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Abstract

Visual evoked potentials (VEPs) can be measured in the EEG as response to a visual stimulus. Commonly, VEPs are
displayed by averaging multiple responses to a certain stimulus or a classifier is trained to identify the response to a certain
stimulus. While the traditional approach is limited to a set of predefined stimulation patterns, we present a method that
models the general process of VEP generation and thereby can be used to predict arbitrary visual stimulation patterns
from EEG and predict how the brain responds to arbitrary stimulation patterns. We demonstrate how this method
can be used to model single-flash VEPs;, steady state VEPs (SSVEPs) or VEPs to complex stimulation patterns. It is
further shown that this method can also be used in a BCI to allow information transfer rates of more than 470 bit/min

and lead to more flexible BCIs with a virtually unlimited amount of targets and any desired trial duration.
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1. Introduction

Visual evoked potentials (VEPs) are electrical poten-
tials that can be measured by electroencephalography (EEG)
as the brain’s responses to a visual stimulus. VEPs are
used in a variety of fields ranging from clinical diagnostics
(Chirapapaisan et al., [2015) over basic research (Blake &
Logothetis], |2002)) to their application in a Brain-Computer
Interface (BCI) (Wolpaw et al., [2002)).

The idea of a VEP-based BCI was originally devel-
oped by |Sutter| (1984), who proposed ”the visual evoked
response as a communication channel” and envisioned the
use of VEPs for a BCI-controlled keyboard. Sutter imple-
mented such a VEP-based BCI in 1992 where he used 64
visual stimuli that were modulated by a complex stimula-
tion pattern.

Today, VEP-based BClIs are either based on the orig-
inal idea of Sutter and use complex stimulation patterns
(also called codes) to elicit a code-modulated VEP (cVEP)
(Spuler et al., [2012; [Bin et al., [2011), or they use vi-
sual stimulation with a specific frequency which evokes
steady-state VEPs (SSVEPs) (Chen et al., [2015). Al-
though both methods differ in how the stimulation pattern
is constructed, both methods depend on the construction
of a stimulus-specific template, restricting the number of
possible targets.

One notable exception is the work by [Thielen et al.
(2015)), who investigated a more general approach to use
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visual stimulation patterns that are not restricted to a
predefined pattern. Their model is based on the assump-
tion that the response to a complex stimulation pattern
is a linear superposition of individual single-flash VEPs
(Capilla et al., [2011). Thielen et al. therefore developed
a convolution model that breaks down a complex stimu-
lation patterns in smaller subcomponents and models the
response to a complex stimulation pattern by a superpo-
sition of the responses to the subcomponents. While this
approach allows for a more flexible prediction model, the
stimulation patterns are not fully arbitrary, as they can
only be composed of short and long pulses.

It should be noted, that the usability of stimulation
patterns is restricted by the brain. Herrmann| (2001) has
shown that brain responses can only be found by using
stimulation frequencies of up to 90 Hz. Furthermore, the
stimulation rate is limited by the used hardware for stim-
ulus presentation, like a computer monitor. Therefore,
?arbitrary stimulation patterns” should be interpreted as
a huge set of possible stimulation patterns relative to the
used stimulation rate.

In this paper, we present a model which is able to pre-
dict arbitrary stimulation patterns and its backward model
which is able to predict the brain response to arbitrary
stimulation patterns. We show that both models can be
used for high-speed BCI control using any desired trial
duration with a virtually unlimited amount of targets.
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Figure 1: (A) Training of the EEG2Code model. Each 250ms window of the spatially filtered EEG data will be projected to its corresponding
bit (1 or 0) of the corresponding stimulation pattern. (B) Training of the Code2EEG model. Each 250ms window of the modulation pattern
will be projected to the corresponding value of the spatially filtered EEG data.

