
1 

 

Microbial coexistence through chemical-mediated interactions  

Lori Niehaus*, Ian Boland*, Minghao Liuǂ, Kevin Chen*, David Fu*, Catherine Henckel*, Kaitlin 

Chaung*, Suyen Espinoza Miranda*, Samantha Dyckman*, Matthew Crum*, Sandra Dedrick*, 

Wenying Shou†, and Babak Momeni* 

* Department of Biology, Boston College, Chestnut Hill, MA 02467 

ǂ Department of Computer Science, Boston College, Chestnut Hill, MA 02467 

† Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 

 

Abstract 

Many microbial functions happen within communities of interacting species. Explaining how species 

with intrinsically disparate fitness can coexist is important for applications such as manipulating host-

associated microbiota or engineering industrial communities. Previous coexistence studies have often 

neglected interaction mechanisms. Here, we formulate and experimentally constrain a model in which 

chemical mediators of microbial interactions (e.g. metabolites or waste-products) are explicitly 

incorporated. We construct many instances of coexistence by simulating community assembly through 

enrichment and ask how species interactions can explain coexistence. We show that growth-facilitating 

influences between members are favored in assembled communities. Among negative influences, self-

restraint, such as production of self-inhibiting waste, contributes to coexistence, whereas inhibition of 

other species disrupts coexistence. Coexistence is also favored when interactions are mediated by 

depletable chemicals that get consumed or degraded, rather than by reusable chemicals that are 

unaffected by recipients. Our model creates null predictions for coexistence driven by chemical-

mediated interactions. 

1. Introduction 

Microbial communities influence ecosystems by cycling matter (1) and affect human health by 

facilitating food digestion or causing infections (2–5). Cohabiting microbes in communities interact and 

can perform functions that none of the member species can achieve efficiently on their own (6, 7). 

Examples of such functions include degradation of complex compounds such as crude oil, cellulose, or 

plastics (8–10). How can species in a community stably coexist, despite differences in their intrinsic 
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fitness? To design long-lasting communities for waste remedy or fuel production (11, 12), or to 

manipulate host-associated communities (13, 14), a better understanding of coexistence mechanisms will 

be instrumental. 

Exploring the mechanisms that would allow coexistence (defined as extended presence of different 

species within a community) and stability (defined as maintenance of coexistence despite perturbations) 

has been among major directions in community ecology (15–19). Many studies, both theoretical and 

experimental, have identified how coexistence may be achieved. Trade-off in life traits between 

colonizers and competitors (20), refuges for prey in a spatially structured environment (21, 22), and 

frequency-dependent fitness in mutualism (23–25) are a few examples of mechanisms identified in 

simple communities. Such coexistence mechanisms can be split into two broad categories: neutral theory 

or niche theory (26). Simply put, neutral theory deals with situations where either species have similar 

competitive abilities or other processes such as migration define the community. Interactions play a 

minor role within this framework. In contrast, niche theory deals with situations where interactions 

(either among species or between species and their environment) are strong and major drivers of 

coexistence. While depending on the situation one or the other framework would be more suitable for 

explaining coexistence, here we will focus on the impact of interspecies interactions (within niche 

theory) on coexistence. 

Species interactions have been the subject of previous coexistence studies. Facilitation (i.e. interactions 

that benefit at least one of the partners), for example, has been identified to support coexistence. 

Facilitation may contribute to coexistence in different ways: boosting the growth of intrinsically less fit 

recipients (27, 28), relieving facilitators from competitive pressure (27), or protecting vulnerable species 

from harsh environments or predators (28, 29). Identifying other mechanisms of coexistence will expand 

our understanding of how communities form and persist. 

To identify other mechanisms of coexistence, experimental studies in complex natural communities can 

be challenging. An alternative path is to use mathematical modeling. Compared to studies in natural 

communities that often involve a plethora of poorly characterized interactions, mathematical models 

offer a transparent and controllable platform (30). Modeling allows investigating conditions that are not 

easily attainable experimentally, e.g. by allowing full control over interaction parameters (31). 

Additionally, modeling enables screening many scenarios, a fate practically not feasible in experiments.    

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358481doi: bioRxiv preprint 

https://doi.org/10.1101/358481


3 

 

For studies in mathematical models, an important decision is how to represent the communities (32). 

Different possible mathematical representations can be categorized into three groups (33): 1) 

“association” models that solely rely on which species interacts with each of the other species, 2) 

“fitness” models that quantitatively include how species influence the fitness of each other, and 3) 

“mechanistic” models that include the mechanisms of interactions.  

Most previous models of communities abstract all the interactions between species into pairwise fitness 

interactions (34–38). These models are intended to recapitulate how each interaction influences the 

fitness of the two involved parties (15, 35, 34, 14). Wide-spread use of pairwise fitness models 

presumably has two roots. First, from a historical perspective, many early community studies were built 

on prey-predation food webs (17, 39, 40) or plant-pollinator mutualisms (41–43) that relied on direct 

encounters without interaction mediating agent. Second, from a technical perspective, quantifying the 

interaction mediators, such as concentrations of exchanged metabolites, has been very challenging. The 

simplifying assumption of pairwise fitness models allows modeling the community without the 

challenge of characterizing the mediators (44). However, pairwise fitness models may not accurately 

capture common situations in which interactions take place through different mechanisms (e.g. by 

depletable or reusable mediators), when multiple influences take place through different mediators, or 

when shared mediator are produced or consumed by multiple species (44).  

To overcome the limitations of pairwise fitness models, here we use a mechanistic model framework 

which incorporates chemical mediators of interspecies interactions (44). This choice is motivated by 

three factors: 1) indirect interactions where one species affects how strongly other species interact (45–

48) are lost in pairwise interaction models but preserved in mechanistic models. 2) Interactions mediated 

by chemicals (e.g. metabolites or toxins) are common among microbes (5, 49, 50), and are thought to 

play a major role in microbial communities. 3) Recent progress in techniques such as stable isotope 

probing (SIP) (51), mass spectroscopy (MS) (52, 53), and nuclear magnetic resonance (NMR) (54) has 

improved our ability to identify and quantify interaction mediators. Thus, obtaining experimental data 

to constrain these mechanistic models is possible. 

To examine the mechanistic origins of coexistence, we examine instances of simulated coexistence and 

ask what features of their interaction network may contribute to coexistence. To find instances of 

coexistence, we simulate a typical enrichment process to assemble communities. Computationally, we 
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start from an initial pool with many species engaged in randomly assigned chemical-mediated 

interactions. We simulate how these species interact and grow in an environment with the shared 

resource in excess (similar to a turbidostat). Often, some of these species go extinct and a subset of 

species (one or more) persist within a span of tens of generations. If there are more than one species in 

the enriched community, we consider it an instance of species coexistence. We repeat this process of 

enrichment many times, each time starting from an initial pool of species with randomly assigned 

interactions, compiling an ensemble of instances of coexistence in communities.  

Within the ensemble of coexistent communities, we search for common features. As discussed below, 

our results show that interaction can indeed drive coexistence in multispecies communities. We observe 

that this coexistence depends on how interactions take place (e.g. through a signaling molecule or a 

consumable metabolite), not just their fitness effect. As a result, we show that only under specific 

conditions, when interactions are mediated through independent, reusable mediators, the commonly used 

fitness models can accurately predict coexistence. We see that facilitation (i.e. stimulation of growth of 

other community members) is favored in coexistent communities, whereas inhibition of other species 

(but not self) is disfavored. We also observe that in many instances, these effects are causal; in other 

words, facilitation and self-restraint (i.e. inhibition of self) interactions encourage coexistence, but 

inhibitory interactions that suppress other species are detrimental to coexistence.   

