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Abstract 
Summary: Recent technological advances in high-throughput metagenomic sequencing have pro-
vided unique opportunities for studying the diversity and dynamics of microbial communities under 
different health or environmental conditions. Graph-based representation of metagenomic data is a 
promising direction not only for analyzing microbial interactions but also for a broad range of machine 
learning tasks including feature selection, classification, clustering, anomaly detection, and dimen-
sionality reduction. We present Proxi, an open source Python package for learning different types of 
proximity graphs from metagenomic data. Currently, three types of proximity graphs are supported: k-
nearest neighbor (k-NN) graphs; radius-nearest neighbor (r-NN) graphs; and perturbed k-nearest 
neighbor (pk-NN) graphs.  
Availability:	Proxi Python source code is freely available at https://bitbucket.org/idsrlab/proxi/.	
Contact:	yme2@psu.edu  
Supplementary information:	 Tutorials and online documentation are available at 
https://proxi.readthedocs.io 

 
 

1 Introduction  
The study of microbial communities using high-throughput genomic 
surveys (e.g., 16S rRNA marker gene profiling) has been proven a pow-
erful tool for probing the structure and diversity of microbial communi-
ties in different environments. Several computational methods based on 
statistical, machine learning, and network analysis approaches have been 
proposed. However, there is still a pressing need for more sophisticated 
methodologies and bioinformatics tools. Of particular interests are analy-
sis tools for longitudinal and functional studies (Stulberg, et al., 2016).  

An essential step for studying microbial interactions, which is the 
dominant driver of population structure and dynamics, is to identify 
correlations between taxa within ecological communities. Due to the 
compositional nature and the extreme sparsity of the metagenomic data, 
inferring correlation relationships is very challenging (Fang, et al., 2015; 
Friedman and Alm, 2012). Recently, a comparative study (Weiss, et al., 
2016) showed that the state-of-the-art correlation detection tools have an 
extremely poor precision  (i.e., below 0.2). Despite the existence of high 
rates of false positive edges in learned correlation networks, Abbas et al. 

(2018) showed that these networks could serve as a powerful tool for 
biomarkers discovery.   

Motivated by this finding and by the widely acknowledged success of 
graph-based learning methods (Zhang, et al., 2013) in several application 
domains such as image processing, computer vision, and social network 
analysis, we present a Python tool for learning proximity graphs (Plaku 
and Kavraki, 2007) from metagenomic data. Proximity graphs are one of 
the most popular graph learning methods and are widely used in different 
machine learning tasks including (Zhang, et al., 2013): classification, 
clustering, dimensionality reduction, and anomaly detection. We believe 
that a tool for learning proximity graphs from metagenomic data is an 
essential tool for enabling the development of more sophisticated com-
putational tools for biomarkers discovery, community detection, and 
longitudinal studies. We report a case study of identifying biomarkers for 
Inflammatory Bowel Diseases (IBD), using a benchmark dataset of 657 
and 316 IBD and healthy controls metagenomic biopsy samples, respec-
tively. Our results show that biomarker identification using the changes 
in nodes topological properties in proximity graphs outperforms some of 
the state-of-the-art feature selection methods. 
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2 Methods  
Proxi constructs a proximity graph from the abundances of microbial 
operational taxonomic units  (OTUs). Depending on the algorithm used 
and the user-specified parameters, the resulting graph could be 
weighted/unweighted and directed/undirected. Let 𝑋 ∈ 𝑅!×! be an OTU 
table (in matrix representation) where each column corresponds a meta-
genomic sample and each row corresponds to an OTU. 𝑥!"  represents the 
abundance (or relative abundance) of the 𝑖!!  OTU in the 𝑗!!  sample.  
Proxi learns a proximity graph 𝐺 = (𝑉,𝐸) for 𝑋 such that each node is 
an OTU and edges represent proximity relationships between nodes. The 
current implementation supports the construction of the following three 
nearest neighbor proximity graphs. 

2.1 k-NN and r-NN graphs 
Given an OTU table 𝑋 ∈ 𝑅!×!, a k-NN graph 𝐺 = (𝑉,𝐸) for 𝑋 is a 
directed (or undirected) graph with |𝑉| = 𝑝 nodes such that there is an 
edge 𝑒!" ∈ 𝐸 if and only if 𝑥!  is among the 𝑥! ′𝑠 k most similar OTUs 
using a distance metric 𝑑(𝑥! , 𝑥!). Despite the simplicity of the procedure 
for constructing k-NN graphs, selecting an appropriate distance metric 
and deciding on the number of neighbors are not straightforward deci-
sions. For small values of k, the resulting graph might not be connected 
(i.e., there might not be a path between every two vertices in the graph). 
Moreover, fixing the number of out-neighbors per node might not be an 
intuitive task. The r-NN graph is an alternative proximity graph where 
there is an edge 𝑒!" ∈ 𝐸 if and only if 𝑑(𝑥! , 𝑥!) ≤ 𝑟. However, the choice 
of the value of r is data-dependent and it might be challenging to deter-
mine its appropriate value. 

