 3 (Version 5) as the
reference panel. We assesed the replication of DGN
eQTLs based on exact gene and SNP matches.

Correlation network evaluation
We evaluated the quality of the correlation network
derived from a particular dataset using guilt-by-
association pathway prediction. Specifically, the genes
were ranked by their average Pearson correlations to
other genes in the pathway (excluding the gene when
the gene itself is a pathway member). The resulting
ranking was evaluated for performance using AUC or
AUPR metric. For pathway ground-truth, we used the
“canonical” pathways dataset from MSigDB, compris-
ing 1,330 pathways (Subramanian et al.. 2005).

eQTL mapping
eQTL association mapping was quantified with Spear-
man rank correlation. For cis-eQTLs, testing was lim-
ited to SNPs which locate within 50kb of any of
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Table 2: Different normalizations of the GTEx dataset.

DataSet Description
Remove PC We keep removing first several (up to 300) principle components (PCs) until the

network quality metrics (mean AUC and mean AUPR) no longer improve.
Remove tech We remove the technical covariates by ridge regression with cross validation.
Remove tech +
PC

We remove the technical covariates as above and subsequently remove residual
PCs until the network performance metrics no longer improve.

DataRemix DataRemix normalization is performed with k ranging from 1 to 100. p ∈ [−1, 1]
and µ ∈ [0, 1]

HCP HCP normalization is performed with following parameter settings. k ∈
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80 , 90, 100], λ ∈ [1, 5, 10, 20], σ1 ∈
[1, 5, 10, 20] and σ2 ∈ [10, 20]. We run grid search to pick up the best com-
bination of parameters.

the gene’s transcription start sites (Ensembl, version
90). cis-eQTl is deemed significant at 10% FDR with
Benjamini-Hochberg correction for the total number
of tests. For trans-eQTLs, the significance cutoff is
20% FDR with Benjamini-Hochberg correction for the
total number of tests. Since the Benjamini-Hochberg
FDR is a function of the entire p-value distribution
in order to ensure consistency comparisons, the re-
jection level was set once based on the p-value that
corresponded to 10% or 20% FDR in the original cis-
optimized DHCP−cis and trans-optimized DHCP−trans

dataset respectively. To reduce the computational cost
of grid evaluations, all the optimization computations
were performed on a set of 100,000 subsampled SNPs.

Parameter Optimization
The parameters λ = (k, p, µ) need to be optimized
with respect to a particular biological objective. Grid
search and random search (Bergstra & Bengio 2012)
are among the most popular strategies, but these
methods have low efficiency. Most of the search steps
are wasted and the optimality of parameters is highly
constrained by the step size and available computing
power. In order to utilize the search history and keep
a good balance between exploration and exploitation,
we can formulate parameter search as a dual learning
task.

We define a general performance measure y =
L(λ,D), with λ representing the parameter tuple
(k, p, µ), D as the data, L as the evaluating process and
y as the biological objective. Ideally we can determine
the optimal point argmaxλ L easily by gradient descent
based method, but usually L is derivative-free and it
is also time intensive. Thus we introduce a surrogate
model f(λ) which can directly predict L(λ,D) only
given λ, and there are two conditions on f : argmaxλ f
should be easy to solve and f should have enough
capacity.

With these two properties, we can sequentially
update f with (λt, yt) and propose to evaluate L
at λt+1 = argmaxλ f in the next step. By gradu-
ally updating f with newly evaluated samples (λ, y),

argmaxλ f approaches the true underlying optimal
argmaxλ L as f can gradually fit to the underlying
mapping function L. This provides a more efficient
approach to explore the parameter space by exploit-
ing the search history. In this work, we model f as
a sample from a Gaussian Process with mean 0 and
kernel k(λ, λ′), where λ = (k, p, µ)T . It is well known
that the form of the kernel has considerable effect on
performance. After experimentation we settled on the
exponential kernel as the most suited for our applica-
tion. The exponential kernel is defined as below (note
the difference from the squared-exponential or RBF
kernel).

k(λ, λ′) = exp

(
−
‖λ− λ′‖2

2

)
(3)

We observe yt = f(λt)+ εt, where εt ∼ N(0, σ2). For
Bayesian optimization, one approach for picking the
next point to sample is to utilize acquisition functions
(Snoek et al.. 2012) which are defined such that high
acquisitions correspond to potentially improved per-
formance. An alternative approach is the Thompson
Sampling approach (Basu & Ghosh 2017; Agrawal &
Goyal 2013; Hernández-Lobato et al.. 2014). After we
update the the posterior distribution P (f |λ1:t, y1:t), we
draw one sample f from this posterior distribution as
the optimization target to infer λt+1. Theoretically it
is guaranteed that λt converges to the optimal point
gradually (Agrawal & Goyal 2013). With this theoret-
ical guarantee, we focus on Thompson Sampling ap-
proach to optimize parameters for DataRemix.

