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SUMMARY 

Medically-induced loss of consciousness (mLOC) has been linked to a 

macroscale break-down of brain connectivity, yet the neural microcircuit correlates of 

mLOC remain unknown. We applied non-linear t-stochastic neighbor embedding (t-

SNE) and Lempel-Ziv-Welch complexity analysis to two-photon calcium imaging and 

local field potential (LFP) measurements of cortical microcircuit activity across 

anesthetic depth in mice, and to micro-electrode array recordings in human subjects. 

We find that mLOC disrupts population activity patterns by i) a reduction of 

discriminable network microstates and ii) a reduction of independent neuronal 

ensembles. These alterations are not explained by a simple reduction of neuronal 

activity and reveal abnormal functional microcircuits. Thus, normal neuronal ensemble 

dynamics could contribute to the emergence of conscious states. 

 

INTRODUCTION 

Medically-induced LOC is generated in millions of patients every year worldwide 

enabling life-saving surgical procedures or critical care, and is also a hallmark of incompletely 

understood disorders such as vegetative state (VS). Despite its fundamental importance, the 

neural circuit and network mechanisms underlying LOC have remained unclear. Several brain 

areas have been implicated in causing the loss or recovery of consciousness, such as the 

hypothalamus (Herrera et al., 2016), thalamus (Castaigne et al., 1981), basal ganglia and 

claustrum (Crick and Koch, 2005; Mhuircheartaigh et al., 2010), or the brain stem (Minert et 

al., 2017; Moruzzi and Magoun, 1949; Penfield, 1954). Although thalamocortical connections 

have been central to research on LOC (Flores et al., 2017; Herrera et al., 2016; Penfield, 

1954; Steriade, 2003), the role of the cerebral cortex itself remains controversial (Merker, 

2007). Early on, animal studies by Lashley (Lashley, 1929) and Pavlov (Pavlov, 1927), or 

surgical procedures on epilepsy patients (Penfield, 1954) described the cortex’s pivotal role in 
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cognition and learning, yet the removal of even expansive cortical areas resulted in no 

apparent change of consciousness levels (Lashley, 1929; Pavlov, 1927; Penfield, 1954; 

Scoville and Milner, 1957). However, diffusely damaged cortex, for example after hypoxia, 

might contribute to LOC (Jennett, 2002). Recently, fMRI studies investigating large-scale 

networks have identified a break-down of functional connectivity between cortical macro-areas 

during mLOC (Barttfeld et al., 2015; Hudetz et al., 2015; Lewis et al., 2012). In addition, one 

study reported that local network dynamics during mLOC remain similar to those in the 

conscious state (Lewis et al., 2012), impliying that LOC essentialy arises from discoordination 

of neural activity across brain areas. Yet, to date, no investigation has employed techniques 

with sufficient spatial resolution to properly examine the basic neural signatures of LOC at the 

scale of cortical microcircuits (Tononi et al., 2016).  

A general theoretical framework suggests that consciousness depends on the brain’s 

ability to discriminate between a specific sensory input and a large set of alternatives (Tononi, 

2008). In basic agreement, several recent studies have identified a rich set of discriminable 

resting states at the macroscale of cortical activity (Barttfeld et al., 2015; Hudetz et al., 2015). 

With such a theoretical framework in mind, along with Nyquist’s foundational work in 

telegraphy showing that the transmission rate of information logarithmically depends on the set 

of symbols used (Nyquist, 1924), we hypothesized that an individual’s ability to discriminate 

between a set of alternatives at any moment should be rooted in discriminable micro-patterns 

of activity (microstates) at the level of local neuronal ensembles, i.e., the synchronized 

activation of a group of neurons, which have been postulated to represent functional building 

blocks of cortical function (Carrillo-Reid et al., 2017; Miller et al., 2014). If this is the case, LOC 

could arise from alterations in the local microcircuit, which would secondarily generate 

macroscale connectivity deficits. As a consequence, microstate dynamics across anesthetic 

depth and recovery could provide important mechanistic insights into the basic building blocks 

of LOC and this information could help in clinical cases. Here, we provide empirical evidence 
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in mice and humans, across cortical areas, using two different anesthetic agents (isoflurane or 

propofol) and cellular resolution recording techniques (2-photon microscopy or micro-electrode 

arrays), that mLOC is indeed associated with a decreased cortical repertoire of discriminable 

states at the microscale with altered neuronal ensembles. Our results further indicate that local 

ensemble activity patterns undergo fragmentation during anesthesia. In conjunction with 

previous macroscale studies, this suggests that during mLOC functional connectivity of the 

cortex breaks down across spatial scales and that coactive neuronal ensembles are building 

blocks of cortical function. 

