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Abstract 

 

The genetic architecture of most human complex traits is highly polygenic, motivating 

efforts to detect polygenic selection involving a large number of loci. In contrast to 

previous work relying on top GWAS loci, we developed a method that uses genome-wide 

association statistics and linkage disequilibrium patterns to estimate the genome-wide 

genetic component of population differentiation of a complex trait along a continuous 

gradient, enabling powerful inference of polygenic selection. We analyzed 43 UK 

Biobank traits and focused on PC1 and North-South and East-West birth coordinates 

across 337K unrelated British-ancestry samples, for which our method produced close to 

unbiased estimates of genetic components of population differentiation and high power to 

detect polygenic selection in simulations across different trait architectures. For PC1, we 

identified signals of polygenic selection for height (74.5±16.7% of 9.3% total correlation 

with PC1 attributable to genome-wide genetic effects; P = 8.4×10-6) and red hair 

pigmentation (95.9±24.7% of total correlation with PC1 attributable to genome-wide 

genetic effects; P = 1.1×10-4); the bulk of the signal remained when removing genome-

wide significant loci, even though red hair pigmentation includes loci of large effect. We 

also detected polygenic selection for height, systolic blood pressure, BMI and basal 

metabolic rate along North-South birth coordinate, and height and systolic blood pressure 

along East-West birth coordinate. Our method detects polygenic selection in modern 

human populations with very subtle population structure and elucidates the relative 

contributions of genetic and non-genetic components of trait population differences. 
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Introduction 

The genetic architecture of human complex traits is highly polygenic1-7. Natural selection 

on polygenic traits could occur in polygenic fashion, via small shifts in allele frequencies 

across a large number of loci8,9. Signals of polygenic selection have been detected for 

several complex traits, including height and body mass index (BMI), by correlating SNP 

effect sizes from genome-wide association studies (GWAS) with population differences 

in allele frequencies or by computing singleton density scores10-17. However, methods for 

detecting polygenic selection generally restrict their analyses to genome-wide significant 

associated SNPs or relatively small sets of top associated SNPs, which generally capture 

only a small proportion of trait heritability18. This may limit power to detect polygenic 

selection for highly polygenic traits and precludes estimation of the genetic component of 

population differences in phenotype, a fundamental population genetic quantity. 

 

In this study, we developed a method, PopDiff, that quantifies the genetic component of 

population differences in phenotype, using association statistics from genome-wide SNPs 

and linkage disequilibrium (LD) between SNPs; the method can be applied to continuous 

gradients of genetic ancestry, which are often an effective way to model subtle population 

structure19-21. A significantly non-zero value of the genetic component after accounting 

for effects of genetic drift indicates a signal of polygenic selection.  We applied PopDiff 

to 43 UK Biobank traits (N=337K unrelated British-ancestry samples22), analyzing three 

continuous gradients: the top principal component (PC1) and North-South and East-West 

birth coordinates. We detected signals of polygenic selection for several traits, including 

traits not previously reported to be under polygenic selection. 
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Results 

Overview of methods 

Population differences in phenotype may have genetic and/or environmental components.  

Our method, PopDiff, quantifies the genetic component of population differences in 

phenotype to detect signals of polygenic selection. We first consider the special case of 

two discrete subpopulations and no LD.  In this case, given a phenotype whose mean 

differs between the two subpopulations, an unbiased estimate of the genetic component 

of the phenotypic difference can be obtained by summing the estimated contribution of 

each SNP to the phenotypic difference, based on the product of the difference in allele 

frequency and the estimated effect size.  (Throughout this paper, “genetic component” is 

defined as the component explained by a specified set of SNPs and may exclude other 

genetic effects.)  Although genetic differences between subpopulations can arise due to 

either genetic drift or polygenic selection, the effects of genetic drift vary stochastically 

across the genome, such that standard errors computed using a block-jackknife include 

the effects of genetic drift and enable a statistical test for polygenic selection.  It is 

straightforward to generalize from two discrete subpopulations to a pre-specified 

continuous gradient of genetic ancestry (e.g. based on principal components (PCs) or 

birth coordinates) by replacing the difference between subpopulations with the 

correlation to the continuous gradient. In the presence of LD, which can cause effects of 

linked SNPs to be double-counted, we multiply estimated SNP effects by the inverse of 

the LD matrix to correct for LD23.  To reduce noise, we regularize the LD matrix as 

described previously24. (This regularization can introduce a conservative bias in estimates 

but increases power to detect polygenic selection; we thoroughly investigate this bias-

variance tradeoff in our simulations).  We note that analyses of polygenic selection can 

potentially be confounded by uncorrected population stratification28,29.  We correct for 10 

PCs when estimating marginal SNP effects, but careful consideration of possible 

uncorrected population stratification is warranted (see Population stratification section).  