2. Methods

2.1. EEG2Code model

2.1.1. Training

The model is based on a ridge regression model, which
is able to interpret the EEG signal and predict the stimula-
tion pattern during an arbitrary stimulation. For training,
the stimulation pattern is always a fully random binary se-
quence presented with a rate of 60 bit/s. Since the most
prominent parts (N1, P1 and N2) of a VEP response to
a single stimulus lasts for around 250 ms, we use a 250
ms window of the spatially filtered EEG data as predictor
and the corresponding bit of the stimulation pattern as re-
sponse to train the ridge regression model. The window is
shifted sample-wise over the data during a trial, meaning
that it is required to use 250 ms of EEG data after trial
end, otherwise the last 250 ms of a stimulation pattern
can not be predicted. Fig. (A) depicts this procedure
with a bit-wise window shifting for simplicity. The ridge
regression model B and its bias term [y can be calculated
by

B:(Q@X+AU*XT@/dX) (1)
Bo=7—Xp (2)

where X (the predictor) is a n x k-matrix with n the num-
ber of windows and k the window length (number of sam-
ples). y (the responses) is a n X 1-vector containing the
corresponding bit of the modulation sequence for each win-
dow. [ is the identity matrix and X the ridge regression pa-
rameter, which was not optimized but set to 0.001. Since
a window has a length of & = 150 samples, at the used
sampling rate s = 600Hz, the output B is a coefficient
vector of length 150, one for each input sample and the
constant bias term S8y. The number of windows n depends
on the number of trials IV, the average trial duration d,
the window length £ and the sampling rate s:

n=N(d-s—k) (3)

As described in section [2.5.4] we used N = 96 and d = 4s
resulting in n = 216,000 windows.

2.1.2. Prediction

After training, the model is able to predict the bits of
the stimulation pattern. Fig. B) depicts the procedure,
the measured EEG data is spatially filtered and the trained
regression model is used to predict each 250 ms window
(sample-wise shifted). The regression model predicts a real
number y; for each window 4

yi = Po+ Prz1 + ... + Brag (4)

where Sy is the constant term and (1. the coefficients
for each window sample z;. The predicted real values y;
in turn can be interpreted as a binary values by a simple
threshold method, each value above or equal 0.5 is set to
be binary 1 and 0 otherwise. Afterwards, the predicted
binary sequence is compared to the stimulation pattern
using the hamming distance. The binary transformation
is only done for identifying the bit prediction accuracy, not
for BCI control (see section [2.3)).

2.2. Code2EEG model
2.2.1. Training

Like the EEG2Code model, the Code2EEG model is
also based on a ridge regression model and trained on
fully random stimulation patterns to predict the EEG re-
sponse based on a stimulation pattern. We also use 250
ms windows (150 samples) and the equation is the same
as Eqn. [T] and 2] but the predictors X are the windows of
the stimulation pattern and the response y is the spatially
filtered EEG data. Fig. B) depicts this procedure for
three exemplary windows.

Again, the output $ of the ridge regression is a coeffi-
cient vector of length 150. And we set A to 0.001.

2.2.2. Prediction

After training, the model is able to predict the brain
response to an arbitrary stimulation pattern. The equa-
tion is the same as Eqn.[d] but x1 ...z are the k samples
of the modulation pattern window. The model predic-
tion y can now be compared to the measured (and spatial
filtered) EEG. We used the correlation coefficient to com-
pare them. Fig. C) depicts the procedure, in this case,
the real stimulation pattern is used to predict the brain
response.
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Figure 2: (A) Setup of the BCI experiment. The presentation layout is as shown on the monitor, it has 32 targets labeled alphabetically
from A to Z followed by ’_” and numbers 1 to 5. The targets are separated by a blank black space and above targets is the text field showing
the written text during the experiment. Each target is modulated with its own random stimulation pattern. During a trial, the participant
has to focus a target. A spatial filter is applied to the measured EEG. The model predicts the target which is indicated to the participant
by highlighting the target in yellow and the letter is appended to the text field above the keyboard. (B) The EEG2Code model predicts an
arbitrary stimulation pattern. A 250ms window will be slided sample-wise over the spatially filtered EEG signal. For simplicity, it is shown
bit-wise using 3 exemplary windows. The trained model predicts a real number for each window. Each value above 0.5 (gray dashed line) is
interpreted as boolean 1 or 0, otherwise. The resulting bit sequence can be compared (hamming distance) to the stimulation pattern (match
= green, mismatch = red). For target selection we used the correlation coefficient between model prediction and the stimulation patterns of
all targets, the one which correlates most will be chosen as the predicted target. (C) The Code2EEG model predicts the brains response to
an arbitrary stimulation pattern by sliding the 250 ms window over the stimulation pattern. For BCI control, the model predicts the brain
responses to the stimulation patterns of all targets, which in turn are compared to the measured EEG using the correlation coefficient. The
one which correlates most will be chosen as the predicted target.