 

RESULTS 

Reduction of cortical microstates and ensemble fragmentation during mLOC in mice 

To explore the role of cortical microcircuits in LOC states, we monitored the activity of 

cortical populations by combining LFP and fast two-photon calcium imaging (30Hz, 

400x400µm field of view) (Yang and Yuste, 2017; Yuste and Denk, 1995; Yuste and Katz, 

1991) of head-restrained Thy1-GCaMP6F mice (Dana et al., 2014), allowed to move on a 

running wheel (Fig. 1A,B). In order to ensure seamless transitions between wakefulness and 

different anesthetic depths without setup adjustments, a custom tube for the delivery of the 

inhalatory anesthetic isoflurane was placed in front of the mouse. All animals were 

accustomed to the microscope, experimental setup, and experimenter before an experiment. 

In seven mice, we assessed 5 consecutive conditions (10min each) that were matched across 

animals based on hallmark LFP patterns (Fig. 1C): wakefulness, light sedation (~0.5% 

isoflurane partial pressure in air, slowed LFP yet similar to wakefulness), surgical anesthesia 

(~1.0% iso, continuously increased LFP delta [1-4Hz] spectral power), deep anesthesia 

(~1.5% iso, burst-suppression LFP), and recovery (iso off). In order to further index the 

animals‘ level of consciousness, we assessed clinical parameters (breath-rate, reaction to tail 

pinching), and locomotion recorded by an infra-red sensor at the wheel (Fig. 1D). During 
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surgical or burst-suppression anesthesia, animals were also unresponsive to tail-pinching, 

while after halting isoflurane, they remained so initially during the wake-up period. Calcium 

transients of registered neurons were extracted from image series (Fig. 1B, E), pre-processed 

and binarized (Fig. 1F, see methods). To group together similar patterns of population activity 

from the binarized spike raster matrices, we performed t-distributed stochastic neighbor 

embedding (t-SNE (van der Maaten, 2008), Fig. 1G, please see methods) leading to a 2-

dimensional embedding space from which clusters could be identified by watershed 

segmentation (Suppl. Fig. 1A). Identified clusters were confirmed by comparing intra- versus 

inter-cluster distances (Suppl. Fig. 1B). Across 7 mice, a total number of 851 neurons (122 ± 

12 s.e.m.), and 34,321 active frames  (4,903 ± 929 s.e.m.) participating in 425 microstates (61 

± 9 s.e.m.) were analyzed. Across all mice, locomotion was strongly reduced during mild 

anesthesia and recovery, and no locomotion was detected during surgical or burst-

suppression anesthesia (Fig. 2A).  

Consistent with previous studies, neural firing dropped promptly during mLOC 

(Ishizawa et al., 2016; Lewis et al., 2012), with total neuronal activity during surgical 

anesthesia falling below 10% of baseline (Fig. 2B). Intriguingly, and in contrast to Lewis et al. 

(Lewis et al., 2012), the number of discriminable microstates, that is, the number of identifiable 

watershed regions in the embedding space, was strongly reduced during surgical and burst-

suppression anesthesia (Fig. 2C). However, despite significantly reduced overall neural 

activity, most microstates found during wakefulness were still present during mild anesthesia 

and again during recovery, (Fig. 2B). To control for the potential influence of the number of 

coactive neurons on the microstate classification during each anesthetic condition, we 

repeated the analysis shown in Figure 2D but only using frames during the awake condition 

that contained no more than the maximum number of coactive cells observed at least once 

during surgical anesthesia (2.6 ± 0.4 s.e.m., n=7 mice), with consistent results (Suppl. Fig. 

2A). In other words, experimental conditions matched to have the same maximum number of 
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active cells had fewer microstates in data from anesthetic conditions vs. wakefulness. To 

explore if the effect of microstate reduction during deeper anesthesia could be explained by 

the random coactivation of neurons, we repeated t-SNE and watershed segmentation on 100 

randomized datasets derived from observed data through within-frame shuffling. This 

procedure preserved total per-frame-activity while disrupting within-frame patterns (Suppl. Fig. 

1C,D). Importantly, in all animals and experimental conditions, the number of randomly 

generated microstates was significantly higher than that found in the corresponding observed 

data (Fig. 2D,E; shown is awake and surgical anesthesia. See also suppl. Fig. 1D), except for 

the wake-up period in one experiment and burst-suppression anesthesia. This lack of 

significant difference could be explained by a critically low overall activity. These results 

indicated i) that the observed microstates were non-random, given sufficient activity, and 

represented a much smaller set compared to all possible states, and ii) despite reduced 

activity during surgical anesthesia, a large number of discriminable microstates would still be 

theoretically possible. Interestingly, when we normalized the microstates by the neuronal 

activity, by measuring the number of unique microstates in any window accumulatively 

containing 50 events of neural activity, we found that across conditions (for burst-suppression 

in one animal), the local population cycled through a similar number of unique microstates per 

fixed activity (Fig. 2F). Due to this result, we sought to investigate, whether the reduction of 

microstates during deeper anesthetic conditions could be explained simply by a sparser 

appearance of individal microstates as a consequence of the much reduced activity, and not 

by a true reduction of the number of microstates occuring during anesthesia. To this end, we 

performed experiments to compare the total number of unique microstates over 10 minutes 

during wakefulness against the number of unique microstates occuring over 50 minutes of 

surgical anesthesia. Even over this much extended period of recording, with the corresponding 

increase in total neuronal activity, the number of microstates remained strongly reduced 

(Suppl. Fig. 2B,C). Together, these results indicated that the local network indeed drew from a 
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reduced repertoire of discriminable microstates during anesthesia, yet cycled through a similar 

set of unique states given sufficient overall activity.  