 

In detail, we estimate the genetic component ΔG of population differentiation ΔY 

(defined as the correlation between continuous ancestry gradient and phenotype Y) via  
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where η is a pre-specified N x 1 vector quantifying a continuous gradient of genetic 

ancestry across samples (normalized to mean 0 and variance 1), � is the N x M matrix of 

normalized genotypes, �� is an M x M banded LD matrix computed using all samples, 
 is 

a scalar regularization parameter24, � is the M x M identity matrix, � is the M x 1 vector 

of normalized estimated marginal (inclusive of LD) effect sizes for each SNP, M is the 

number of SNPs, and N is the number of samples. We note that ��� 	 
����� is an 

estimate of normalized causal SNP effect sizes �, so that ∆��  is an estimate of Δ� �
���

�
�.  The genetic proportion of population differentiation, denoted %�, is estimated as 

∆�� /Δ�. As noted above, we estimate the standard error of ∆��  using a block-jackknife 

that includes the effects of genetic drift, so that a significantly nonzero ∆��  indicates a 

signal of polygenic selection. Details of our PopDiff method are described in the Methods 

section; we have released open-source software implementing the method (see URLs). 

 

In this study, we analyzed data from 337,536 unrelated British-ancestry samples from the 

full UK Biobank release22 (see URLs).  We considered 43 highly heritable traits and three 

continuous ancestry gradients η: PC1 of the 337,536 unrelated British-ancestry samples, 

North-South birth coordinates and East-West birth coordinates. (We did not consider 

lower PCs, which correspond to exceedingly subtle genetic effects: FST <0.0001; Table 

S2 of ref. 21).  We applied our PopDiff method to 67 (η, trait) pairs for which the 

population differentiation ΔY (correlation between η and phenotype Y) had absolute value 

greater than 0.01 (Table S1).  In all analyses, we computed the LD matrix �� using the full 

set of 337,536 samples. In analyses of North-South and East-West birth coordinates, we 

computed marginal effect size estimates � using the full set of 337,536 samples, 

correcting for 10 PCs.  In analyses of PC1, this choice of � would be mathematically 

guaranteed to produce a ∆��  estimate of 0 (since correlations to PC1 are subtracted out, 

see Methods), and for this reason we instead computed � using 10 random (non-
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overlapping) subsets of 33,754 samples (correcting for 10 PCs within each subset) and 

meta-analyzed the results.  

 

Simulations 

We performed simulations using real UK Biobank genotypes to assess the bias, type I 

error and power of our PopDiff method. We performed simulations using both PC1 and 

North-South birth coordinates. We used unrelated British-ancestry samples (N=337,536) 

and genome-wide genotyped SNPs (M=516,086 SNPs after QC; see Methods); our 

simulations used exactly the same sample set and SNP set as our analyses of real traits.  

Phenotypes were simulated using an additive model with SNP-heritability set to 0.2, 

similar to most UK Biobank traits25,26 (see Methods).  The proportion of causal SNPs was 

set to 100% (the default value), 10% or 1%, and the regularization parameter 
 was set to 

0.1 (as in ref. 24), 0.2, 0.5 or 1.0.  In PC1 simulations, we estimated � using a random 

subset of unrelated British-ancestry samples (N=33,754, correcting for 10 PCs within the 

subset), analogous to our analyses of real traits. 

 

We performed null simulations (heritable phenotype with ΔY = 0.11, Δ� � 0, %G = 0) to 

assess bias and type I error. We first performed simulations using PC1. Estimates of ΔG 

and %G= ΔG/ΔY were unbiased at all values of 
, although estimates were extremely 

noisy at 
=0.1 (Figure 1A and Table S2A). Type I error was properly controlled at all 

values of 
 (Figure 1B and Table S2B; conservative at 
=0.1 due to noisy estimates), and 

jackknife standard errors (s.e.) were similar to empirical standard deviations (s.d.) of ΔG 

estimates (Table S2A). We also performed simulations using North-South birth 

coordinates. Once again, estimates of ΔG and %G= ΔG/ΔY were unbiased at all values of 


, although estimates were extremely noisy at 
=0.1 (Figure S1A and Table S3A). Type I 

error was properly controlled for 
=0.1, 0.2, 0.5 but not for 
=1.0 (Figure S1B and Table 

S3B; conservative at 
=0.1 due to noisy estimates), and jackknife s.e. were similar to 

empirical s.d. for all values of 
 (Table S3A); we chose 
=0.5 as the default setting (see 

below). Notably, we obtained similar results at different values of the proportion of 
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causal SNPs (100%, 10% or 1%), both for simulations using PC1 (Table S4) and for 

simulations using North-South birth coordinates (Table S5). 