2.2.3. Modelling brain response 2.8. BCI control

As described, the model can predict the brain response For BCI control, each target is modulated with its own
to an arbitrary stimulation pattern, therefore, we also an- (random) stimulation sequence and we need a method to
alyzed the prediction of a single flash stimulus, a 30 Hz  choose the correct target out of others. For the EEG2Code
SSVEP stimulus, and the m-sequence used for spatial fil- model we used the correlation coefficient between the model

ter generation (see section - For this, an additional prediction and the modulation patterns of all targets. The
participant (not included in the BCI experiment) had to  corresponding target which correlates most is selected. We
perform the spatial filter and training session followed by could also use the pattern prediction accuracy, but as
120 single flash trials and 120 SSVEP trials using 30 Hz shown in our previous study (Nagel et all 2017), this is
stimulation frequency, whereas each trial lasts for 1 s. We  Jeading to a loss of additional information which in turn
predicted the brain response to those stimuli and com- leads to a reduced performance.
pared them to the spatially filtered EEG data. The Code2EEG model predicts the EEG data of the
modulation patterns of all targets and compares them to
the measured EEG data, again, the one which correlates
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most is chosen as the correct target.

2.4. Modulation patterns

2.4.1. Random modulation patterns

During the experiment the MT19937 (Matsumoto &
Nishimura;, [1998)) random generator was used for generat-
ing random modulation patterns. At each monitor refresh
a random integer (0 or 1) is generated for each target,
therefore, the binary sequence of a target is always ran-
dom without conscious repetitions and generated with a
rate of 60 bit/s, continuously. The pattern generation can
be repeated or varied by using the same or a different ran-
dom seed, respectively.

2.4.2. Optimized modulation patterns

In our previous study (Nagel et al.| |2018b) we found
that the number of bit changes is a crucial property of
stimulation patterns that leads to different performances.
We analyzed the pattern prediction accuracy of all 250
ms (15 bit) sub-sequences and found a maximum accu-
racy for sub-sequences with 7 bit changes. We repeated
the analysis using the data of the current study and con-
firmed the findings. The pattern prediction accuracy of
15 bit sub sequences is best for sequences with 6 to 8 bit
changes (Fig. , meaning a bit change probability of ap-
proximately 50% at a stimulation rate of 60 Hz.
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Figure 3: Average bit prediction accuracy of the EEG2Code model
of all 250 ms (15 bit) sub-sequences of random modulation trials
grouped by the bit change probability. For example, a bit change
probability of 100% means that each successive bit changes from 0
to 1 or 1 to 0, respectively. The maximum bit prediction accuracy
is reached between approximately 40% to 60%, meaning an average
of 6 to 8 bit changes. Therefore, we used only 15 bit subsequences
with 7 bit changes for the optimized modulation patterns.

Therefore, we generated a set of 15 bit long sequences
with 7 bit changes, this results in a total number of 6,864
bit sequences. As we use a correlation measure to deter-
mine the correct target, we filtered those sequences. For
this, we generated 100,000 subsets of 150 randomly chosen
sequences out of the 6,864 bit sequences and took the sub-
set with lowest average correlation between the sequences
in the subset. The resultant subset has an average corre-
lation of -0.004 (SD = 0.276) between any sub-sequence to
all others. The subset allows to modulate 1507/25°™¢ differ-
ent targets, where T is the trial duration in milliseconds.