2. Results 

2.1. Mechanistic model of chemical-mediated interactions 

We model communities in which each species interact with other members of the community through 

chemical mediators (Fig 1A) (44). Each species can produce multiple chemicals and each chemical can 

influence multiple species (Fig 1B). To clarify our nomenclature, “interactions” are how species impact 

the fitness of their own type (intraspecies) or other species (interspecies). Each of these interactions 

might be the result of multiple “chemical influences,” or “influences” for short. Each influence in our 

model represents how a chemical produced by community members affects the fitness of a certain 

species. In our network, we indicate a relation from chemical to species as “f-link,” if there is a fitness 

influence by a chemical on a species, and a relation from species to chemical as “c-link”, if a species 

changes the concentration of a chemical (e.g. by production or consumption). A “link” may refer to a c-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358481doi: bioRxiv preprint 

https://doi.org/10.1101/358481


5 

 

link or an f-link. Even though microbes are expected to change many chemicals in their environment 

(53, 55), in our model we limit the number of mediators. Our reasoning is that (1) we are only including 

mediators with strong fitness influence, and (2) recent studies suggest that different mediators can be 

grouped into “functional” categories, such as organic acids or small sugars, simplifying community 

models (56).  

To build realistic assumptions into our model, we assessed examples of how chemical mediators could 

affect the growth of cells. We experimentally characterized growth of bacterial cells in the presence of 

different concentrations of chemical compounds, 
l

C , that stimulated or inhibited growth (Fig 1C-D). 

For growth inhibitors (Fig 1C), we have frequently observed that the growth rate linearly drops as the 

concentration of the inhibitor increases (Fig 1-FS1). For inhibition by antibiotics, we have observed that 

the inhibition is typically exerted above a threshold concentration (Fig 1-FS1), but for simplicity, in our 

model here we assume that threshold to be negligibly small for all inhibiting chemical influences. This 

model is slightly different in form compared to a previous report (57) that suggested a “threshold” 

inhibition effect, but we do not expect this difference to impact the overall outcome of our investigations. 

For growth facilitators, we observe the common biological situation in which over-abundance of the 

mediator does not proportionally contribute to the fitness effect (Fig 1D). Our work (Fig 1D; Fig 1-FS2) 

and others’ (57) suggest that a general saturating form, Moser equation 
,

( )
n n n

l l i l
C C K , provides a good 

approximation for many cases of response to growth facilitators. 
,i l

K  is the concentration that 

parametrizes the saturating form of the dependence on the chemical concentration. For simplicity, we 

adopt the simplified Monod form 
,

( )
l l i l

C C K  to model this saturating behavior. We also assume that 

consumption is proportional to growth rate, with the same saturating form 
,

( )
l l i l

C C K . This is 

motivated by the assumption that acquisition of metabolites is the main factor impacting the fitness of 

cells.  

By representing chemical concentrations as C1, …, CM and live species abundances as S1, …, SN, changes 

in concentrations of chemicals and populations of species can be described in our modified model as 
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       (Eq 1), 

 

where ik is the rate of consumption of Ci per Sk cell, ij is the rate of production of Ci per Sj cell, ri0 is 

the net basal growth rate of Si in the absence of chemical-mediated interactions, and il represents the 

(positive or negative) influence of Cl on the growth rate of Si. Note that the death rate in this formulation 

is absorbed into the net growth rate, ri0, and only live cells (with concentrations represented as Si) 

contribute to removal and production of chemicals. 

We assume in our model that each producer population can produce or consume multiple mediators, and 

each mediator can stimulate or inhibit the growth of recipient species (Fig 1A-B). Lastly, the combined 

effect of multiple mediators on the growth rate of each recipient species is assumed to be additive, similar 

to McArthur’s model of resource utilization (58). This assumption may capture, for example, the 

situation that a species can grow on multiple metabolites (59), but not the situation in which more than 

one mediator is necessary for the growth of a species. Previous reports have also discussed the exact 

form that may be more appropriate for representing the combined fitness influence of combinations of 

certain carbon sources (60, 61). For simplicity, here we do not incorporate this level of detail for 

modeling the influence of chemical mediators and use the additivity assumption (Eq 1) as an 

approximation. To focus on intercellular interactions, we assume that shared resources do not become 

limiting, although the model can be easily adjusted to incorporate shared resources (44).  
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Fig 1. By explicitly incorporating the chemicals, we simulate a community of microbes 

engaged in chemical-mediated interactions. 

(A) Community networks are defined by two types of links: c-links (chemical production/removal links) indicated 

by hollow arrowheads and f-links (fitness influences on species) indicated either by filled arrows for facilitation 

or bar-termination for inhibition. (B) A combination of c-links and f-links can represent a community of species 

interacting through chemical mediators. (C) The influence of an inhibitory chemical on species is assumed to 

linearly affect the growth rate, motivated by experimental measurements of growth in presence of antibiotics (E. 

coli K-12 is used here as a representative example). A similar trend is observed in inhibitory effect of metabolic 

byproducts (Fig 1-FS1) on several strains. (D) The influence of a facilitative chemical compound on species is 

approximated to follow the Monod’s equation for simplicity. Experimental observations of auxotrophic E. coli K-

12 strains suggest that a second-order relation (black dotted line) offers a more accurate estimation, but the first-

order Monod-type equation (red dotted curve) is still an acceptable approximation.  

 

2.2. Enrichment process can lead to communities that exhibit coexistence 

We simulate enrichment for assembling coexistence. Enrichment, in the environmental or laboratory 

setting, is referred to the process in which supplying resources to an initial assembly of microbes affect 

the future population structure (62–64). During enrichment, starting from many initially interacting 

species, a coexisting subset can emerge (65). We will simulate enrichment in-silico (similar to (35)) by 
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starting from several interacting species in an initial pool and following their dynamics over time. As the 

populations grow amidst these interactions, some species are outcompeted, whereas others coexist (Fig 

2A, bottom; see Methods-Implementation).  

In each simulation, we initially put together several species with a random network of interactions at 

equal proportions. Assuming a well-mixed coculture, these cocultures grow from a set initial population 

size up to a dilution threshold level, upon which the culture is diluted back to the initial population size 

(Fig 2A, top). This process reflects a common experimental practice where shared resources (including 

space) are replenished. As a result, the inherent assumption in our simulations is that cells are not limited 

by any of the shared environmental resources. Instead, mediators produced by cells determine 

community interactions and thereby coexistence. This allows us to focus primarily on how intercellular 

interactions can contribute to species coexistence. Growth is simulated for 15 dilution cycles which is 

typically enough to reach a stably repeating pattern of population dynamics within each cycle. In this 

process, species that drop below a population size of one cell are considered extinct and removed from 

the rest of the simulation (Fig 2-FS1). The remaining species are considered to coexist (Fig 2A, bottom), 

within the time-scale of our run, and we record the resulting community as an instance of coexistence. 

Note that coexistence in this case is functionally defined as maintenance of species together during our 

enrichment process, from an experimentalist’s point-of-view (for example, as in (66)). 

Figure 2B shows the likelihood of reaching communities of different richness, starting from a pool of 

randomly interacting species. In these simulations, we have assumed that the initial pool of species has 

a random connectivity network in which c-links and f-links each have a fixed presence-absence 

probability (i.e., each have a Erdős–Rényi connectivity graph (67); see Methods-Implementation). We 

will call such networks “binomial” throughout this work. Under the assumptions of this simulation, listed 

in Supplementary Information (Simulation parameters), the model predicts that the likelihood of 

achieving communities with higher species richness, starting from an initial pool of randomly interacting 

species, decreases at an exponential rate. As a control, we examined a community with similar 

parameters, but with no interactions (representing the situation within the neutral theory of coexistence). 

In this situation, species with highest fitness can coexist, if their basal fitness happens to be close enough. 