To minimize the possibility that our results could be due to our dimensionality reduction 

and clustering approach, we applied Lempel-Ziv-Welch compression (LZW, suppl. Fig. 2D) as 

a complementary analysis based on different algorithmic principles (Welch, 1984; Ziv and 

Lempel, 1978). In accordance with our t-SNE results, the Lempel-Ziv-Welch complexity 

(LZWC) was increasingly lower across anesthetic depth (Fig. 2G). Furthermore, and 

corroborating the number of microstates identified by t-SNE and watershed segmentation, the 

number of unique features (’words’, or collectively, ’dictionary’) encountered by LZW in a spike 

matrix also decreased significantly across anesthetic depth (Fig. 2H). 

While performing the experiments for this study, we became aware that changes in 

ensemble co-activity seemed to be associated with mLOC. To study this, we operationally 

defined ensemble as a group of neurons that is coactive in any given frame (Miller et al., 

2014). Indeed, neural co-activity within a specific microstate consistently decreased with 

anesthetic depth (Fig. 2I-K). These neuronal ensembles were also not due to chance firing of 

cells, as within-cell shuffling, disrupting co-activity patterns while maintaining the same total 

activity per condition (Suppl. Fig 1C, lower panel), led to random distributions significantly 

smaller than the observed data (Suppl. Fig 3A,B). These results indicated a reduction of local 

ensembles (Miller et al., 2014) during mLOC, with a progression towards independent single 

neuron activity patterns during deeper anesthesia. 

 

Reduction of cortical microstates and ensemble fragmentation during mLOC in humans 

To investigate whether our mouse findings held true in human cortex, we sought to 

study discriminable microstates and neural coactivity at fine anatomical scale across 

anesthetic depth in two neurosurgical patients. These were epilepsy patients undergoing 

anesthesia induction for an epileptic focus resection following their clinical monitoring. In 
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addition to subdural macro-electrode implantation for epileptic focus identification in the 

temporal lobe (Fig. 3A), these patients were implanted with a microelectrode-array (4x4mm, 

96 electrodes, Fig. 3A,B) capable of measuring both LFP (Fig. 3C), and single unit activity 

(SUA) in the anterior middle temporal gyrus (Fig. 3D). In both patients, three anesthetic 

conditions (mild, surgical, and burst-suppression) were examined by applying intravenous 

propofol boluses. Anesthetic conditions were determined based on LFP (Fig. 3C), as well as 

the bispectral index score, a frequently used intraoperative index of anesthetic depth. Since 

the micro-electrode array was implanted on the day clinical electrodes were removed, neither 

wakefulness nor the wake-up period could be recorded. As with the mouse analysis, neural 

firing was binarized (Fig. 3D), and similar activity patterns across time were first identified 

using t-SNE, and watershed cluster segmentation (Fig. 3E, suppl. Fig. 1A). In the two human 

subjects, a total of number of 145 single units (72.5 ± 18.5 s.e.m.), and 6,950 active frames 

(3,475 ± 1147 s.e.m., 1 frame = 100ms epoch) participating in 89 microstates (44.5 ± 5.5 

s.e.m.) were identified. As in mice, a general drop of neural activity was observed with 

increasing anesthetic depth (Fig. 3F). Likewise, our finding of a decrease of the number of 

discriminable microstates during anesthesia in mice held true in both human patients (Fig 3G). 

As before, the effects could not only be explained by a random coactivation of neurons, as 

observed results were significantly different from randomized datasets (Fig 3J). In addition, 

LZWC and LZW dictionary size both decreased with anesthetic depth, too (Fig 3H-J). Thus, in 

line with our results in mice, the local population drew from an increasingly reduced repertoire 

of microstates with increasing anesthetic depth. Finally, in both patients, neural coactivity 

patterns non-randomly disappeared with increasing depth of anesthesia (Fig 3K-L, suppl. Fig. 

3C). 

DISCUSSION 

In this study, we used single cell resolution population recording techniques in mice 

and human subjects to investigate changes in microscale activity patterns during wakefulness, 
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across anesthetic depth, and recovery from anesthesia. In contrast to recent publications 

(Hudetz et al., 2016; Lewis et al., 2012), we find that, across species, cortical areas and 

anesthetic agents, mLOC is associated with a decreased cortical repertoire of discriminable 

microcircuit states and neuronal ensembles. Moreover, that the number of microstates found 

in all conditions represent a small fraction from all possible microstates, indicating that these 

microstates are not due to chance coactiavtion of neurons. To ensure that the observed 

phenomenon was robust across analytical approaches, we applied two analyses that are 

based on different algorithmic principles (t-SNE and LZW). In addition, as these methods have 

not yet become commonplace in studying two-photon calcium population imaging or MEA 

spike raster matrices, we finally used a simple PCA approach as a third and widely used 

method, with consistent results (Suppl. Fig. 2 E,F).  