2.5. Ezperimental setup
2.5.1. Hardware & Software

The BCI consists of a g.USBamp (g.tec, Austria) EEG
amplifier, two personal computers (PCs), Brainproducts
Acticap system with 32 channels and a LCD monitor (BenQ
X1.2430-B) for stimuli presentation. Participants are seated
approximately 80 cm in front of the monitor.

PC1 is used for the presentation on the LCD monitor,
which is set to refresh rate of 60 Hz and its native res-
olution of 1920 x 1080 pixels. A stimulus can either be
black or white, which can be represented by 0 or 1 in a
binary sequence and is synchronized with the refresh rate
of the LCD monitor. The timings of the monitor refresh
cycles are synchronized with the EEG amplifier by using
the parallel port.

PC2 is used for data acquisition and analysis. As a
general framework for recording the data of the EEG am-
plifier we used BCI2000 (Schalk et al.l [2004) and the data
processing is done with MATLAB] (2017). The amplifier
sampling rate was set to 600 Hz, resulting in 10 samples
per frame/stimulus. Additionally, a TCP network connec-
tion was established to PC1 in order to send instructions to
the presentation layer and to get the modulation patterns
of the presented stimuli.

We used a 32 electrodes layout, 30 were located at Fz,
T7, C3, Cz, C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz,
P2, P4, P6, PO9, PO7, PO3, POz, PO4, POS8, PO10, O1,
POO1, POO2, O2, OIlh, OI2h, and Iz. The remaining
two electrodes were used for electrooculography (EOG),
one between the eyes and one left of the left eye. The
ground electrode (GND) was positioned at FCz and refer-
ence electrode (REF) at OZ.

2.5.2. Presentation layout

We used MATLAB(2017)) and the Psychtoolbox (Brainard

& Visionl [1997) for the presentation layer. Our layout is
a 4 x 8 matrix keyboard layout (32 targets in total) as
shown in Fig. A), whereas the targets are labeled alpha-
betically from A to Z followed by '’ and numbers 1 to
5. The targets are separated by a blank black space and
above targets is a text field showing the written text.

2.5.3. Participants

The study was approved by the local ethics committee
of the Medical Faculty at the University of Tiibingen and
conformed to the guidelines of the Declaration of Helsinki.
A written informed consent was obtained from all partic-
ipants. To test the system, 9 healthy subjects (5 female)
were recruited. All subjects had normal or corrected-
to-normal vision. The age ranged from 18 to 23 years.
Each subject participated in one session and completed
the whole experiment. None of the subjects participated
in other VEP EEG studies before.

2.5.4. Data acquisition
Initially, the participants had to perform a run to gen-
erate a spatial filter (see section|2.6.3). The training phase


https://doi.org/10.1101/358036
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358036; this version posted June 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

was split into 3 runs, but with varying trial duration, 5 s,
4 s, and 3 s, respectively. The testing phase was split into
14 runs with a trial duration of 2 s. The runs were alter-
nated using random stimulation patterns and optimized
stimulation patterns.

During all runs the inter-trial time was set to 0.75 s and
the participants had to perform 32 trials in lexicographic
order (see section [2.5.2)).

2.6. Preprocessing

2.6.1. Frequency filter

The recorded EEG data is bandpass filtered by the
amplifier between 0.1 Hz and 60 Hz using a Chebyshev
filter of order 8 and an additional 50 Hz notch filter was
applied.

2.6.2. Correcting raster latencies

Standard computer monitors (CRT, LCD) cause raster
latencies because of the line by line image build-up depen-
dent on the refresh rate. As VEPs are effected by these
latencies resulting in a decreased BCI performance, we cor-
rected the raster latencies as described in our previous
work (Nagel et al.l |2018a).