 

We performed causal simulations (ΔY = 0.11, ΔG = 0.086, %G = 78%) to assess bias and 

power. We first performed simulations using PC1. Estimates of ΔG and %G= ΔG/ΔY 

were unbiased but extremely noisy at 
=0.1, slightly upward biased at 
=0.2, and slightly 

conservative at 
=0.5 and 
=1.0 (Figure 1C and Table S6A). Power increased as a 

function of 
, with high power at 
=0.5 and very high power at 
=1.0 (Figure 1D and 

Table S6B). We also performed simulations using North-South birth coordinates.  

Estimates of ΔG and %G= ΔG/ΔY were upward biased and extremely noisy at 
=0.1, 

slightly upward biased at 
=0.2, close to unbiased at 
=0.5, and conservative at 
=1.0 

(Figure S1C and Table S7A). Power increased as a function of 
, with very high power at 


=0.5 and 
=1.0 (Figure S1D and Table S7B). As in null simulations, we obtained 

similar results at different values of the proportion of causal SNPs (100%, 10% or 1%), 

both for simulations using PC1 (Table S8) and for simulations using North-South birth 

coordinates (Table S9). Based on the results of both null and causal simulations, we 

chose 
=0.5 as the default regularization parameter value in all of our analyses of real 

traits, as this parameter value consistently controls false positives, produces close to 

unbiased or slightly conservative estimates, and achieves high power. (For completeness, 

we also report results of secondary analyses at 
=1 in our analyses of real traits.)  

 

Polygenic selection along PC1 in UK Biobank 

We considered 43 UK Biobank traits, restricting to 337,536 unrelated British-ancestry 

samples (average N= 321,389 phenotyped samples; Table S10).  We defined a continuous 

ancestry gradient η based on PC1 of the full set of 337,536 samples, representing a north-

south axis separating southern England from Northern Ireland21. We applied our PopDiff 

method to 22 (PC1, trait) pairs for which the population differentiation ΔY (correlation 

between PC1 and phenotype Y) had absolute value greater than 0.01 (Table S1).  All 

analyses were corrected for 67 hypotheses tested, which include other choices of η (see 

below).  
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Results are displayed in Figure 2 and Table S11.  We identified two traits with 

statistically significant %G for PC1 (p<0.05/67=7.5×10-4), implicating polygenic 

selection: height and red hair pigmentation. For height (ΔY=0.093; individuals with 

ancestry from southern England are taller on average than individuals with ancestry from 

Northern Ireland), our estimate of %G was 74.5% (s.e.=16.7%; p=8.4×10-6), implying 

that differences in height along PC1 are primarily due to selection and cannot be 

explained by genetic drift. We note that height has previously been reported to be under 

polygenic selection10-16.  For red hair pigmentation (ΔY=−0.039; red hair is more 

common in individuals with ancestry from Northern Ireland than in individuals with 

ancestry from southern England), our estimate of %G was 95.9% (s.e.=24.7%; p=1.1×10-

4), implying that differences in red hair pigmentation along PC1 are primarily due to 

selection and cannot be explained by genetic drift. We note that the genetic architecture 

of red hair pigmentation includes large-effect loci, with 12 genome-wide significant loci 

explaining 7.2% of trait variance (Table S12, comparable to 6.9% in ref. 27). We 

repeated our analysis after removing these 12 loci and surrounding regions (±1Mb), and 

confirmed that the signal of polygenic selection remained (%G=73.2%, s.e.=21.3%; 

p=6.1×10-4). This demonstrates that polygenic selection can affect traits whose genetic 

architectures include large-effect loci. We are not currently aware of previous evidence of 

polygenic selection on red hair pigmentation, although a previous study reported 

polygenic selection on skin pigmentation11. In secondary analyses at 
=1, %G estimates 

for height and red hair pigmentation were lower (consistent with Figure 1C), but 

remained statistically significant (Table S13A).   