In both mice and humans, we find a decrease in neuronal activity during mLOC, as it 

has been reported before. But our main finding is that the number of functional microstates 

and ensembles is selectively reduced during mLOC. Certainly, the decrease of overall activity 

upon start of anesthesia contributes to the reduced number of microstates observed here 

during deeper anesthesic conditions. And, as the reducion of general activity constitutes an 

inherent feature of general anesthesia, it is practically impossible to completely account for this 

effect. However, even when we record local network activity under surgical anesthesia for five 

times longer than during wakefulness, we find a reduced number of discriminable microstates 

(Suppl. Fig. 2B,C).  This means that the reduced number of states or ensembles cannot be 

simply accounted for by the reduced activity levels and represents a specific malfunction of the 

microcircuit. Indeed, a drop of general activity does not inherently result in a reduced number 

of discriminable states. This notion is supported by simulated spiking data, in which 10 

neurons independently fired once (1 cycle) or ten times (10 cycles) over the course of 100 

frames (Suppl. Fig. 2G). As a result, one matrix contained ten times less overall activity than 

the other, yet the number of microstates that were identified by t-SNE, remained exactly the 
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same. This underscores that an equivalent number of microstates observed during 

wakefulness would technically be possible during deeper anesthesia, too. However, our data 

indicate that the reduced number of discriminable microstates and ensembles during deeper 

anesthetic conditions is indeed due to a reduced repertoire available to the local network. 

Further, we find that local ensemble activity patterns undergo fragmentation during 

mLOC, that is, coactivity patterns disappear with increasing anesthetic depth. The discrepancy 

between our findings and previous literature might be explained by the different recording 

techniques used, and how the obtained signals were analyzed. Using a 64-electrode 

microarray, Hudetz and et al. described that the repertoire of mesoscale cortical activity is not 

altered during anesthesia. However, their conclusion was based on the analysis of local field 

potentials filtered at 4-60 Hz, which means that they did not detect local neural firing. This 

could explain the mismatch between their finding and ours, because neural input dynamics 

and actual neural firing can often differ. Using a 96-electrode microarray similar to the one 

used in our study, Lewis and colleagues reported that while macroscale connectivity broke 

down during mLOC, microscale activity would persist similarly to the conscious state, yet in an 

insular manner. Of important note, this conclusion related to the persistence of microscale 

activity was based on a pairwise correlation analysis of only a small fraction (<15%) of 

recorded single units showing the highest firing rate in one human individual. It remains 

debatable whether this pre-selection and pairwise correlation analysis was the optimal 

analytical approach, given that a large body of work has shown generally sparse neural firing 

in the cortex (reviewed in (Barth and Poulet, 2012)), and weak pairwise correlations between 

local neurons in many cortical areas, under various circumstances (e.g. reviewed in (Cohen 

and Kohn, 2011) containing a table of 26 studies in primates with a mean pairwise neural 

correlation coefficient of 0.107). In the context of both aforementioned reports, it is further 

important to keep in mind that weak pairwise correlations of local neural firing may neither 

preclude synchronous network states (Schneidman et al., 2006), nor strong computational 
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properties of the network (Hopfield, 1982). In our study, all units belonging to the recorded 

local network, in two patients, were included in the frame by frame analysis using t-SNE or 

LZWC across anesthetic depth, which in our view more accurately covers changes of 

microscale network activity patterns. Finally, the results in humans were consistent with our 

findings in mice using cellular resolution two-photon calcium population imaging.  

To conclude, extending previous studies at the macroscale (Barttfeld et al., 2015; 

Hudetz et al., 2015; Lewis et al., 2012), our results provide evidence that, during mLOC, the 

functional connectivity of the cortex also breaks down at the microscale. In fact, as local 

ensembles undergo fragmentation, functional connectivity and integration of information at the 

macroscale should naturally be altered. In sum, our study provides a unifying framework for 

functional brain connectivity changes during mLOC across spatial scales, adding a micro-

anatomical basis for how the cerebral cortex, along with subcortical areas in a distributed 

complex cerebral system, could contribute to loss or re-gain of consciousness (Koch, 2012).  
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Figure 1 

Monitoring microcircuit signatures of mLOC in mice. A) Awake, head-restrained mouse on a 

running wheel. Movement was measured by an infrared sensor. For seamless transitions 

across conditions, isoflurane was delivered through a custom tube placed right in front of the 

mouse. For LFP recordings, a pulled glass microelectrode was carefully inserted into the 
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cortex at around 250µm depth through a small burr hole next to an implanted glass cover. 