2.6.3. Spatial filter

Recent studies (Bin et al 2011 |Spiler et al., [2012)
have shown increased classification accuracy by using spa-
tial filters to improve the signal-to-noise ratio of the brain
signals. As random stimulation is not suitable for spatial
filter training, a m-sequence with low auto-correlation is
used for target modulation. The spatial filter training is
done using a canonical correlation analysis (CCA) as de-
scribed in a previous work (Spiiler et al.| 2014), except
that the presentation layout and stimulation duration dif-
fer. The presentation layout is as described above and
the participants had to perform 32 trials (one per target)
whereas one trial lasts for 3.15 seconds followed by 1.05
for gaze shifting. As the used modulation pattern has a
length of 63 bits (1.05 seconds), we got 96 sequence cy-
cles per participant, which in turn are used for training
the spatial filter. The spatial filter is then used for the
following experiment.

2.7. Performance evaluation

For the pattern prediction of the EEG2Code model, the
binary values of the predicted patterns were compared to
the stimulation patterns by using the hamming distance.
Because the distances are 1’s and 0’s, the averaged ham-
ming distance of all samples corresponds to the accuracy
of how much of the stimulation pattern can be predicted
correctly.

The prediction of the brain responses is evaluated by
using the correlation coefficient between the predicted EEG
and the spatially filtered EEG.

The BCI control performance of both models is evalu-
ated using the accuracy of correctly predicted targets.

Additional to the accuracies, we calculated the corre-
sponding information transfer rates (ITRs) (Wolpaw et al.,
1998)). The ITR can be computed with the following equa-
tion:

1-P 60

(5)

with IV the number of classes, P the accuracy, and T the
time in seconds required for one prediction. The ITR is
given in bits per minute (bpm).

For the pattern prediction of the EEG2Code model the
values are: N = 2 and T = /60 s. For BCI control N
equals the number of targets and T the trial duration in-
cluding the inter-trial time.

3. Results

To summarize, the method presented in this paper al-
lows to create prediction models in two directions: on the
one hand the EEG2Code model can be used to predict
the visual stimulation pattern based on the EEG, on the
other hand the Code2EEG model can be used to predict
the brain response (the VEP measured by EEG) for a given
visual stimulation pattern. Both models can be used for
BCI control, for which multiple stimuli (i.e. targets) are
modulated with random patterns, as depicted in Figure
For data acquisition we performed an online BCI control
experiment, additionally we did an offline analysis to get
the performance of the stimulation pattern prediction and
the brain response prediction. Furthermore, we analyzed
the BCI performance by varying the trial duration and the
number of targets. The results are shown in the following
subsections.

3.1. Stimulation pattern prediction

When using random visual stimulation, the EEG2Code
model is able to predict the stimulation pattern with an
average accuracy of 64.6% (the percentage of correctly pre-
dicted bits in the bit-vector), which corresponds to an ITR
of 232 bit per minute (bpm). For the best subject, the
model is able to predict 69.1% of the stimulation pattern
correctly, which corresponds to an ITR of 389.9 bpm.

3.2. Brain response prediction

Using the Code2EEG model, we can predict the EEG
response to a visual stimulation pattern. Exemplary, the
model trained on random visual stimulation was used to
predict the response to a single-light flash of 16.6 ms, to a
30 Hz SSVEP pattern, and to a cVEP m-sequence pattern
(Fig. . When predicting the EEG response to random vi-
sual stimulation patterns, the average correlation between
the prediction and measured EEG is r=0.346, with a max-
imum correlation of r=0.465 for subject S5 (see Table|]] for
details).
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Table 1: Results of the model prediction. Accuracy (ACC) and infor-
mation transfer rates (ITR) of the EEG2Code model, and correlation
(r) of the Code2EEG model prediction to the measured EEG data.
Shown are the average results of all subjects. Best results are in bold