 

Population stratification 

Recent work has suggested that previous studies of polygenic selection may be 

confounded by uncorrected population stratification, compromising their results28,29. 

Correcting for population stratification is clearly very important in analyses of polygenic 

selection, as we determined that repeating our analyses with no correction for population 

stratification produced unstable results (Table S14; e.g. height %G > 2000%, p<10-200). 

We note that uncorrected population stratification may be either environmentally driven 

(driven by environmental components of population differences in phenotype) or 
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genetically driven (driven by genetic components of population differences in phenotype, 

caused by polygenic selection).  We are primarily concerned about the former case, as the 

latter case represents true-positive (not false-positive) signals of polygenic selection—

although estimates of %G could still be inflated in the latter case. 

 

We performed a series of analyses to assess whether our results are robust to uncorrected 

population stratification. We first considered simulations.  Our null PC1 simulations 

described above (heritable phenotype with ΔY = 0.11, Δ� � 0, %G = 0; Figure 1A,B), 

which correspond to the case of environmentally driven population stratification, 

achieved correct calibration.  However, it is also of interest to check whether 

environmentally driven population stratification along other genetic gradients could 

lead to false-positive signals of polygenic selection along PC1.  To assess this, we 

performed additional simulations in which we simulated environmentally driven 

population stratification along North-South birth coordinate (analogous to Figure 

S1A,B) but evaluated evidence of polygenic selection along PC1.  Results are 

reported in Figure S2 and Table S15. We confirmed that type I error was properly 

controlled.   

 

We next considered analyses of UK Biobank traits.  We repeated our PC1 analyses by 

estimating � using 10 (non-overlapping) subsets of 33,754 samples ordered by PC1 

values (similar values of PC1 within each subset, so as to minimize stratification), 

correcting for PCs within each subset and meta-analyzing the results. We confirmed that 

%G remained statistically significant for both height (%G=123.0%, s.e.=14.7%; 

p=4.9×10-17) and red hair pigmentation (%G=93.54%, s.e.=35.26%; p=7.9×10-3); results 

for all 22 traits are reported in Table S16. We also repeated our PC1 analysis of height 

using family-based effect size estimates from ref. 28, and determined that the %G 

estimate along British PC1 was 95.5% (s.e.=40.8%, p=0.019); in secondary analyses at 

 
=1, the %G estimate remained positive, but was smaller and non-significant (Table 

S13B). We note that our results involving British PC1 are orthogonal to previous findings 

involving European PC128: we repeated our analysis using a European PC1 computed 

using all N=460K European-ancestry samples22,26, and determined that the correlation 
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between European PC1 and British PC1 loadings was only −0.017, and that the %G for 

height along European PC1 (relative to ΔY = −2.5%) was −20.7% (s.e.=10.2%, p=0.043), 

which is consistent with the ref. 28 finding that the genetic component of the population 

difference in height along European PC1 has the opposite sign of the total population 

difference.  Overall, these secondary analyses support our findings (as well as those of 

ref. 28). 

 

Polygenic selection along North-South birth coordinate in UK Biobank 

We next defined a continuous ancestry gradient η based on North-South birth coordinate. 

We applied our PopDiff method to 24 (North-South birth coordinate, trait) pairs for 

which the population differentiation ΔY (correlation between North-South birth 

coordinate and phenotype Y) had absolute value greater than 0.01 (Table S1). All 

analyses were corrected for 67 hypotheses tested. 

 

Results are displayed in Figure 3 and Table S17. We identified four traits with 

statistically significant %G for North-South birth coordinate (p<0.05/67=7.5×10-4): 

height, BMI, basal metabolic rate and systolic blood pressure. For height (ΔY=-0.091; 

individuals born in the southern UK are taller on average than individuals born in the 

northern UK), our estimate of %G was 124.6% (s.e.=15.9%; p=4.6×10-15), implying that 

differences in height along North-South birth coordinate are predominantly genetic and 

cannot be explained by genetic drift. For BMI (ΔY=0.040; individuals born in the 

northern UK have larger BMI on average than individuals born in the southern UK), our 

estimate of %G was 128.2% (s.e. = 25.7%; p=5.8×10-7), implying that differences in BMI 

along North-South birth coordinate are predominantly genetic and cannot be explained by 

genetic drift.  Both height and BMI have previously been reported to be under polygenic 

selection10-16. We note that our estimates of %G are not significantly larger than 100%; 

however, values of %G larger than 100% are possible if genetic and environmental 

geographic effects have opposite signs, as previously reported for BMI (ref. 12). 