Through the glass, two-photon calcium imaging was performed. B) Image of typical field of 

view and registered neuronal somata outlines (orange). C) Upper panel: Representative brief 

raw LFP traces across five conditions. Lower panel: Avg LFP delta range [1-4Hz] spectral 

power across all five 10min long conditions (n=7 animals). Note the continuously increased 

delta power during surgical anesthesia. D) Superimposed motion of all 7 mice across 

conditions. Note that movement is absent in surgical and burst-suppression anesthesia. E) 

Calcium transients of 5 representative registered neurons across all five conditions. F) 

Corresponding raster plot of all registered neurons. G) Density map of microcircuit states, 

visualized by t-SNE for the entire experiment, displayed per condition. Vectors representing 

the population activity at each time point were transformed into a two-dimensional space while 

preserving local structures, and a density map was generated from the scatter plot. 
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Figure 2 

Reduced repertoire of cortical microstates and neuronal ensembles upon mLOC in mice. A) 

Quantification of locomotion across the entirety of each experiment (exp.), displayed as % 

locomotion per total 10min long condition; anesth.=anesthesia. B) Neural activity level across 

conditions, quantified as probability of detecting activity within a moving 10sec window in a yes 

or no fashion; errorbars represent means ± s.e.m. per condition; conditions colored as in a). C) 

Boxplots of number of unique microstates across conditions as % of all identified unique 

microstates in a given experiment; line plots are individual experiment (grayscale) D) 

Representative experiment.: total number of observed unique microstates (dashed lines) 

during wakefulness (red) or surgical anesth. (blue) vs. corresponding distributions of values 

from 100 randomized datasets. No overlap of observed vs. random data (p<0.01). E) Same 
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comparison as in d), across all exp. each max-normalized for purpose of visualization. In all 

exp. no overlap of observed vs. random data, equal to p<0.01. F) Boxplots of number of 

unique microstates visited across specific conditions per fixed overall activity (any window of 

50 accumulative active events in raster matrix), displayed as % of all states per exp.. G) 

Boxplots of LZW complexity across conditions; line plots are individual exp. (grayscale) H) 

Boxplots of LZW dictionary size across conditions; line plots are individual exp. (grayscale) I) 

Representative exp.: Number of co-active neurons versus the time spent by population in 

frames containing such co-activity, displayed per condition. J) Same comparison as in I), 

containing all exp..; number of coactive neurons as % of all neurons per exp. for purpose of 

visualization. Thick lines represent means, thin lines individual exp. conditions K) Maximum 

number of co-active neurons (as % of all neurons per exp.) participating in a specific 

microstate, across conditions (colors as in a)). Borderline statistical significance mild vs. 

surgical anesthesia p=0.062.  

Except for representative examples in D) and I), all data in figure 2 from n=7 animals; all 

errorbars represent mean ± s.e.m.; all boxes in boxplots represent 25-75%ile of the data, bars 

within boxes represent means. Except for comparisons between observed and randomized 

data, all statistical analyses represent 1way-anova with Bonferroni post-test. *p<0.05, 

**p<0.01, ***p<0.001. 
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Figure 3 

Reduced repertoire of cortical microstates and ensembles upon mLOC in humans. All 

errorbars in figure 3 represent mean ± s.e.m.. (n=2 patients). A) Photo of the craniotomy 

carried out on one patient in this study. B) Left: Drawing of craniotomy in a). craniotomy (gray); 

arteries (red); veins (blue), multi-electrode microarray (MEA, black). Right: close-up photo of 

micro-electrode array (4x4mm, 96 electrodes). C) Upper panel: Representative brief raw LFP 

traces across three anesthetic conditions in one patient. Lower panel: Avg LFP delta range [1-

4Hz] spectral power across conditions, and patients. D) Raster plot of all single units in one 

patient. E) 2-dimensional density plot of same data after t-SNE, displayed per condition. Every 

dot represents a timepoint containing neural activity. F) Neural activity level across conditions, 

quantified as probability of detecting activity within a moving 10sec window in a yes or no 
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fashion; conditions colored as in c). G) Number of unique microstates across conditions; line 

plots are individual patients (grayscale). H) LZW complexity across conditions; line plots are 

individual patients. I) LZW dictionary size across conditions; line plots are individual patients. 

J) Number of observed unique microstates (dashed lines) during mild anesth. (light blue) or 

surgical anesth. (dark blue) vs. corresponding distributions of values from 100 randomized 

datasets, max-normalized for purpose of visualization. No overlap of observed vs. random 

data, equal to p<0.01; p1/2 represent patient 1/2 K) Number of co-active neurons versus the 

time spent by population in time points containing such co-activity per condition, displayed as 

mean across patients (thick lines). Thin lines represent conditions in individual patients. L) 

Maximum number of co-active neurons (as % of all neurons per exp.) participating in a specific 

microstate across conditions. 
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Methods 

 

Experimental Model and Subject Details 

Animal subjects 

Experiments were conducted with care and accordance with the Columbia University 

institutional animal care guidelines. Experiments were carried out on Thy1-GCaMP6F (Dana et 

al., 2014) adult transgenic mice at postnatal age of 4-6 months. No animals were used for 

previous or subsequent experimentation. Food and water was provided ad libitum. All mice 

were kept at a 12 hour light/dark cycle.  