font.
EEG2Code Code2EEG
Subject | ACC [%] ITR [bpm] T

S1 69.1 389.9 0.425
S2 64.5 2224 0.240
S3 63.7 196.5 0.351
S4 65.6 257.8 0.394
S5 66.3 282.7 0.465
S6 67.1 308.2 0.403
S7 63.7 196.8 0.226
S8 60.9 124.5 0.324
S9 60.2 109.4 0.287
mean 64.6 232.0 0.346
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Figure 4: Predicted brain responses of the Code2EEG model com-
pared to the measured EEG (120 trials averaged). The black line
represents the stimulation pattern, the blue line the predicted brain
response and the red line the spatially filtered EEG. (A) Single stim-
ulus pattern lasting for 1/60 s. (B) 30 Hz SSVEP pattern. (C)
cVEP pattern.

3.8. Brain-Computer Interface control

As mentioned, both models can be used for BCI con-
trol. In the following we show the online performance fol-
lowed by the offline analysis by varying the trial duration
and the number of targets.

3.3.1. Online results

The EEG2Code model was tested in an online BCI with
a trial length of 2 s. An inter-trial time of 0.75 s was cho-
sen, because previous experiments have shown that 0.5 s is
too short for untrained users. The participants, who never
used a BCI before, had to perform 7 runs with fully ran-
dom stimulation patterns and 7 runs with optimized stim-
ulation patterns. During each run the participants had to
spell each letter in lexicographic order, meaning 32 trials
per run for a total of 224 trials. Table [2| shows the target
prediction accuracies and the corresponding I'TRs. When

using completely random stimulation patterns the average
accuracy of target selection is 97.8%, which corresponds to
103.9 bpm. As we found that modulation patterns with a
specific number of bit changes lead to better results (Nagel
et all [2017), optimized modulation sequences (details in
Material and Methods section) were also tested, leading to
an accuracy of 98.0% (108.1 bpm). Due to a ceiling effect,
the difference between random and optimized stimulation
patterns is not significant.

Table 2: Results of the online BCI experiment. Accuracies (ACC)
and information transfer rates (ITR) of the online BCI experiment
(EEG2Code model). Shown are the average results of all subjects us-
ing random stimulation patterns and optimized stimulation patterns.
ITRs are calculated including the inter-trial time of 0.75s.

optimized random
Subject | ACC ITR | ACC ITR
(%] [bpm] | [%]  [bpm]
S1 100.0 109.1 | 100.0 109.1
S2 99.6 107.7 | 99.1 106.5
S3 99.1 106.5 | 96.4 1004
S4 100.0  109.1 | 100.0  109.1
S5 100.0 109.1 | 99.1 106.5
S6 100.0  109.1 | 100.0  109.1
ST 99.6 107.7 | 98.2 104.3
S8 99.1 106.5 | 96.9 101.3
S9 84.8 79.3 | 90.6 89.2
mean 98.0 108.1 | 97.8 103.9

3.3.2. Varying trial duration and number of targets

Both models are based on a sliding window approach
and are trained on fully random stimulation patterns, there-
fore, the trial duration can be varied and it is not required
to use the same stimulation patterns for training and test-
ing, but to use arbitrary stimulation patterns which in
turn allows to vary the number of targets. The following
results are based on the runs with optimized stimulation
patterns.

Using the EEG2Code model with 32 targets, varying
the trials length from 0.5 s to 2 s shows that average accu-
racy increases with longer trials, but the ITR reaches its
optimum of 154.3 bpm with a trial duration of 1 s. It is
worth mentioning that S1 achieved an ITR of 231.1 bpm
using 600 ms trial duration which corresponds to an ac-
curacy of 92.41%. The Code2EEG model is generally less
accurate, reaching only 94.4 % with 2 s trials, but still has
an optimum average ITR of 146.6 bpm with a trial length
of 0.75 s. More detailed results for the EEG2Code model
are shown in Fig. [f(A) and (B) and for the Code2EEG
model in Fig. A1(A) and (B).