 

We are not currently aware of previous evidence of polygenic selection on systolic blood 

pressure and basal metabolic rate. For systolic blood pressure (ΔY=0.032; individuals 
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born in the northern UK have higher systolic blood pressure on average than individuals 

born in the southern UK), our estimate of %G was 83.3% (s.e.=19.1%; p=1.3×10-5), 

implying that differences in systolic blood pressure along North-South birth coordinate 

are primarily due to selection and cannot be explained by genetic drift.  For basal 

metabolic rate (ΔY=-0.032; individuals born in the southern UK have higher basal 

metabolic rate on average than individuals born in the northern UK), our estimate of %G 

was 125.6% (s.e.=20.0%; p=3.3×10-10), implying that differences in basal metabolic rate 

along North-South birth coordinate are primarily due to selection and cannot be explained 

by genetic drift. We note that both systolic blood pressure and basal metabolic rate have 

significant genetic correlation with height and BMI in UK Biobank data (Table S18; 

estimated using cross-trait LD score regression30).  For both systolic blood pressure and 

basal metabolic rate, %G became only nominally significant (0.05/67=7.5×10-4<p<0.05) 

when computing association statistics using height as a covariate (Table S19), suggesting 

that polygenic selection on these traits may be impacted by polygenic selection on height.  

On the other hand, for both of these traits, %G remained highly significant when 

computing association statistics using BMI as a covariate (Table S19), although we 

caution that adjusting association statistics for heritable covariates can introduce collider 

bias31. In secondary analyses at 
=1, %G estimates were lower for most traits, but 

remained statistically significant (Table S20). 

 

Polygenic selection along East-West birth coordinate in UK Biobank 

Finally, we defined a continuous ancestry gradient based on East-West birth coordinate. 

We applied our PopDiff method to 21 (East-West birth coordinate, trait) pairs for which 

the population differentiation ΔY (correlation between East-West birth coordinate and 

phenotype Y) had absolute value greater than 0.01 (Table S1). All analyses were 

corrected for 67 hypotheses tested.  

 

Results are displayed in Figure 4 and Table S21. We identified two traits with statistically 

significant %G for East-West birth coordinate (p<0.05/67=7.5×10-4): height and systolic 

blood pressure, both of which were also statistically significant in our analysis of North-

South birth coordinate. For height (ΔY=0.087; individuals born in the eastern UK are 
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taller on average than individuals born in the western UK), our estimate of %G was 

78.0% (s.e.=21.2%; p=2.4×10-4), implying that differences in height along East-West 

birth coordinate are primarily due to selection and cannot be be explained by genetic 

drift.  For systolic blood pressure (ΔY=-0.031; individuals born in the western UK have 

higher systolic blood pressure on average than individuals born in the eastern UK), our 

estimate of %G was 85.2% (s.e.=16.4%; p=2.4×10-7), implying that differences in 

systolic blood pressure along East-West birth coordinate are primarily due to selection 

and cannot be explained by genetic drift.  The %G for systolic blood pressure remained 

highly significant when computing association statistics using height as a covariate 

(Table S22), although we caution that adjusting association statistics for heritable 

covariates can introduce collider bias31. In secondary analyses at 
=1, %G estimates were 

lower, but remained statistically significant (Table S23). 
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Discussion 

We developed a method, PopDiff, that quantifies the genetic component of population 

differences in phenotype to detect signals of polygenic selection. The method was well-

powered in simulations and analyses of real UK Biobank traits in detecting polygenic 

selection within British-ancestry samples, which have very subtle population structure. 

We identified several traits under polygenic selection, including traits previously reported 

to be under polygenic selection (height and BMI) and other traits (red hair pigmentation, 

systolic blood pressure and basal metabolic rate). 

 

PopDiff is the first method that we are aware of that produces approximately unbiased 

estimates of the genetic component of population differences in phenotype (%G). In 

particular, estimating %G using only genome-wide significant associated SNPs is 

expected to produce downward biased estimates.  Indeed, when we estimated %G for 

height along PC1 in UK Biobank data using a set of 1,131 genome-wide significant SNPs 

(P < 5 x 10-8; LD-pruned to r2<0.0126), we obtained an estimate of 27.6% (s.e.=0.1% 

using s.e. of effect size estimates of each SNP, which does not account for effects of 

genetic drift; s.e.=7.2% using block-jackknife, which account for drift but may not be 

valid for small sets of SNPs), which is much lower than the estimate produced by 

PopDiff. When we estimated %G for red hair pigmentation along PC1 using a set of 47 

genome-wide significant SNPs (P < 5 x 10-8; LD-pruned to r2<0.01), we obtained an 

estimate of 5.6% (s.e.=0.1% using s.e. of effect size estimates of each SNP; s.e.=8.2% 

using block-jackknife). More generally, there exist several methods that shrink estimated 

effect sizes for the purpose of maximizing polygenic prediction accuracy3,32-35, but these 

approaches are also expected to produce downward biased estimates of %G. 