Human subjects, and Ethics Statement. Two human subjects were included in this study. 

Patient 1 was a 31-year-old male and patient 2 was a 64-year-old male. Both patients were 

undergoing neurosurgical resection of the anterior temporal lobe (patient 1: left; patient 2: 

right) in order to treat medically refractory mesial temporal lobe epilepsy. The University of 

Utah Institutional review board approved these experiments and both subjects provided 

informed consent prior to participating in the study. 

 

Method Details 

Animals, surgical procedures, and setup acclimatization. 

Prior to the actual experiment, mice were anesthetized with isoflurane (initial dose 2-3% partial 

pressure in air, then reduction to 1-1.5%). Right before surgery, all mice received carprofen 

(s.c.), enrofloxacin (s.c.), and dexamethasone (i.m.). Under sterile conditions, a small flap of 

skin above the skull was removed and a titanium head plate with a central foramen (7x7mm) 

was attached to the skull with dental cement above the left hemisphere. A small cranial 

aperture (around 2x2mm) was established above left somatosensory (coordinates from 

bregma: x 2,5mm, y -0,24mm, z -0,2mm) or visual cortex (x 2,5mm, y -0,02mm, z -0,2mm) 

using a dental drill. Then, the craniotomy was covered with a thin glass cover slip (3x3mm), 
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which was fixed in place with a slim meniscus of silicon around the edge of the glass cover 

and finally cemented on the skull using small amounts of dental cement around the edge. A 

small section of skull (1x1mm) was left blank next to the cemented glass cover. Post-

operatively, all mice received carprofen daily for 3 days. Over the following days, mice were 

accustomed to the experimenter, and the experimental setup until no signs of distress were 

present. Mice usually became rapidly acclimatized to the microscope and running on a wheel 

under head-restrained conditions over the course of 2-3 acclimatization sessions lasting 30 

minutes each. Around two weeks after the implant of the glass cover slip, on the day of the 

actual experiment, mice underwent brief surgery again. Using isoflurane as described above, a 

small burr hole was established in the area that had been left blank next to the cemented glass 

cover for access by a glass micropipette for LFP measurements (find a more detailed 

description under electrophysiology, below). A reference electrode was place over the right 

frontal cortex. Thereafter, mice were transferred to the microscope for the experiment. 

 

Experimental timeline in mice. In each experiment, animals were kept in head-restrained 

conditions yet allowed to move freely on the running wheel. Throughout each experiment, in 

addition to local population imaging, cortical activity was recorded by LFP measurements 

serving as an additional proxy of anesthetic depth aside from clinical assessment (breath rate, 

locomotion, responsiveness to tail pinching). After the first image and LFP series during 

wakefulness, mild anesthesia was established by delivery of low concentrations of isoflurane 

through a plastic cylinder positioned right in front of the mouse’s nose (Fig. 1 A). During mild 

anesthesia/low levels of isoflurane (0,5% partial pressure in air – ‘ppa’), mice remained 

responsive to tail pinching. This responsiveness ceased completely once general anesthesia 

was achieved by increasing the dose of isoflurane to around 1,0% ppa. Then, burst 

suppression anesthesia was induced through another increase of isoflurane to around 1.5% , 

and maintained for 10 minutes. Finally, isoflurane delivery was halted, and imaging and lfp 
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recordings continued while the animal was allowed to fully recover from anesthesia. Once the 

experiment was completed, animals were deeply anesthetized and sacrificed humanely. 

 

Infrared locomotion detection in mice. Locomotion was detected using an infrared sensor at 

the running wheel. The initially transparent running wheel was adapted to block the infrared 

light from passing through the wheel by using equally spaced strips of light absorbent tape 

(Fig. 1A). Thus, whenever the mouse would locomote, the light path between the light source 

underneath the wheel and the sensor on top of it would alternatingly get blocked or released 

rapidly. During each such transition (the longer the locomotion, the more transitions), the 

infrared sensor produced a large positive (from blocked to transparent) or negative 

(transparent to blocked) change in voltage that could be recorded at 1 kHz temporal resolution 

alongside the LFP using Prairie View Voltage Recording Software. Transitions could be easily 

extracted after an experiment to create a binary vector of locomotion or rest. For each event in 

the binary vector, 1 second of locomotion was counted, and the relative time of locomotion 

versus resting, for each experimental condition, was calculated. 