The chance of coexistence also exponentially drops for communities with higher richness (Fig 2B, black 

curve). In our model, since each species can independently grow with a basal fitness in the enrichment 
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environment, we can assume that the number of resources (as typically defined in a consumer-resource 

model) is at least as many as the number of species. Therefore, all species in this context can in principle 

coexist as a result of their interactions, without violating the competitive exclusion principle. Comparing 

communities with different ratio of positive versus negative influences in the initial pool, we also see 

that a community dominated with inhibitory influences has even lower chance of coexistence compared 

to the no-interaction control. As the ratio of facilitative versus inhibitory influences in the initial pool 

increases, the chance of coexistence also increases (Fig 2B, dotted versus solid versus dashed). We 

checked if members with the highest basal fitness have a higher chance of  

  

 

Fig 2. Simulated enrichment produces instances of species coexistence.  

(A) We simulate a typical experimental process of enrichment, in which a community of several species is grown 

in excess shared resource and are periodically diluted to a set density. In this scheme, we remove species that drop 

below a viable threshold abundance (corresponding to 1 cell). After several rounds of dilution (around 100 

generations), we have observed that a subset of species remain in the community. In most cases, these species 

stably coexist if the dilution scheme is further extended to 200 generations. We take communities that contain 

more than one species at 150 generations as instances of communities that exhibit coexistence. (B) The likelihood 

of coexistence declines with community richness and increases with facilitative interactions. Community richness 

is defined as the number of coexisting species. As a reference, we have calculated the likelihood that for the same 

set of parameters, in the absence of any interactions we would observe coexistence (solid black curve). In these 

simulations, we have assumed that chemicals that influence a species, in half of the cases are depletable (αli > 0 

in Eq. 1), whereas in the other half, they are reusable (αli = 0 in Eq. 1). We chose the initial number of species 

types Nc=20 and the number of possible mediators Nm=15.     
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surviving: in communities with no interactions, that is indeed the case, but the pattern largely disappears 

in our interacting communities (Fig 2-FS2). Members with all basal fitness from the initial pool are 

represented in the final enriched communities (Fig 2-FS2), suggesting that interactions are a major factor 

in determining which species survive the enrichment process.    

There are several assumptions in picking the initial pool of microbes. We asked how these assumptions 

might influence the coexistence outcome. The assumptions vary from large scale potential trends (e.g. 

the likelihood of facilitation versus inhibition) to detailed parameters (e.g. the rates of chemical release). 

Performing a complete search over the parameter space is impractical. Instead, we changed one 

parameter at a time and picked examples across the spectrum of possibilities to discover potential trends. 

For example, as we have shown in Fig 2B, the initial distribution of interaction types (facilitation versus 

inhibition) biases the outcome. Unfortunately, the available experimental data (e.g. (66, 68, 69)  is not 

enough to definitively determine realistic assumptions for these assumptions. Examining interactions 

between microbes randomly sampled from the environment in a rich environment suggests that 

interactions are more likely to be inhibitory, rather than facilitative (70). However, since the experiments 

were performed in a rich environment with all necessary nutrients supplied, it is expected that 

competition for resources becomes dominant, underestimating cross-species benefit exchanges (71–73). 

Additionally, the likelihood of facilitative interactions in communities may be higher because of the role 

of facilitative interactions in community assembly (28). In the absence of a known general theme, we 

simulated initial pools with influences that are either mostly facilitative, or equally likely to be facilitative 

or inhibitory, or mostly inhibitory interactions. Our results show that positive influences encourages 

coexistence (Fig 2B).  

We examined distributions of interaction strengths that were either less or more biased towards weak 

interactions in rich communities. Our results suggest that enrichment outcome is not sensitive to the 

details of the distribution of interaction strengths (Fig 2-FS3). Considering the difference between cases 

with and without interactions in Fig 2B, we asked how strong the interspecies interactions had to be to 

drive coexistence outcomes. Our results show that indeed when all interactions are chosen to be weak 

(relative to species’ basal fitness), coexistence are driven by neutral theory (Fig 2-FS4). We also observe 

that beyond some level, increasing the interaction strength does not further favor coexistence (Fig 2-

FS4). This result suggests that when interactions are very strong, the coexistence outcome may be 
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determined by the qualitative network structure (e.g. who facilitates whom), and not the quantitative 

interaction strengths.  

To investigate how the network connectivity in the initial pool of species might influence coexistence, 

we examined networks with different architectures. For these simulations, we used a relatively strong 

interaction strength to ensure that interactions were the driving force of coexistence (Fig 2-FS4). First, 

using the binomial network architecture (in which each link having a fixed probability of being present), 

we investigated what would happen if nodes were more connected (i.e. more links per species and 

chemical). Note that this network architecture represents a situation in which all species on average are 

similarly generalists/specialists. We observe that in pools with many facilitative interactions, the 

coexistence outcome is insensitive to how many species each chemical influences (determined by 

probability qc). More coexistence is achieved at intermediate levels of how many chemicals each species 

produces (determined by probability qp) (Fig 2-FS5, left). In pools dominated by negative influences, 

lower connectivity favors coexistence as it reduces the chance of strong inhibitory influences (Fig 2-

FS5, right). 

What if the community consists of a mixture of specialist and generalist species? To answer this question, 

we changed the network architecture of the initial pool from binomial to power-law. In power-law 

networks, an architecture seen in many biological networks (74–76), there are few nodes that are highly 

connected (i.e. with many links), and many nodes with low connectedness (i.e. with few links). Our 

results show that power-law networks have the potential to produce higher richness in communities 

assembled through enrichment (Fig 2-FS6 and Fig 2-FS7). Specifically, we explored how coexistence 

with binomial versus power-law network architecture was affected when the number of species in the 

initial pool (Fig 2-FS6) or the number of mediators (Fig 2-FS7) were changed. Interestingly, the 

likelihood of coexistence is fairly insensitive to the number of species in the initial pool with a binomial 

interaction network, but pools with a power-law interaction network allow communities with higher 

richness, as the number of species in the initial pool increases (Fig 2-FS6). As the number of mediators 

in the initial pool increases, coexistence is fairly unaffected if the network is binomial, but power-law 

communities show less coexistence (Fig 2-FS7). 
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2.3. Depletable mediators enhance coexistence compared to reusable mediators  

To address whether interaction mechanisms could impact coexistence outcomes, we examined 

communities with the same network of connectivity, but varied the fraction of species that 

consumed/degraded the chemical mediator (depletable mediator). We observe that if a higher fraction of 

interactions are through depletable mediators, coexistence becomes more likely (Fig 3). 

This observed pattern of higher coexistence with depletable mediators seems to be consistent under a 

variety of conditions (e.g. Fig 2-FS6, Fig 2-FS7, and Fig 3-FS1). In Fig 3-FS1, we specifically examined 

quantitatively how coexistence was affected as we changed the ratio of the average rates of consumption 

to production of chemical mediators. With stronger consumption-to-release ratio (moving towards more 

depletable and less reusable mediators), more coexistence is achieved. This trend seems to saturate at 

very high ratios of consumption to production rates (Fig 3-FS1).  

 

  

Fig 3. Interaction mechanisms impact coexistence 

To explore how different interaction mechanisms might influence coexistence outcomes, we investigated two 

categories of chemical interactions: those with depletable mediators (Dp, in which recipients reduce the 

concentration of the chemical mediator by consumption or degradation) versus those with reusable mediators (Ru, 

in which recipients do not affect the mediator concentration). In the extreme cases, communities that used only 

Dp mediators showed significantly higher coexistence compared to communities that used only Ru mediators. We 

also examined enrichment in communities with equal number of the two interaction types, and coexistence in 

these “hybrid” communities appeared to be in between the two extremes. In these simulations, links had a binomial 

network. The initial number of species types Nc=20, the number of possible mediators Nm=15, and the ratio of 

interaction types +:- = 50%:50%.  
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2.4. A pairwise model cannot accurately predict microbial coexistence 

Since the difference between coexistence predictions in Fig 3 depended on interaction mechanisms, we 

asked whether a pairwise model, which by design does not include interaction mechanisms, would 

adequately predict coexistence of communities in which interactions are mediated through chemicals. 