2.2 Perturbed k-NN graphs 
The perturbed k-NN (pk-NN) graph construction algorithm (Wagaman, 
2013) improves the construction of k-NN graphs from noisy data and 
yields proximity graphs that have a different k for each vertex. Briefly, 
the algorithm constructs 𝑇 different k-NN graphs from the OTU table, X, 
by sampling with replacement from columns of X. A perturbed k-NN 
graph is then formed by aggregating the 𝑇 graphs such that edges that 
appear at least in 𝑐𝑇 graphs are kept in the final graph, where 0 < 𝑐 ≤ 1 
is the graph aggregation tuning parameter. 

2.3 Implementation and documentation 
Proxi is implemented in Python 3.6 and requires NetworkX (Hagberg, et 
al., 2008) and Scikit-learn (Pedregosa, et al., 2011) to be installed.  Con-
structed graphs could be saved in graphml or any NetworkX supported 
format. Similar to other graph inference tools (e.g., (Faust, et al., 2012; 
Kurtz, et al., 2015)), Proxi doesn’t support any network visualization 
functionality. However, any network analysis and visualization tool such 
as Cytoscape (Shannon, et al., 2003) could be directly used for visualiza-
tion and downstream analysis of Proxi constructed graphs (for detailed 
examples, please see Proxi tutorials available at 
https://proxi.readthedocs.io/en/latest/Tutorials.html). 

3 Results 
Recently, Abbas et al. (2018) presented a novel Network-Based Bi-
omarker Discovery (NBBD) framework for detecting disease biomarkers 
from metagenomic data. As a case study, we experimented with their 
NBDD framework and IBD train and test sets. The training set consists 
of 400 samples of equal number of IBD (positively labeled) and healthy 

(negatively labeled) samples. The test set consists of 457 and 116 IBD 
and healthy samples, respectively. Briefly, we applied the pk-NN graph 
construction algorithm using k=7, T=100, c=0.7, and Jaccard dissimilari-
ty metric to infer (from training data) two pk-NN graphs corresponding 
to IBD and healthy populations, respectively. Then, a node importance 
score was computed using the absolute difference in node topological 
properties in the two graphs. Following Abbas et al. (2018), we consid-
ered the following node topological properties (all computed from the 
two pk-NN graphs using NetworkX library (Hagberg, et al., 2008)): 
Betweenness Centrality (btw); Closeness Centrality (cls); Average 
Neighbor Degree (and); Clustering Coefficient (cc); Node Clique Num-
ber (ncn); Core Number (cn). Fig. 1 compares the ROC curves estimated 
using the test data and Random Forests (RF) classifiers trained using 
different commonly used feature selection methods (top) and NBBD 
method (bottom). Interestingly, the network-based feature selection 
method using the change in node Closeness Centrality (cls) for scoring 
node importance yields a RF classifier with the highest AUC score of 
0.81 whereas the top performing RF classifier using RF feature im-
portance has an AUC score of 0.78. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Performance comparison. ROC curves of RF classifiers evaluated using top 30 

features selected using different machine learning based feature selection methods (top) 

and NBBD network-based feature selection method based on six node properties and pk-

NN graphs. The AUC score for each classifier is shown between braces. 
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4 Conclusions 
Application of machine learning algorithms to metagenomic data is 
challenging due to the extreme sparsity and the high-dimensionality of 
the metagenomic data. Learning a graphical representation of meta-
genomic data is a promising direction for modeling metagenomic data 
and enabling the application of a wide variety of well-developed graph 
mining algorithms for clustering, semi-supervised learning, and anomaly 
detection in metagenome-wide analysis studies. 

We presented Proxi, an open source Python library for learning differ-
ent types of proximity graphs from metagenomic data. The presented 
tool supports three types of proximity graphs: k-nearest neighbor (k-NN) 
graphs; radius-nearest neighbor (r-NN) graphs; and perturbed k-nearest 
neighbor (pk-NN) graphs. The pk-NN algorithm constructs improved k-
NN graphs from noisy data using bootstrapping and graph aggregation 
techniques. We showed that the learned pk-NN graphs could be success-
fully used for identifying metagenomic biomarkers using the NBBD 
framework (Abbas, et al., 2018). In addition to our suggested method of 
using proximity graphs for biomarker identification (or graph-based 
feature selection), proximity graphs have been successfully used in lit-
erature for several machine learning tasks including: semi-supervised 
learning, clustering, anomaly detection, and manifold learning. There-
fore, Proxi creates opportunities for researchers to explore and develop 
novel computational metagenomic analysis tools based on proximity 
graph models of the data.  
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