 

Our work has several limitations. First, all methods for detecting polygenic section may 

produce false-positive signals if association statistics are confounded by uncorrected 

population stratification28,29, thus careful consideration of possible stratification is 

required.  Our secondary analyses involving homogenous subsets of samples suggest that 

our results are robust to population stratification (Table S14). Second, the approach for 

LD matrix regularization24 employed by PopDiff introduces a bias-variance tradeoff in 
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estimates of %G (Figure 1). Estimates of %G may not be perfectly unbiased, although 

they are close to unbiased in our simulations across a broad set of genetic architectures.  

However, the regularization parameter that optimizes this bias-variance tradeoff may 

vary across different data sets (e.g. depending on the sample size and SNP set), such that 

analyses of new data sets may require revisiting the choice of regularization parameter; 

investigating other LD matrix regularization approaches may also prove useful36,37.  

Third, we restricted our analyses to genotyped SNPs (due to complexities of LD matrix 

regularization and to computational cost); analyses of the %G explained by a larger set of 

genotyped and imputed SNPs might yield slightly larger estimates, consistent with the 

slightly larger heritability that they explain38. Fourth, we focused on British-ancestry 

samples in UK Biobank, which have very subtle structure. We did not apply PopDiff to 

estimate continental-level population differences in phenotype, because the much larger 

amount of drift between continental populations (and possible effects of differential 

LD39) will lead to large jackknife s.e., limiting power to detect polygenic section. Fifth, 

when polygenic selection is detected, we are unable to infer when the selection occurred, 

as the population structure of British-ancestry samples may often reflect differing 

proportions of ancestry from more deeply diverged source populations in which selection 

might have occurred13,20.  Despite these limitations, PopDiff is a powerful method for 

quantifying the genetic component of population differences in phenotype to detect 

signals of polygenic selection.  
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URLs: 

Software implementing the PopDiff method will be released prior to publication as a 

publicly available, open-source software package at https://www.hsph.harvard.edu/alkes-

price/software; UK Biobank www site, http://www.ukbiobank.ac.uk/; LDSC software, 

https://github.com/bulik/ldsc/; PLINK2.0, https://www.cog-genomics.org/plink/2.0/; 

EIGENSOFT, https://www.hsph.harvard.edu/alkes-price/software. 
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Methods 

PopDiff method 

The PopDiff method estimates the genetic component ΔG of population differentiation 

ΔY (defined as the correlation between continuous ancestry gradient and phenotype Y), 

where “genetic component” refers to the component explained by a specified set of SNPs.  

A genetic component that is significantly different from 0 after accounting for effects of 

genetic drift is indicative of polygenic selection.  

 

We assume a simple linear model, 

           

� � �� 	 �,             (2) 

 

where � is standardized phenotype of N samples, � is the standardized genotype (N 

individuals × M SNPs), � is the vector of causal effect sizes, and � is noise.  

 

Let � denote a standardized continuous gradient of genetic ancestry, e.g.  birth 

coordinates or values of a top PC (estimated in a finite sample). The population 

differentiation ΔY and its genetic component ΔG are defined as follows: 

 

Δ� � � ��
��

�
� and       

Δ� � � ��
���

�
�.          (3) 

 

The genetic proportion of population differentiation (%�) is estimated as 
Δ�	

Δ�
.  

 

Letting �
 � ���
��

�
� denote SNP loadings along the genetic ancestry gradient �, it 

follows that 

 

Δ� � �
�,          (4) 
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so that ΔG can be estimated using estimated causal effect sizes and SNP loadings.  