Estimation of Hyper-Parameters
First we rely on the maximum likelihood estimation
(MLE) to infer the variance of noise σ2 (Rasmussen
2004). Given the marginal likelihood defined by (4), it
is easy to use any gradient descent method to deter-
mine the optimal σ2

log p(~y|~λ) =− 1

2
~yT (K + σ2I)−1~y − 1

2
log
∣∣K + σ2I

∣∣
− t

2
log 2π
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(4)

where ~y = y1:t = (y1, . . . , yt)
T ,~λ = λ1:t = (λ1, . . . , λt)

T

and K is the covariance matrix with each entry
Kij = k(λi, λj).

Sampling from the Posterior Distribution

Since Gaussian Process can be viewed as Bayesian
linear regression with infinitely many basis functions
φ0(λ), φ1(λ), . . . given a certain kernel (Rasmussen
2004), in order to construct an analytic formulation
for the sample f , first we need to construct a certain
set of basis functions Φ(λ) = (φ0(λ), φ1(λ), . . .), which
is also defined as feature map of the given kernel. Then
we can write the kernel k(λ, λ′) as the inner product
Φ(λ)TΦ(λ′).

Mercer’s theorem guarantees that we can express the
kernels in terms of eigenvalues and eigenfunctions, but
unfortunately there is no analytic solution given the
exponential kernel we used. Instead we make use of the
random Fourier features to construct an approximate
feature map (Rahimi & Recht 2008). First we compute
the Fourier transform p of the kernel (see Supplemen-
tary Methods for derivation).

p(~ω) =
1

(2π)3

∫
exp(−i~ωT ~∆) exp(−

∥∥∥~∆∥∥∥
2

2
)d~∆

(5)

=
8

π2(4 ‖~ω‖22 + 1)2

where ~ω = (ω1, ω2, ω3)T and ~∆ = λ − λ′. Then we
draw mt iid samples ω1, . . . , ωmt

∈ R3 by rejection
sampling with p(ω) as the probability distribution.
Also we draw mt iid samples b1, . . . , bmt ∈ R from
the uniform distribution on [0, 2π]. Then the feature
map is defined by the following equation.

Φ(λ) =

√
2

mt
[cos(ωT1 λ+b1), . . . , cos(ωTmt

λ+bmt
)]T (6)

where the dimension mt can be chosen to achieve the
desired level of accuracy with respect to the difference
between true kernel values k(λ, λ′) and the approxi-
mation Φ(λ)TΦ(λ′).

Thompson Sampling

Any sample f from the Gaussian Process can be de-
fined by f(λ) = Φ(λ)T θ, where θ ∼ N(0, I) and Φ(λ)T

is defined by (6). In order to draw a posterior sample
f , we just need to draw a random sample θ from the

posterior distribution P (θ|~λ, ~y).

P (θ|~λ, ~y) ∝ P (~y|~λ, θ)P (θ) (7)

∝ N(A−1Φ(~λ)~y, σ2A−1)

whereA = Φ(~λ)Φ(~λ)T+σ2I and Φ(~λ) = (Φ(λ1) · · ·Φ(λt)).
(see Supplemental Note for more details). The overall
algorithm is summarized as the following pseudo code.

Algorithm 1 Thompson Sampling for Searching λ

Extra Parameters
tmax: the maximum number of iteration steps
ξ: a pre-defined probability which ensures the search doesn’t get
stuck in a local optimum

1. Get a short sequence D1 = (λ, y) as seeds by random search.
2. Draw mt iid samples ω1, . . . , ωmt ∈ R3 and mt iid samples
b1, . . . , bmt ∈ R according to (5)
3. Iterate from t = 1 until λ converges or it reaches tmax

(1) At step t, estimate the hyper-parameter σ2 given Dt
according to (4)

(2) Draw a sample f given Dt according to (7) with feature
map determined by (6)

(3) λt+1 =

{
argmaxλf(λ) w.p. 1− ξ
random search w.p. ξ

(4) Evaluate yt+1 given λt+1

(5) Dt+1 = Dt
⋃
(λt+1, yt+1)

Software availability

DataRemix is an R package which is freely available
at GitHub (https://github.com/wgmao/DataRemix).
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PhD, Leiden University Medical Center, Leiden, and Dr. Willem Nolen, MD

PhD, University Medical Center Groningen (PIs and site-PIs NESDA)
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