As both models are not limited to fixed stimulation
patterns, but work with arbitrary patterns, the number of
targets can be increased. With a trial length of 2 s and
60 Hz refresh rate, there are 2'20 = 1.33 . 1036 different
stimulation patterns, which therefore is the upper bound
for the number of targets.


https://doi.org/10.1101/358036
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/358036; this version posted June 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(A) Trial duration

(B) Trial duration
T

100 . —— — 250
_— —— —
S 1 —
= g
3 J k=)
5 o
g E
© i c
c [
5 B Legend %
20 - i egen
= —s1 —
0 L L L L L L T Sz 0 L L L L L L
05 0.6 0.75 1 1.25 15 1.75 2 zz 0.5 0.6 0.75 1 1.25 15 1.75 2
Trial duration [s] _s5 Trial duration [s]
(C) Number of targets S6 (D) Number of targets
100 e T R S——— __s7 500 T T
——s8
T 80f ——S9| g0 1
) - 2
S 60 — = 300
3 = o
g E
S 40 = 200
c ]
§ g
S 20r 100

10? 10° 10* 10°
Number of targets

o

10? 10° 10* 10°
Number of targets

Figure 5: Results using the EEG2Code model. Shown are the accuracies and ITRs (including 0.5 s inter-trial time). (A) and (B) using
varying trial durations and (C) and (D) using varying number of targets (logarithmic scale). Each colored line is one subject and the thick

black line represents the mean of all subjects.

For this paper, we simulated a BCI with up to 500,000
targets in steps of 50 targets. Fig.[5{C) and (D) shows the
accuracies and ITRs of the EEG2Code model relative to
the number of targets. The averaged optimum ITR was
at 235.3 bpm using 71,930 targets, although the optimum
varied largely between subjects. For subject S1 the ITR
was still increasing at half a million targets with an an
accuracy of 96.3% and an ITR of 432 bpm. Furthermore,
S1 achieved an accuracy of 100% for up to 29,500 targets.
In Fig. A2 are detailed results for S1 showing the target
variation for all trial durations, revealing a maximum ITR
of 474.5 bpm using 472,700 targets and a trial duration of
1.5 s, which is known to us, the highest reported ITR of
an offline BCIL.

Using the Code2EEG model, the maximum average
ITR of 183.8 bpm is reached with 9,600 targets with an av-
erage accuracy of 64.93%. Adding more targets decreases
the ITR for most of the participants. Detail results for the
Code2EEG model can be found Fig. A1(C) and (D).

4. Discussion

In this paper, we presented a method that models the
process of VEP generation and can be used in two direc-
tions to either predict the EEG response to a visual stim-
ulation pattern (Code2EEG) or predict the visual stimu-
lation pattern from the EEG (EEG2Code). Contrary to
previous methods (Thielen et al.l [2015; |Cardona et al.|
2016)), the presented method works with arbitrary stimu-
lation patterns, while it is only trained on a limited set
of stimulation patterns. We used random stimulation pat-
terns because we assume to cover most of the possible VEP
responses.

Using the EEG2Code model, we have demonstrated
that a stimulation pattern presented at 60 Hz can be pre-
dicted with an average accuracy of 64.6 %, which cor-
responds to an ITR of 232 bpm. It should be noted,
that a binary classification method, like a support vector
machine, could lead to better stimulation pattern predic-
tion, but for comparison we used the continuous regression
method (with threshold) as we also used the regression
model for brain response prediction, which has to be con-
tinuous.

When using the Code2EEG model to predict the EEG
response to a certain stimulation pattern, the correlation
between the recorded EEG and the predicted EEG re-
sponse is 7 = 0.346. It should be noted that the Code2EEG
model only predicts the evoked response in the EEG, and
not the noise present in the EEG, so that the correlation
between the prediction and the evoked response is higher.
On the other side, a correlation of » = 0.346 means that
r2 = 11.97% of the variance in the recorded EEG can
be explained by the Code2EEG model, thereby giving a
lower bound for the signal-to-noise-ratio (SNR) of the vi-
sual evoked response in the EEG. This is confirmed by
comparing the model prediction of the cVEP pattern to
the averaged recorded EEG (Figl]C)), this resulted in a
correlation of 7 = 0.551.