Our previous studies on such communities (44) suggest that the standard Lotka-Volterra pairwise model 

is more likely to be suitable for communities in which interactions take place through reusable mediators. 

For this purpose, we establish an ecological network of pairwise interactions from interactions between 

each pair of species in the initial pool (44). We then simulate the enrichment process using both the 

“reference” model that incorporated the chemical mediators and using the corresponding pairwise model. 

Our results show that pairwise models fail to accurately predict coexistence in communities in which 

interactions take place through chemical mediators (Fig 4). Even though the overall patterns of richness 

likelihood may look similar and even though the pairwise model was fairly successful in predicting 

dynamics of each pair of species (see Methods for details), especially for reusable mediators, closer 

inspection shows that the coexisting species predicted by the pairwise model do not match the true 

coexisting ones from the reference model (Fig 4, bottom). The same overall observation is valid in 

communities derived from pools with more facilitative or inhibitory influences (Fig 4-FS1).  

We speculate that the discrepancy between the predictions from a pairwise model and those of a more 

realistic model in Fig 4 stems from the shared environment and mediators. A pairwise model assumes 

that each interaction between a pair of species is independent of the presence of other members; however, 

that assumption would not be accurate when different community members produce and are potentially 

influenced by the same chemical mediators. We thus hypothesize that in a situation when such 

independence of interactions is more likely, a pairwise model would predict more accurate predictions. 

To test this hypothesis, we constructed examples with more number of chemical mediators, but fewer 

production and influence links per species. This will reduce the chance of cross-talk between different 

pairs of interacting species. Our results show that in such a situation, a pairwise model indeed provides 

more accurate predictions (Fig 4-FS2). 
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Fig 4. Pairwise models do not accurately predict coexistence 

We compare richness likelihood obtained from the reference model that explicitly incorporates chemical 

mediators (Mechanistic, “Mech”) and that from a corresponding pairwise model derived for it (Pairwise Fitness, 

“PF”). The pairwise model is obtained based on characterizing interactions between each pair of species in the 

initial pool. We examined communities with only depletable mediators (A) or only reusable mediators (B). The 

pairwise model underestimates coexistence compared to the reference model in communities with depletable 

mediators and overestimates coexistence in communities with reusable mediators (top). Error bars show the 

sampling uncertainty. If we compare whether the pairwise model predicts the same species coexist as the reference 

mechanistic model, the pairwise model rarely succeed in producing correct predictions (bottom). In these 

simulations, the initial number of species types Nc=7, the number of possible mediators Nm=4, and the ratio of 

interaction types +:- = 50%:50%. The number of communities analyzed Ns=1000. Other simulation parameters 

are listed in the Supplementary Information (Simulation parameters). 

 

2.5. Facilitation and self-restraint are favored in enrichment 

Among communities that showed coexistence, we searched for shared features. We categorized chemical 

influences based on whether they were facilitative versus inhibitory, and whether the species affected 

themselves versus other community members. Influences thus belong to one of four categories: self-
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facilitation, other-facilitation, self-restraint, and other-inhibition. We asked how enrichment for 

coexistence favored or disfavored each of these categories of influences. To answer this question, we 

compared how the frequency of each influence category changed from the initial pool to the final 

community of coexisting species. Our results suggest that in enriched communities, facilitation and self-

restraint (i.e. production of chemicals that has an inhibitory effect on the producer) are favored (Fig 5A-

B). Facilitation appears to be more prevalent in enriched communities, even if they are rare in the initial  

 

 

Fig 5. Facilitation and self-restraint are favored in enrichment 

We define rise in frequency, R, as the change in the frequency of interaction types from the initial pool to the 

enriched coexistent community (A). Rise of frequency above 1 indicates that during enrichment, corresponding 

influences are more represented in final communities compared to the initial pool (see Methods). Examining the 

change in frequencies of facilitation and self-restraint reveals that these interactions are highly favored during 

enrichment (B). Most cases show an increase in the frequency of either facilitation or self-restraint (grey numbers 

show the fraction of data points in each region). We further examined the break-down of different categories in 

(C). Among all cases examined here, 11% of enriched communities contained self-restraint, whereas 89% did not. 

All of those lacking self-restraint showed an increase in the frequency of facilitation from the initial pool to the 

final community (RFac>1). Among the 11% that contained self-restraint, all showed a rise in self-restraint above 1 

(RSR>1), including 0.5% (4% within this case) that did not show a rise above 1 for facilitation. The number of 

communities analyzed Ns=30000. In these simulations, the initial number of species types Nc=20 and the number 

of possible mediators Nm=15. Other simulation parameters are listed in the Supplementary Information 

(Simulation parameters). 
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pool of interacting species (Fig 5B-C). This conclusion seems to be general and holds regardless of 

detailed parameters of the initial pool (e.g. when we vary the ratio of facilitative to inhibitory influences; 

Fig 5-FS1). Some enriched communities contained self-restraint and some did not (Fig 5C, left). Those 

without self-restraint all showed an increase in the frequency of facilitation during enrichment. Among 

those that contained self-restraint, almost all showed an increase in the frequency of self-restraint. The 

only communities that did not show a rise in frequency of facilitation still showed a rise in frequency of 

self-restraint (Fig 5). The same held true for other conditions explored (e.g. Fig 5-FS1).  

The conclusion that facilitation and self-restraint arise as features of communities with coexistence is 

not surprising. The explanation for facilitation is intuitive: if a facilitative species rises in frequency, it 

improves the growth of its cohabitants and thus promotes coexistence. It is also intuitive that the negative 

self-feedback through self-restraint could prevent a species from outcompeting other members: as that 

species becomes more dominant, so becomes the inhibition it exerts on itself. This internal feedback, 

even if applied only to a few dominant members, can be the balancing force that allows coexistence.  

Facilitation and self-restraint both have been suggested to play a role in coexistence and stability. From 

simpler two-species communities, we know that facilitation plays an important role in coexistence (25). 

Facilitation has also been implicated from field work on plant communities to increase community 

richness (77). Self-restraint is typically intrinsically assumed in pairwise models of ecological networks 

as a negative diagonal term in the matrix of interactions to incorporate the effect of intra-population 

competition (78). It is worth noting that in our analysis, the model was agnostic to this potential, yet self-

restraint emerged as one of the features of enriched communities that exhibited coexistence.  

2.6. Interspecies interactions causally impact coexistence 

Considering that facilitation and self-restraint were correlated with coexistence, we asked if the 

relationship was causal. In other words, we would like to examine how important different influence 

categories are in coexistence during enrichment. To answer this question, we performed in silico “knock-

out” experiments in which we remove an influence link from the community to examine how it affects 

final richness.  

From the final enriched community, we picked one influence (chemical influence on a species) at a time, 

removed that influence from the initial pool of species, and asked how species richness was affected as 
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a result. Our analysis shows that removing facilitative influences often leads to enriched communities 

with fewer species (Fig 6A). The same general pattern holds when we explore initial pools with other 

parameters. This shows that facilitation has a positive causal impact on coexistence. Among negative 

influences, self-restraint seems to contribute to coexistence more than other-inhibition, as removal of 

self-restraint more often leads to communities with lower richness (Fig 6A). 