 

Given marginal effect size estimates � � ���

�
 and an LD matrix estimated as �� � ���

�
, an 

unbiased estimate of causal effect sizes can be computed as: 

 

 �� � �����.          (5) 

 

To improve computational efficiency, we divide the genome into non-overlapping blocks 

of 10,000 SNPs. To reduce noise in LD estimates for SNPs that are far apart, we band the 

LD matrices to bands of 200 SNPs, with LD estimates outside the bands set to zero.  We 

compute local banded LD matrices ��� for each block. To further reduce estimation noise, 

we regularize LD estimates as previously described24 (using a regularization parameter 


), such that regularized causal effect size estimates for each block are computed as: 

 

��� � ���� 	 
������.         (6) 

 

Regularized causal effect size estimates �� are computed genome-wide and the genetic 

component is estimated as 

 

Δ�� �  ���.          (7)  

 

Standard errors of Δ��  are estimated via block-ackknife, partitioning the genome into 200 

blocks of non-overlapping SNPs.  

 

We note that if the ancestry gradient � is a genetic PC (e.g. PC1), and summary 

association statistics � are computed by including genetic PCs as covariates, then this 

choice of � would be mathematically guaranteed to produce a ∆��  estimate of 0 along �. 

In detail, the singular value decomposition of X =  Σ"
. When � is PC1, �
� � 

�
 Σ"
 � #�$�
, where #�  is the ith diagonal entry of Σ, and $�
 is the ith row of "
. Thus,  

��� 	 
���� � "�Σ 	 
����"
. After correcting for the top 10 PCs, 
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� � ����������
� ����������

� �..�������
����

�
, where %�  is the ith column of U and y is phenotype 

Y corrected for 10 PCs. Following Equation 1, Δ�� �  �
��

�
��� 	 
����� � #�$�
"�Σ 	


����"
� � ��

�
�Σ 	 
����$�
� � 0. 

 

To overcome the problem of ∆��  estimates being mathematically guaranteed to equal 0, 

when applying PopDiff to genetic PCs we partition the complete set of samples into 10 

random non-overlapping subsets, compute summary association statistics for each subset 

using PCs of each subset as covariates, compute Δ��  estimates using Equation 1, where η 

is the genetic PC of the complete set of samples and averaged Δ��  estimates across 

subsets. Our simulations showed that this approach produces close to unbiased ∆��  

estimates (Figure 1).  In the UK Biobank data that we analyzed, the average correlation 

between SNP loadings for PC1 of random subsets and PC1 of the entire set of 337,536 

unrelated British-ancestry samples was equal to 0.93. 

 

In secondary analyses (see Population stratification section), we instead partitioned the 

complete set of samples into 10 non-overlapping subsets ordered by PC1 values (similar 

values of PC1 within each subset, so as to minimize stratification).  In the UK Biobank 

data that we analyzed, the average correlation between SNP loadings for PC1 of these 

subsets and PC1 of the entire set of 337,536 unrelated British-ancestry samples was equal 

to 0.027, confirming that stratifying samples by PC1 values largely eliminates 

stratification along PC1 (although this may not eliminate all population stratification).  

  

UK Biobank data set  

The UK Biobank data set contains 805,426 genotyped SNPs and 488,377 samples. We 

removed SNPs that were multi-allelic, had a genotyping rate less than 99%, had a minor 

allele frequency (MAF) less than 1%, or were not in Hardy-Weinberg equilibrium (p < 

10−6). We removed samples of non-British ancestry, samples with a genotyping rate less 

than 98% were removed, and related samples. After these QC filters, 516,086 SNPs and 

337,536 samples remained. 
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When computing PCs, we LD-pruned the set of SNPs to r2<0.2 and removed regions of 

long-range LD and regions with significant or suggestive selection signals, as previously 

described21. We computed PCs using the FastPCA software implemented in 

EIGENSOFT (see URLs). 

Simulations 

We performed simulations to evaluate the bias, type I error and power of Popdiff, using 

real UK Biobank genotypes (M=516,086 SNPs). Phenotypes were simulated using an 

additive model 

 

� � �� 	 &� 	 ',         (9)  

 

where �� represents genetic effects (including genetic effects that are correlated to 

ancestry) and &� 	 ' (corresponding to � in Equation 2) represents environmental effects 

(including environmental effects that are correlated to ancestry: &�).  Thus, in these 

simulations, population differentiation ΔY may be due to genetic and/or environmental 

effects.  We specified � using either PC1 (computed using 337,536 British samples) or 