 

Two-photon calcium imaging in mice. Neural population activity in cortical layer II/III was 

recorded by imaging changes of fluorescence with a two-photon microscope (Bruker; Billerica, 

MA) and a Ti:Sapphire laser (Chameleon Ultra II; Coherent) at 940 nm through a 25x objective 

(Olympus, water immersion, N.A. 1.05). Resonant galvanometer scanning and image 

acquisition (frame rate 30.206 fps, 512 x 512pixels, 150-250µm beneath the pial surface) were 

controlled by Prairie View Imaging software. Multiple datasets were acquired consecutively 

over the course of an experiment (in total 100,000-150,000 frames) with several momentary 

breaks interspersed for reasons of technical practicality. 
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Two-photon image processing. Active cells were first identified visually in raw tiff movie files 

using ImageJ software (Schneider et al., 2012). 10 minutes of imaging during each of the five 

anesthetic conditions (matched across animals by raw LFP, spectral power, and clinical 

parameters) were concatenated into one large movie tiff file spanning the entire experiment. A 

list of cell centroid spatial coordinates was obtained and used to initialize the recently 

described constrained nonnegative matrix factorization algorithm (CNMF) to extract calcium 

transients of all registered cells in MATLAB (Pnevmatikakis et al., 2016; Yang et al., 2016). 

Prior to the initialization, tiff series were down sampled (averaged) from the original 30Hz 

temporal imaging resolution to 10Hz, and 512x512 pixel spatial resolution to 256x256 pixels. 

The CNMF algorithm finds spatiotemporal components based on pixels of high covariance 

around defined cell centroids while accounting for background fluorescence and minimizing 

signal noise. Based on the extracted fluorescence traces, ΔF/F signals are calculated for each 

cell using a sliding window (30 seconds). To derive binarized activity events from the ΔF/F 

signals, the ΔF/F is temporally deconvolved with the CNMF parameterized fluorescence 

decay. In addition, a temporal first derivative (slope) is independently obtained from the ΔF/F 

signals of individual cells. Then, the deconvolved signal and the derivative are thresholded at 

at least four standard deviations from the mean signal, respectively. At each time point, if both 

the devoncolved signal and first derivative exceed the threshold, a binary activity event is 

detected. The binary matrices obtained in this way, contained the recorded number of neurons 

across 30,000 frames of imaging (50 minutes), and represented the input matrices for t-SNE 

embedding and watershed segmentation, or Lempel-Ziv complexity analysis, as described 

below. 

 

Local field potential recordings in mice. For LFP measurements, a sharp glass micropipette 

(2-5 MΩ) containing a silver chloride wire, back-filled with saline, was diagonally advanced into 

the cortex (30° angle) under visual control. The pipette was lowered through a burr hole next 
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to the glass cover slip, as described above, to a depth of around 200 µm beneath the pial 

surface. A reference electrode was positioned over the contralateral frontal cortex. LFP signals 

were amplified by use of a Multiclamp 700B amplifier (Axon Instruments, Sunnyvale, CA), low-

pass filtered (300Hz, Multiclamp 700B commander software, Axon Instruments), digitized at 1 

kHz (Bruker) and recorded using Prairie View Voltage Recording Software along with calcium 

imaging.  

 

Single Unit Activity and LFP data acquisition and pre-processing in humans. Human 

electrophysiological data were acquired from a Utah-style microelectrode array implanted in 

each subject’s middle temporal gyrus, approximately 3 cm from the temporal pole. Detailed 

surgical methods are described in House et al (House et al., 2006). Data from these 

microelectrodes were acquired at 30,000 samples per second and pseudo-differentially 

amplified by 10 using an FDA-approved neural signal processing system (Blackrock 

Microsystems, Salt Lake City, UT). Continuous recordings were acquired from the 

microelectrode arrays while anesthesia was maintained at different anesthetic depths. Signals 

from the microelectrode arrays were segregated into two data streams: single unit activity 

(SUA), and local field potentials (LFP). SUA was acquired by first band-pass filtering the 

voltages recorded on each microelectrode between 300 and 3,000 Hz (4th order butterworth 

filter). This high pass filtered signal was thresholded at -3.5 times its root mean square, and 48 

samples around each threshold crossing were retained for spike sorting. Spike sorting was 

carried out in a semi-supervised fashion on a feature space of the first three principal 

components, and clustering using the T-distributed expectation maximization algorithm 

(Shoham et al., 2003). The time stamps of well-isolated single units were retained for further 

analysis in a binary matrix in which one dimension represented the activity of a single unit and 

the other dimension represented time at 1000 samples per second. LFP data were acquired 

by non-causal low pass filtering (500 Hz fir filter) the voltage recorded on each microelectrode 
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and averaging across channels. This mean LFP across the array was then down-sampled to 

1000 samples per second. 

 

Bispectral Index Scale in human subjects. Anesthesia depth was measured using a 

bispectral index scale (BIS) using a BIS Vista monitoring system (Aspect Medical Systems, 

Norwood, MA). Microelectrode recordings began after both patients were induced at a light 

anesthesia depth (BIS ≈ 50) with propofol and remifentanil. Propofol anesthesia was then 

delivered in three discrete intravenous boluses in order to achieve deep anesthesia (BIS ≈ 

20). 

  

Analysis of LFP spectral power in mice or human subjects. LFP low frequency spectral 

power (1-4Hz) was calculated with a 1 Hz temporal resolution. A Fast-Fourier transform (FFT) 

was carried out, and the spectral power was calculated as the squared absolute value of the 

complex output of the FFT. Finally, spectral power was averaged across the low frequency 

range. 