We also started from the coexisting enriched community, removed an influence, and asked if the 

community remained stable afterwards. We functionally define stability by testing if we start from a 

community that has exhibited coexistence, after removing an influence, over the following 100 

generations the same species coexist. We observed a trend similar to Fig 6A, in which removal of other-

inhibition is least likely to disrupt stability, removal of self-restraint has intermediate chance of making 

the community unstable, whereas removing facilitation influences has a high chance of disrupting 

stability (Fig 6B).  

Our interpretation is that during enrichment, some influences will remain in the community even though 

they are not necessary for coexistence. It appears that facilitative influences (and to an intermediate 

degree, self-restraint influences) are the necessary links that maintain the coexistence of species. In 

contrast, the remaining influences, especially other-inhibition ones that are disruptive to coexistence, 

“hitchhike” from the initial pool to the final enriched community. Removing these unnecessary 

influences is unlikely to make the community unstable.  
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Fig 6. Even individual influences may causally impact coexistence and stability. 

To assess how interactions might influence coexistence, we use “knock-out” experiments in which we remove a 

link from the interaction network of a community that shows coexistence. In (A), the interaction is removed from 

the initial pool to ask how enrichment might be affected. We see that removing facilitation links has a considerable 

adverse effect on coexistence (with a large fraction of cases showing a drop in final richness). In contrast, 

removing self-restraint has a modest influence on coexistence, and removing inhibition of others on average 

benefits coexistence. In (B), the interaction was removed from the final community to see how an already stably 

coexistent community was affected by removal of different types of links. Observations in (B) match the trends 

in (A). Removal of facilitation likely disrupts the stable community, whereas removal of inhibition of others is 

unlikely to impact the community. Self-restraint interactions are at intermediate importance; their removal has a 

modest (~17%) chance of disrupting an already stable community in this example. Here, the initial pool has a 

binomial network and contains equally likely positive or negative influences (+:- = 50%:50%). Similar qualitative 

trends were valid when we examined communities with other sets of parameters. 

3. Discussion 

We refined a previous model of microbial interactions mediated by chemicals based on simple 
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experimental investigations. We used this model in a computational screen to emulate the process of 

enrichment. By examining the commonalities among resulting communities that exhibited coexistence, 

we asked what features of their interaction might contribute to coexistence. We found that facilitation 

and self-restraint interactions played a critical role in allowing species coexistence. Importantly, this role 

was found to be causal in many cases: removal of a facilitation interaction negatively impacted 

coexistence, whereas, in contrast, more coexistence was likely observed after removing inhibition of 

other species. We also examined the effect of different parameters and revealed some of the factors that 

impact coexistence, including the interaction strength, the network architecture, and the role of 

depletable mediators. We found that our general conclusions (e.g. the role of facilitation in coexistence) 

were largely robust against changes to the details of parameters.  

Our work re-emphasizes the importance of facilitation and self-restraint in community formation and 

maintenance (77, 79). Examples of how microbes employ these mechanisms for coexistence is not hard 

to imagine. Metabolic exchange has been considered as a common way other-facilitation can take place 

among microbes (80, 81), which would fit within the framework of our model. Self-facilitation can take 

place for example when a species breaks down complex compounds in the environment into consumable 

products. Practically this can take place by species that produce protease or cellulose; in our model, the 

mediator will be the product of the breakdown (e.g. amino acids or glucose). The concentration of such 

mediators increases in the presence of corresponding species, and those species (and potentially others) 

will experience a benefit in the presence of such products. Having unique access to these (otherwise 

inaccessible) resources allows these species to gain a fitness benefit that allows them to persist for 

coexistence. Self-restraint is also widespread, as the products of metabolism (such as acetate (82) or 

ethanol (21)) can often become inhibitory when they accumulate in the environment.  

We also would like to emphasize that our model suggests that coexistence is affected by the mechanism 

of interactions among microbes (e.g. interactions mediated through depletable versus reusable chemical 

mediators). Our earlier work (44) had suggested that pairwise models that do not capture interaction 

mechanisms fail to properly capture community dynamics. That conclusion is re-iterated in this work 

where pairwise models failed to provide acceptable predictions of coexistence, except under very 

specific conditions in which all interactions were mediated by independent, reusable chemicals 

(consistent with the assumptions of pairwise models). We argue that for a community interacting through 
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chemical mediators, pairwise modeling has two vulnerabilities: it ignores the mechanism of interaction 

(even though interactions can be through consumable versus reusable mediators) and it assumes that 

interactions between each pair of species are independent of other interactions (even though shared 

chemical mediators can be consumed, degraded, or produced by multiple species in a community). Our 

model of interactions through mediators addresses and resolves both these vulnerabilities. To be precise, 

our analysis does not conclusively assert that pairwise models are unfit for modeling coexistence. 

Nevertheless, the basic assumptions of our reference model are simple, intuitive, and commonly 

expected. The failure of pairwise models to make accurate predictions against our reference model 

(potentially representing a microbial community), should be considered a warning sign against the use 

of these models to predict microbial coexistence.  

Do coexistence predictions from our model (i.e. the chance of achieving coexistence starting from a pool 

of microbes) match experimental observations? Different dependencies sampled in our exploration of 

the parameter space (Fig 2, Fig 2-FS4, Fig 2-FS5, Fig 2-FS6, Fig 2-FS7, Fig 3, and Fig 3-FS1) highlight 

the difficulty of experimentally validating the predictions. A rigorous experimental validation requires a 

well-characterized system with known interactions and chemical mediators. However, currently 

available experimental studies lack this level of detailed characterization. Examining some of the 

examples of reported coexistence starting from 2- and 3-species pools show fairly diverse outcomes (Fig 

4-FS3). We performed experimental enrichment studies as well with different trio combinations of 

isolates from human nasal cavity, and observed no coexistence (data not shown). With our typical 

simulation parameters, we observed levels of coexistence within the range of previous experimental 

observations. Detailed evaluation of expected coexistence requires a more thorough investigation, which 

is beyond the scope of this work.  

One of the intriguing observations in our results is the rapid drop in the likelihood of arriving at enriched 

communities with higher richness, especially with a binomial network architecture. Considering that in 

experimental settings instances of enriched communities with several species are not rare (63, 65, 83, 

84), other factors besides fitness-changing interactions through chemicals may be in play. Some of these 

factors have been discussed before with potential impact on coexistence. Temporal or spatial 

heterogeneity (20, 85) could be a factor that effectively changes the strength of interactions among 

community members over time. Additionally, shared resources are assumed to be always in abundance 
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in our model; however, if some resources become scarce, species with lower intrinsic fitness might be 

favored, leading to increased coexistence.  

In modeling microbial coexistence, there are many other features that deserve a closer look. Species 

behavior and physiology may change depending on the environmental cues or intercellular 

communications (86)(Hart et al 2018). There may be an intrinsic heterogeneity, in terms of microbial 

phenotypes, within each population (87). Another possibility is potential intrinsic structure in the 

network of the community (e.g. presence of intrinsic modularity), which may cause the coexistence to 

deviate from predictions of our model based on randomly assigned networks. Lastly, our ecological 

model does not incorporate evolutionary changes in species, which could potentially impact coexistence 

outcomes. These factors are outside the scope of this report, but can be independently examined using 

the same framework in the future. Other factors such as non-monotonic interactions (88), and non-

additive interactions (46) are some of the aspects that can influence the formation and maintenance of 

microbial communities, but are beyond the scope of our work. We hope that this work will be a stepping 

stone in formulating and capturing important features of microbial interactions in community models. 

Methods 

Simulation platform: Simulations were implemented in Matlab® and run on the shared Scientific 

Computing cluster at the Fred Hutchinson Cancer Research Center. The cluster is a Linux-based 64-bit 

computing platform with 64GB of RAM per job. Typically, different sets of assumptions and conditions 

were screened and then analyzed to find trends in networks of enriched communities. Simulation codes 

are available in the supplementary files associated with this manuscript.  