North-South birth coordinates.  We simulated phenotypes for either 33,754 randomly 

selected samples (PC1 simulations) or all 337,536 British samples (North-South birth 

coordinate simulations), consistent with our analyses of real traits. Causal effect sizes � 

were specified with the proportion of causal SNPs (() set to 1%, 10%, or 100%, via a 

point-normal distribution: ��~* �+��� ,
��
�

��
� with probability ( and 0 otherwise, where λ� 

is the SNP loading of SNP . along �, /� was set to 0.2, and M is the number of SNPs. In 

null simulations, +� was set to 0, so that population differentiation ΔY was entirely non-

genetic. In causal simulations, +� was set to values such that +�( � 0.006.  Values of ΔY, 

ΔG and %G for each simulation are provided in the Results section.Marginal effect sizes 

� were estimated by linear regression using the top three in-sample PCs as covariates. LD 

matrices �� were computed using the complete set of UK Biobank British samples 

(N=337,536, M=516,086). ∆G�  estimates were computed using Equation 1. For each type 
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of simulation, we performed 1,000 simulations using PC1 (33,754 samples simulated) 

and 100 simulations using North-South birth coordinates (337,536 samples simulated). 

 

Analyses of UK Biobank traits 

We considered 43 UK Biobank traits, restricting to 337,536 unrelated British-ancestry 

samples (average N= 321,389 phenotyped samples; Table S10). We estimated genetic 

components of population differentiation along three continuous gradients of genetic 

ancestry: PC1, North-South birth coordinate, and East-West birth coordinate (correlations 

between these ancestry gradients are reported in Table S24). In all analyses, banded LD 

matrices were computed using the complete set of British samples (N=337,536 and 

M=516,086). In the PC1 analysis, we divided the British samples into 10 random non-

overlapping subsets (6 subsets with N=33,754 and 4 subsets with N=33,753). We 

computed summary association statistics for each of the 10 random subsets using PLINK 

2.0 (see URLs) and included the top 10 PCs of each subset, age, sex, genotyping array 

and assessment center as covariates. In the analysis of North-South and East-West birth 

coordinates, we computed summary association statistics of the complete set of British 

samples (N=337,536) using PLINK 2.0 and included the top 10 PCs, age, sex, 

genotyping array and assessment center as covariates. ∆G�  estimates were computed using 

Equation 1.  
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Figure legends 

Figure 1. Null and causal PC1 simulations to evaluate bias, type I error and power. 

(A) No bias in null simulations. We report the bias in %G estimates for different values 

of γ. (B) Type I error.  We report type I error at p<0.05 and type I error at p<0.005 for 

different values of γ. (C) Bias in causal simulations.  We report the bias in %G estimates 

for different values of γ. (D) Power.  We report power at p<0.05 and power at p<0.005 

for different values of γ.  Error bars represent 95% confidence intervals. Numerical 

results are reported in Table S2 and Table S6.  

 

Figure 2. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along PC1 in UK Biobank. We report point estimates 

and standard errors for %G along PC1 for 22 UK Biobank traits for which ΔY 

(correlation between PC1 and phenotype Y) had absolute value greater than 0.01.  Traits 

are ranked by statistical significance of nonzero %G.  Traits with Bonferroni-significant 

nonzero %G (p < 0.05/67), indicative of polygenic section, are denoted via orange bars.   

Numerical results are reported in Table S11. 

 

Figure 3. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along North-South birth coordinate in UK Biobank. 

We report point estimates and standard errors for %G along North-South birth coordinate 

for 24 UK Biobank traits for which ΔY (correlation between North-South birth coordinate 

and phenotype Y) had absolute value greater than 0.01.  Traits are ranked by statistical 

significance of nonzero %G.  Traits with Bonferroni-significant nonzero %G (p < 

0.05/67), indicative of polygenic section, are denoted via orange bars. Numerical results 

are reported in Table S17. 

 

Figure 4. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along East-West birth coordinate in UK Biobank. 

We report point estimates and standard errors for %G along East-West birth coordinate 

for 21 UK Biobank traits for which ΔY (correlation between East-West birth coordinate 

and phenotype Y) had absolute value greater than 0.01.  Traits are ranked by statistical 
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significance of nonzero %G.  Traits with Bonferroni-significant nonzero %G (p < 

0.05/67), indicative of polygenic section, are denoted via orange bars. Numerical results 

are reported in Table S21. 
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Figure 1. Null and causal PC1 simulations to evaluate bias, type I error and power. 
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Figure 2. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along PC1 in UK Biobank. 
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Figure 3. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along North-South birth coordinate in UK Biobank.  
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Figure 4. Estimates of genetic components of population differentiation (%G) and 

inference of polygenic selection along East-West birth coordinate in UK Biobank. 
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