 

T-SNE and watershed segmentation of mouse or human neural activity. We identified 

cortical microstates of the neuronal population using an un-supervised nonlinear embedding 

method, t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten, 2008). T-SNE 

was performed on active frames in population raster plots of neural activity derived from two-

photon calcium imaging in mice, or microelectrode array SUA in humans, as described above. 

In both mice and humans, temporal down-sampling was used so that in all datasets, one 

“frame” corresponded to 100ms of neural activity. Using the perplexity value with the lowest 

optimization error for each dataset (a value range from ~5-200 was tested), and an initial 

reduction to 25 dimensions of activity using principal component analysis (PCA), t-SNE was 

applied across 1000 repititions to produce a robust two-dimensional embedding space that 
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could be conveniently visualized (Fig. 1G). This 2D embedding space of an entire experiment, 

in which every data point represents the activity of the entire recorded neural population per 

individual frame, was used for watershed segmentation in order to separate clusters of similar 

activity (Suppl. Fig. 1A). To this end, a density map was generated. A probability density 

function was calculated in the embedding space by convolving the embedded points with a 

Gaussian kernel; the standard deviation 𝜎 of the Gaussian was chosen to be 1/40 of the 

maximum value in the embedding space. To segment the density map, local maxima were 

identified in the density map, a binary map containing peak positions was generated, and peak 

points were dilated by three pixels. A distance map of the binary image was generated and 

inverted, and the peak positions were set to be minimum. Watershedding was performed on 

the inverted distance map, and the boundaries were defined with the resulting watershed 

segmentation. In this paper, a cluster identified by t-SNE and subsequent watershed 

segmentation, is called a “microstate”. 

 

Lempel-Ziv-Welch Complexity analysis in mice and humans. The Lempel-Ziv Complexity 

(LZC), or sequence complexity, measures the complexity of a finite sequence of symbols by 

way of trying to compress the sequence (Ziv and Lempel, 1978). Here, the Lempel-Ziv-Welch 

(LZW) algorithm was used for this purpose, which is an encoding algorithm that works by 

creating a dictionary of common substrings (Welch, 1984). The Lempel-Ziv-Welch algorithm is 

an improved implementation over the initial algorithm proposed for calculating the LZC, in 

terms of computation cost. LZW was applied to raster firing matrices of recorded cellular 

calcium transients in mice or SUA in humans (Suppl. Fig. 2D). To arrive at its encoded form, 

first the binary matrix was transformed into a vector that was scanned by the LZW algorithm. A 

Matlab module was used to calculate LZWC 

[https://www.mathworks.com/matlabcentral/fileexchange/4899-lzw-compression-algorithm]. To 

make the results of the LZW algorithm comparable across experiments, and therefore 
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independent of the number of imaged neurons per animal or single units recorded in the two 

human subjects, an upper and lower bound was established. This was done by running the 

LZW algorithm on a vector of the same size but with all zeros, as well as taking the average of 

random vectors of the same size. These were used to establish lower and upper bounds 

between complete order and randomness, respectively, and then normalize the length of the 

compressed vector of neural activity to arrive at a final value between 0 and 1, so that: 

𝑛𝑒𝑢𝑟𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$%&''&( − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$%&''&(
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$%&''&( − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$%&''&(

 

 
Quantification and Statistical analysis 

Unless stated otherwise, all values reported in this paper represent means ± s.e.m.. To 

determine statistical significance of differences between mean values measured under 

different experimental conditions in mice (n=7 animals, 5 conditions: awake, mild anesthesia, 

surgical anesthesia, deep anesthesia, and wake-up), 1-way anova was carried out (4 degrees 

of freedom), followed by a multiple comparison Bonferroni correction. Regarding statistical 

differences between observed and corresponding randomized numbers of unique microstates 

across experimental conditions in both mice and human subjects, observed single values were 

compared to a distribution of 100 values derived from randomized surrogate datasets. If the 

observed value was smaller/bigger than 95% of the randomized values, statistical significance 

was reached (p<0.05). P<0.01 was reached, if the observed value was smaller/bigger than all 

100 randomized values. In this paper, statistical significance levels are depicted as * for 

p<0.05, ** for p<0.01, or *** for p<0.001. 

 

Additional Resources  

MOCO (motion correction) is available on the Yuste lab website: 

http://www.columbia.edu/cu/biology/faculty/yuste/methods.html  
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Resource Table  

Experimental Models: Mouse lines  

C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J Jackson Laboratory RRID:IMSR_JAX:024276 

Recording device in human patients  

Utah-style microelectrode array Blackrock  Microsystems 

Software and Algorithms  

FDA-approved neural signal processing system Blackrock  Microsystems 

BIS Vista monitoring system Aspect Medical Systems 

ImageJ https://imagej.nih.gov/ij/ 

Moco http://www.columbia.edu/cu/biology/faculty/yuste/methods.html 

MATLAB(R2014b) MathWorks MathWorks 

Adobe Illustrator CS6 Adobe 
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