Network architecture of initial species pool: In binomial networks (Fig 2-FS6 and Fig 2-FS7), the 

presence or absence of c-links and f-links each is determined by a fixed probability. In power-law 

networks (Fig 2-FS6 and Fig 2-FS7), the number of c-links per species and the number of f-links per 

chemical follow a power-law distribution. The basal fitness values of species in the initial pool of species 

is picked randomly from a uniform distribution (r0 ~ U(0.08,0.12) per hour). The exact value of basal 

fitness is inconsequential as all other fitness values (e.g. fitness influence of interactions) and time-scales 

(e.g. update time-step) can be scaled accordingly without loss of generality. For interaction strengths, 

the values within the main manuscript are picked randomly from a uniform distribution when the fraction 
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of positive to negative interactions is 1:1. In cases where either positive or negative interactions are more 

likely, the absolute values of interaction strengths within positive or negative interactions still follow a 

uniform distribution, but the sign will be positive or negative based on a binomial distribution.   

Experimental characterization of chemical facilitation and inhibition: For facilitation, we examined 

growth of E. coli K12 MG1655 single gene knockout auxotrophic strains in media supplemented with 

the corresponding amino acid at different concentrations. For leucine auxotrophy, we replaced LeuB 

with a chloramphenicol resistance gene and for isoleucine auxotrophy, we replaced IleA with a 

kanamycin resistance gene. For isoleucine auxotrophs, a BioTek Synergy Mx multi-mode microplate 

reader was used to monitor the optical density (OD) cells over 24 hours at 5 minute intervals. Cultures 

typically started from an initial OD of 0.001, and were kept shaking in between OD readings. Standard 

M9 minimal medium (89) was used as the basal growth medium in these experiments, and it was 

supplemented with isoleucine as needed. For leucine auxotrophs, the OD assay above was not sensitive 

enough to measure the growth rate. Instead, we used a fluorescently labeled strain (using DsRed on a 

plasmid) and used the plate reader to monitor the total fluorescence from the cultures growing when 

supplemented with different concentrations of leucine. Excitation was set at 560 nm and emission at 588 

nm in this assay. We used only the first 3 hours of the fluorescence reading to calculate the growth rates 

to minimize the effect of leucine depletion as cells were growing. 

For inhibition, we examined different combinations of bacterial strains and inhibiting compounds, as 

listed in the following table:  

Strain Inhibitor Medium Temperature 

E. coli K12 MG1655 Acetic acid M9  37°C 

E. coli K12 MG1655 Erythromycin M9  37°C 

Brevibacillus M1-5 Acetic acid BAAD 50°C 

Staphylococcus aureus SD6 Acetic acid 10% THY 37°C 

Staphylococcus aureus SD6 Erythromycin 10% THY 37°C 

Staphylococcus epidermidis SD8 Acetic acid 10% THY 37°C 

 

For these inhibition experiments, we typically streaked them on rich medium (on LB for E. coli strains, 

on PCS for the Brevibacillus strain, and on BHI for Staphylococcus strains) and isolated a clone. The 

clone was then grown to exponential phase in the basal media listed in the table, in the absence of 

inhibitors. Multiple replicate wells on either a 96-well plate or a 384-well plate were inoculated with 
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these exponentially growing cells typically at an initial OD of 0.0012, at different concentrations of the 

corresponding inhibitor. Growth was monitored by recording the OD at 5-min or 10-min intervals using 

either a BioTek Synergy Mx multi-mode microplate reader, or a BioTek Epoch2 absorbance microplate 

reader. Plates were incubated while shaking inside the plate reader in between OD readings. Typically 

3-6 replicates were used per condition. The wells around the periphery of microplates were found to be 

more subject to evaporation. We thus filled those with sterile water to reduce the impact of evaporation 

on other wells and only used the rest of the wells on each plate for our cultures. 

Analyzing the growth rate from experimental OD readings: To estimate what the growth rate is in 

each well, we exported the data from Gen5 software that controls microplate readers to a text file, and 

transferred the data to Matlab for analysis. For each well, we used the wells in time-points 3-10 to 

estimate the background OD corresponding to that well. The first two time-points were dropped, because 

we occasionally saw condensation issues before the plate reached the incubation temperature. After 

subtracting the background, we picked data points for each growth curve that were between OD values 

of 0.002 and 0.02 to avoid noise at low ODs and saturation at high ODs. A linear function was then fit 

into the log of OD values using the polyfit function in Matlab. The slope of this line was reported as 

the growth rate for that well.  

Fitting a pairwise model into the dynamics of two species growing together: To model enrichment 

using a pairwise model, we build a network by characterizing the interaction between each pair of 

species. For each pair of species, we first simulate monocultures using the mechanistic model and 

estimate the parameters that approximate the growth of each monoculture (using 

DeriveBasalFitnessPastTransient_WM_DpMM.m). To derive a pairwise model for cocultures of 

two species, we start from an initial ratio of 1:1 and simulate the dynamics for 30 generations. We use 

the last 10 generations of this simulation as the “fitting window” to estimate the pairwise model 

parameters (using DeriveSatLVPastTransient2_WM_DpMM.m). This allows us to exclude the 

transient effects known to interfere with parameter estimation (44). If the ratio of the two species at the 

beginning of this window drop below 1:1000, we adjust the initial ratio to counter that. This simulates 

the experimental process of adjusting population ratios meant to allow both populations to be present at 

a large enough ratio for reliable estimation of their influence on each other. Given 10 generations of 

population growth in which both species are represented, we use the nonlinear least square optimization 
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routine (lsqnonlin in Matlab®) to find four parameters of a canonical pairwise model that offer a best 

fit for population dynamics. The canonical pairwise model (44) used here can be described as 

0

ji

i ij i

j j ij

SdS
r r S

dt S K

  
   

    
        (Eq 2), 

in which ri0 is the basal fitness of species i, rij is the maximum fitness effect exerted on species i by 

species j in their interaction, and the interaction follows a saturating form ( )
j j ij

S S K . We use the 

residual error output of this optimization routine to assess whether the fitting is successful or not (with 

typical parameters, residual < 200 is assumed to be a successful fit). 

Calculating the rise in frequency of different interaction types: We define the rise in frequency as 

the change in the frequency of interaction types from the initial pool to the enriched coexistent 

community. In our calculations, we screened the enriched communities to ensure their network had a 

connected graph, meaning that all species either were influenced by a chemical produced by other species 

or produced a chemical that influenced other species. This screening was performed to remove 

communities that achieved coexistence without interactions. Additionally, we removed all interactions 

with a fitness influence lower than 1/500th of the average basal fitness. The motivation was that such 

interactions would be inconsequential within the 300-generation time-scale of our enrichment 

experiment. Removing these spurious links in the graph would thus make it easier to see the patterns for 

more important interactions. 
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Supplementary information 

List of Codes: Matlab scripts used for modeling and analysis of data are listed below. 