As the presented approach is based on the assump-
tion of linearity in the VEP generation process (Capilla
et al.l 2011} [Lalor et al., [2006), we have shown that most
of the VEP response to arbitrary stimulation patterns can
be explained by a superposition of single VEP responses.
But interestingly, the duration of the predicted single-flash
VEP response and the onset of the predicted 30 Hz SSVEP
response is shortened in time compared to the recorded
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VEP responses, whereas the sinusoidal part of the 30 Hz
SSVEP response matches roughly perfect. It seems there
is an initially slowed response after a longer stimulation
pause which the model can not reflect because it is trained
using random stimulation patterns where longer stimula-
tion pauses are unlikely. By using a model trained on
sequences with < 3 bitchanges the onset matches better
for all stimulation patterns, whereas the further prediction
matches worse (Fig. A3). This could be an evidence, that
the VEP generation is a non-linear process. Furthermore,
this could be the reason for the worse stimulation pattern
prediction of sequences with less bit changes (Fig. |3).

We have also shown that both models can be used for
controlling a BCI. When using the EEG2Code model for
an online BCI, we achieved an average accuracy of 108 bpm
and thereby, with an ITR > 100 bpm, fall in the category
of high-speed BCIs. But the performance of our online
EEG2Code BCI is below the best results reported for a
c¢VEP BCI (144 bpm, [Spiiler et al.l [2012) or an SSVEP
BCI (267 bpm, (Chen et al., 2015)). However, the BCI used
in the online setup was not optimized to achieve a high
ITR, but to be comfortably usable by a BCI-naive person
and to get the required data for the offline analysis. In the
offline analysis we have shown that the parameters can be
optimized, for example by reducing the trial duration, to
achieve an average ITR of 154.3 bpm and up to 231.1 bpm.
For the best subject, we found a theoretical maximum ITR
of 474.5 bpm, although we only simulated results for up to
500,000 targets and the ITR was still rising at that point,
so that it is likely that the maximum is even higher.

Compared to other types of BCIs, the high number of
possible targets is a unique feature of the EEG2Code BCI.
With 1000 targets, the average accuracy is still around
90 % and goes down to around 55 % for half a million tar-
gets, with the best subject still achieving >95 % accuracy.
As the Dictionary of Chinese Variant Form compiled by
the Taiwan (ROC) Ministry of Education in 2004 contains
106,230 individual characters, this BCI approach would
theoretically allow to select each character of that alpha-
bet individually. Although this thought is purely theoret-
ical as there are practical limitations, like displaying such
a high amount of targets.

The Code2EEG model resulted in a lower BCI per-
formance compared to the EEG2Code model, but with
a trial length of 0.75 s it achieved an average ITR of
146.5 bpm, which is three times the ITR as the compara-
ble re-convolution BBVEP of |Thielen et al.| (2015]), which
achieved an average ITR of 48.4 bpm.

Since our methods are based on a sliding window ap-
proach allowing to vary the trial duration, they can easily
be used for an asynchronous BCI, for example by only
classifying if a specific correlation is reached.

Due to the discussed assumption of non-linearity, we
expect a better pattern prediction of the EEG2Code model
using a non-linear method. Achieving accuracies of always
above 75% would allow to use error-correction codes, as
know from coding theory. This in turn would allow to

encode arbitrary information as a binary sequence, directly
transfer it through visual stimuli, decode it and correct
possible errors. This would allow to build more robust
and fully flexible BCI applications by using the brain as
data transfer channel.

Finally, the approach to create a general model for the
generation of VEPs could also be applied to other stimula-
tion paradigms like sensory or auditory stimulation. Also,
such an approach could be utilized for electrical stimu-
lation for therapeutic means, where optimal stimulation
parameters need to be found to evoke a certain response
(Walter et al.l [2014).
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