Code Description 
EnrichmentComparison_WM_Mech_vs_PF2_ABE_RD.m Compares enrichment predictions 

between the mechanistic model (chemical 

mediators explicitly incorporated) versus 

an estimated pairwise model derived 

from it. 
Enrichment_WM_DpMM.m Simulates the enrichment process for 

communities with given parameters using 

the model that explicitly includes 

chemical mediators. 
Enrichment_WM_PF.m Simulates the enrichment process for 

communities with given parameters using 

a pairwise model. 
DeriveBasalFitnessPastTransient_WM_DpMM.m Uses an optimization routine to estimate 

model parameters that provide a best fit 

into growth dynamics of each species 

growing in a monoculture. 
DeriveSatLVPastTransient2_WM_DpMM.m Uses an optimization routine to estimate 

model parameters that provide a best fit 

canonical pairwise model into growth 

dynamics of two species growing in a 

coculture. 
DistInteractionStrengthMT_PB.m Produces a matrix of interaction strengths 

with uniform distribution of strengths and 

designated probability of positive versus 

negative signs. 
Dynamics_WM_DpMM.m Simulates the dynamics of a well-mixed 

community of species interacting via 

chemical mediators 
Dynamics_WM_SatLV.m Simulates the dynamics of a well-mixed 

community of species engaged in 

pairwise fitness interactions (saturable 

Lotka-Volterra type (Eq. 2)) 
FitCost_BasalFitness.m Cost function for fitting a saturable LV 

model (Eq. 2) into a given population 

dynamics of a single species. 
FitCostGR2_SatLV.m Cost function for fitting a saturable LV 

model (Eq. 2) into a given population 

dynamics of two species. 
NetworkConfig_Binomial.m Produces matrix of links for a network 

with binomial connectivity 
NetworkConfig_Powerlaw.m Produces matrix of links for a network 

with power-law connectivity 
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Supplementary figures 
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Fig 1-FS1. Inhibition by chemical compounds often shows a consistent pattern of linear 

decrease, beyond a threshold concentration 

Examining the growth inhibition by chemical compounds in many cases we have examined showed a linear 

decrease as the inhibitor concentration increased. (A) and (B) show two examples of this trend for B. agri and E. 

coli, in response to acetic acid and erythromycin, respectively. In these cases we observed a small threshold effect 

(i.e. no inhibition or slight growth rate increase at very small concentrations of the inhibitor), however, the 

threshold was low enough that a linear decrease in growth rate, i.e.  0
dS dt r C S   offered a good 

approximation. (C) and (D) In some cases, we observed a more pronounced threshold effect, for example when 

E. coli was exposed to penicillin or gentamicin. This means these bacteria can tolerate the inhibitor to some extent, 

but beyond the threshold concentration, Cth, cells will be affected by the chemical inhibitor. For these situations, 

a more accurate model is 
0

0

;

( ) ;

th

th th

r S C CdS

dt r S S C C C C




  
. (E) and (F) Other species and strains showed 

the same overall trends in many cases. As representative examples, growth rates of S. aureus and S. epidermidis 

in response to acetic acid show linear decrease (similar to (A-B)) and linear decrease beyond a threshold (similar 

to (C-D)), respectively. (G) and (H) Although the trends in (A-F) were most common, a third pattern was observed 

at lower frequency in which the decrease in growth rate was proportional to the logarithm of the inhibitor 

concentration. For simplicity, we chose the more common linear decrease trend in our simulations. 
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Fig 1-FS2. Facilitation by chemical compounds shows a consistent pattern of saturable 

response 

Similar to Fig 1D, we have observed that the influence of a facilitative chemical compound on species can be 

approximated by a Moser growth model. In this case, a leucine auxotrophic strain of E. coli is grown in defined 

M9 media supplemented with different concentrations of leucine. To avoid potential effects of leucine depletion, 

growth in the first 3 hours of growth is used to estimate the growth rate. Experimental observations of this 

auxotrophic strain suggest that a third-order relation (black dotted line) offers a more accurate estimation 

compared to the first-order Monod-type equation (red dotted curve). For simplicity, the first-order Mono-type 

equation is used in the model which still captures the saturating form of the equation. Similar to Fig 1D, at much 

higher concentrations of leucine, potential toxic effects reduce the growth rate (above 50 μM of leucine), but we 

do not include this effect in our model. 
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Fig 2-FS1. During enrichment a subset of species can achieve coexistence. 

We show an example of the dynamics and network of a community assembled through enrichment. In (A) the 

random network of interactions in the initial pool of 10 species and 5 mediators is shown. (B) After enrichment, 

3 species and 4 mediators remain in the community. In (A) and (B), the thickness of f-links indicates their relative 

strength and the thickness of c-links indicates the relative rate of removal or production. The shades of species 

indicates their relative basal fitness (darker shades for higher basal fitness values). Additionally, for f-links, those 

removed by their recipients are marked as blue (depletable) and those not removed by their recipients are marked 

as red (reusable). In this example, the initial ratio of positive to negative influences is 80%:20%, and the ratio of 

depletable to reusable mediator links is 80%:20%.  (C) Dynamics of species population sizes (top) and chemical 

concentrations (bottom) are shown for the example of transition from (A) to (B). All populations are assumed to 

have a similar size at the beginning of enrichment. Any population that drops below 0.1 cells/ml is assumed to be 

extinct and is removed from the rest of the simulation. In this example, 3 species achieve coexistence, and 

coexistence appears to be stable after 7 rounds of growth-dilution.  
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Fig 2-FS2. Basal fitness is a major determinant of coexistence in the absence of interactions, 

but not when species are engaged in strong interactions. 

(A) Examining the distribution of basal fitness in all enriched communities, we observe a slight advantage for 

species with higher basal fitness in communities obtained from a pool of interacting species. In the absence of 

interactions (representing neutral theory), species with the highest basal fitness will outcompete other species. The 

distribution in the initial pool is uniform across all basal fitness values. These distributions are plotted as 

histograms of frequencies over 20 bins. (B) Comparing the distribution of basal fitness in enriched communities, 

we observe that although higher basal fitness increases the chance of being present in enriched communities, this 

trend is more pronounced if initial pools were dominated by inhibitory influences compared to facilitative 

influences. The dotted line shows the theoretical distribution of basal fitness values in the initial pool. These 

distributions are plotted as histograms of frequencies over 20 bins. In simulations in (A) and (B), the average 

interaction strength relative to average basal fitness, ri/r0 = 2. The number of coexistent cases examined is 5000. 
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Fig 2-FS3. Coexistence outcome is not sensitive to the distribution of interaction strength 

values. 

Examining how the distribution of interaction strengths in the initial pool affects coexistence, we find that the 

likelihood of coexistence is only modestly affected by the distribution of interaction strengths. We examined 

situations where strong and weak interactions were equally likely (blue squares), where strong interactions were 

less likely (green diamonds), as well as a situation in which the less likely interaction type (positive or negative) 

has lower maximum interaction strength (cyan triangles). Comparing the frequency of arriving at communities 

with different richness through enrichment shows a negligible difference in the outcome when different interaction 

strength distributions are used when assigning interactions in the initial pool. Only simulation results with 

depletable mediators are shown, when (A) positive and negative influences are equally likely, and (B) positive 

influences are more likely than negative influences. In these simulations, the average interaction strength relative 

to average basal fitness, ri/r0 = 1. 
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Fig 2-FS4. Coexistence is disrupted at weak interaction strengths. 

We examined how interaction strength affects coexistence. Whether influences are mostly facilitative (A) or 

inhibitive (B), as interactions become stronger (i.e. larger ri/r0 values, where ri is the average interaction strength 

magnitude and r0 is the average net basal growth rate), coexistence becomes more likely, but this trend saturates 

at very strong interactions. At very weak interaction strengths, we can assume that coexistence happens only for 

species with very similar growth rates, approaching what is expected from the neutral theory. (C-D) As we vary 

Ksat, the average of saturation concentration Ki,l values, we observe a trend similar to varying the interaction 

strengths. Large values of Ksat effectively represent weaker interactions (see Eq. 1) and lead to lower likelihood of 

interaction-driven coexistence, as expected.  
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Fig 2-FS5. The degree of connectivity per node can impact coexistence 

We examined how the degree of connectivity of species and chemicals influenced coexistence. For this purpose, 

in a binomial network, we (A-B) changed the chance of presence of influence links that affect species fitness (qc) 

and (C-D) the chance of presence of production links (qp). Our results show that when species are engaged mostly 

in facilitative interactions, coexistence is favored at intermediate levels of connectivity (A and C). In contrast, in 

communities dominated by inhibitory interactions, coexistence is favored at lower connectivity (B and D). 
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Fig 2-FS6. Network architecture impacts coexistence. 

We examined coexistence in communities with two different network architectures starting from an initial pool 

with different number of species. (A) In binomial networks (used in the rest of the examples in this paper), each 

chemical production link or species influence link exists with a fixed probability. (B) In power-law networks, the 

chance of being connected (each species to chemicals or each chemical to species) exponentially drops as the 

number of connections per node increases. As a result, most nodes have few connections, and a small fraction of 

nodes are highly connected. We observe that for power-law networks, it is more likely to obtain communities with 

multiple species, compared to binomial networks. In both cases, we observe more coexistence with depletable 

mediators, consistent with Fig 3. In these simulations, the number of possible mediators Nm=15. For binomial 

networks, qp=0.2 and qc=0.2. For power-law networks, we choose the parameters such that the average 

connectivity is similar to our binomial networks. The number of communities analyzed Ns=10000. 
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Fig 2-FS7. A power-law network architecture favors coexistence compared to a binomial 

network architecture. 

Similar to Fig 2-FS6, we examined coexistence of communities with different network architectures. We looked 

into how different number of mediators affected coexistence. We observe that binomial networks (A) are less 

likely to lead to coexistence compared to power-law networks (B). We also observe that with fewer mediators, 

the chance of coexistence increases, and this trend is more pronounced in communities with a power-law network 

architecture. Additionally, in both cases, we observe higher coexistence with depletable mediators, consistent with 

Fig 3. In these simulations, the number of species in the initial pool Nc=100. For binomial networks, qp=0.2 and 

qc=0.2. For power-law networks, we choose the parameters such that the average connectivity is similar to our 

binomial networks. The number of communities analyzed Ns=10000. 
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Fig 3-FS1. Depletion of mediators favors coexistence. 

We examined how changes in average consumption and production rates of chemical mediators (α and β, 

respectively) affected coexistence. For both communities that contained many positive influences (A) and those 

that contained many negative influences (B), an increase in the ratio of α/β increased the likelihood of coexistence. 

This trend was more pronounced in communities that had more positive influences (A), but was saturated beyond 

a ratio of 5. In these simulations, the initial number of species types Nc=20, the number of possible mediators 

Nm=15, and a binomial network connectivity is assumed with qp=0.2 and qc=0.2. The average basal fitness in the 

initial pool is 0.1/hr. The number of communities analyzed Ns=5000.    
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Fig 4-FS1. Pairwise model is rarely successful in predicting coexistence of species 

interacting through chemical mediators. 

We investigated whether the pairwise model derived for the initial pool of microbes predicts the same species 

coexist as the reference mechanistic model in more cooperative (+) or competitive (-) environments. Our results 

suggest that the canonical Lotka-Volterra pairwise model rarely predicts coexisting species in communities with 

only depletable mediators (A) regardless of the ratio of positive to negative influences (top versus bottom). In 

communities with only reusable mediators, pairwise models perform better than depletable mediators (i.e. had 

predictions closer to the reference model), but still fail to reliably predict coexisting species (B). In these 

simulations, the initial number of species types Nc=7 and the number of possible mediators Nm=4. The number of 

communities analyzed Ns=1000. 
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Fig 4-FS2. Pairwise model is more appropriate for communities in which interactions are 

independent. 

We investigated whether the pairwise model derived for the initial pool of microbes predicts the same species to 

coexist as the reference mechanistic model when interactions are more independent (i.e. when they take place 

through independent chemical mediators). In this situation, since mediators are less likely to be shared, the impact 

of higher-order interactions is reduced. We show three examples: In (A-B), there are seven species in the initial 

pool, interacting through four mediators, with the chance of the presence of production links (qp) and the chance 

of the presence of influence links (qc) both set at 0.5. With the same parameters as (A-B), in (C-D) we reduced 

the number of species in the initial pool to four, effectively reducing the chance of overlap in chemical 
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production/removal between interacting species. In (E-F), we increased the number of mediators to eight, but 

reduced qp and qc to 0.25, maintaining the same chance of interactions as (C-D), but making it more likely for 

those interactions to take place through independent mediators. Our results suggest that the canonical Lotka-

Volterra pairwise model is not suitable for predicting coexisting species in communities with only depletable 

mediators (A, C, and E). For communities with reusable mediators, however, as interactions become more 

independent (from B to D, to F), pairwise model becomes more successful in predicting coexistence. The number 

of communities analyzed in each case, Ns=1000. 
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Fig 4-FS3. Model predictions cover the range of observed experimental enrichment 

outcomes. 

We examined the frequency of achieving coexistence between simulations from our model and reported 

experimental observations. In simulations, we examined 2- and 3-species initial pool, with 2 or 5 mediators (right, 

dark gray; simulation parameters are listed in Supplementary Information). Results from available experimental 

observations come from three reports: Friedman et al investigated coexistence among soil isolates (66); Higgins 

et al examined a larger set of pairwise interactions among soil isolates in a lab environment (69); and Wright & 

Vetsigian examined cocultures of pairs of strains from the genus Streptomyces, observing mostly invasion and 

only at a low rate, coexistence (90). Because of the large variability in the experimental data, we speculate that 

the ecology of strains being examined in each dataset plays a crucial role in their coexistence. We posit that more 

experimental examples, along with a better mechanistic understanding of interactions in each case is needed to 

decipher how interactions impact coexistence and if a mediator-explicit model is a suitable representation.  
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Fig 5-FS1. Facilitation and self-restraint are favored during enrichment, regardless of the 

details of model parameters 

Similar to Fig 5, we examined the change in frequencies of facilitation and self-restraint from the initial pool to 

enriched communities that showed coexistence. Whether the initial pool had equal chance of facilitation versus 

inhibition (A-B) or was dominated by facilitation (C-D), there was a rise in frequency of facilitation and self-

inhibition during enrichment. The arrows in (A) and (C) show the value of rise equal to the inverse of the mean 

of facilitation frequency in the initial pool. Break-down of different categories in (B) and (D) shows that a rise in 

facilitation is prevalent, whereas in a small fraction of cases in which facilitation is not dominant a rise in self-

inhibition is observed (0.1% in (A), which is 1% of enriched communities that contained self-inhibition (B); 0.5% 

in (C), which is 17% of enriched communities that contained self-inhibition (D). The number of communities 

analyzed Ns=30000. In these simulations, the initial number of species types Nc=20 and the number of possible 

mediators Nm=15. Other simulation parameters are listed in the Supplementary Information (Simulation 

parameters). 
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Fig 6-FS1. Individual influences can impact coexistence and stability regardless of the 

interaction makeup in the initial pool 

We use knock-out experiments, similar to Fig 6 to assess how removing a link from the interaction network affects 

coexistence and stability. Here, the initial pool has a binomial network and contains mostly negative influences 

(+:- = 20%:80%). The conclusions are similar to Fig 6. (A) Removing facilitation links likely disrupts coexistence 

whereas removing inhibition of others is unlikely to break down coexistence. (B) Removing facilitation likely 

disrupts the stable community, whereas removal of inhibition of others is unlikely to impact the community.  
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Fig 6-FS2. Individual influences can impact coexistence and stability regardless of the 

interaction network architecture 

We use knock-out experiments, similar to Fig 6 to assess how removing a link from the interaction network affects 

coexistence and stability. Here, the initial pool has a power-law network with average connectivity similar to Fig 

6. We largely observe the same conclusions, in which removing facilitation likely disrupts (A) coexistence and 

(B) stability. Compared to binomial networks in Fig 6, removing inhibition in this case appears more likely to 

disrupt coexistence and stability, but still not as much as other categories of influences. Similar to Fig 6, the ratio 

of facilitation to inhibition is chosen to be +:- = 50%:50% in the initial pool for this example.  
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