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SUMMARY 

Structural and transcriptional changes during early brain maturation follow fixed 

developmental programs defined by genetics. However, whether this is true for functional network 

activity remains unknown, primarily due to experimental inaccessibility of the initial stages of the 

living human brain. Here, we analyzed cortical organoids that spontaneously developed periodic 

and regular oscillatory network events that are dependent on glutamatergic and GABAergic 

signaling. These nested oscillations exhibit cross-frequency coupling, proposed to coordinate 

neuronal computation and communication. As evidence of potential network maturation, 

oscillatory activity subsequently transitioned to more spatiotemporally irregular patterns, capturing 

features observed in preterm human electroencephalography (EEG). These results show that the 

development of structured network activity in the human neocortex may follow stable genetic 

programming, even in the absence of external or subcortical inputs. Our model provides novel 

opportunities for investigating and manipulating the role of network activity in the developing 

human cortex. 
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HIGHLIGHTS 

● Early development of human functional neural networks and oscillatory activity can 

be modeled in vitro. 

● Cortical organoids exhibit phase-amplitude coupling between delta oscillation (2 

Hz) and high-frequency activity (100-400 Hz) during network-synchronous events. 

● Differential role of glutamate and GABA in initiating and maintaining oscillatory 

network activity. 

● Developmental impairment of MECP2-KO cortical organoids impacts the 

emergence of oscillatory activity. 

● Cortical organoid network electrophysiological signatures are similar to human 

preterm neonatal EEG features. 

 

 

 

IN BRIEF 

Brain oscillations are a candidate mechanism for how neural populations are temporally organized 

to instantiate cognition and behavior. Cortical organoids initially exhibit periodic and highly regular 

nested oscillatory network events that eventually transition to more spatiotemporally complex 

activity, mimicking features of late-stage preterm infant electroencephalography. Functional 

neural circuitry in cortical organoids exhibits emergence and development of oscillatory network 

dynamics similar to features found in the developing human brain. 
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INTRODUCTION 1	

Diverse and hierarchical cellular networks develop into circuits with patterns of functional 2	

spatiotemporal activity to form the human brain. Neural oscillations, a prominent, rhythmic brain 3	

signal found across species, robustly track cognitive, behavioral, and disease states (Buzsáki and 4	

Draguhn, 2004; Fries, 2005; de Hemptinne et al., 2015; Henriques and Davidson, 1991; Khan et 5	

al., 2013; Uhlhaas and Singer, 2010) and have long been leveraged in cognitive and systems 6	

neuroscience due to their ubiquity and accessibility. These complex network dynamics emerge 7	

early in development, and is unclear if shaped exclusively by biological programming prenatally 8	

(Blankenship and Feller, 2010; Johnson, 2001; Power et al., 2010). In vitro and in vivo rodent 9	

studies have shown that a conserved repertoire of organized network activity, such as traveling 10	

waves, giant depolarizing potentials, and early network oscillations, develop according to a 11	

consistent timeline prior to and immediately after birth (Allene et al., 2008; Khazipov and 12	

Luhmann, 2006; Uhlhaas et al., 2010). However, due to an inability to interrogate the 13	

electrophysiology of intact embryonic brains, it remains unknown whether the same happens in 14	

humans. As a result, our knowledge about human brain functional development rests upon 15	

extrapolations from nonhuman model systems (Power et al., 2010). 16	

Organoids generated from induced pluripotent stem cells (iPSC) have emerged as a 17	

scaled-down and three-dimensional model of the human brain, mimicking various developmental 18	

features at the cellular and molecular levels (Camp et al., 2015; Lancaster and Knoblich, 2014; 19	

Lancaster et al., 2013; van de Leemput et al., 2014; Luo et al., 2016; Mariani et al., 2012; Paşca 20	

et al., 2015; Qian et al., 2016; Renner et al., 2017). Despite recent advances in the understanding 21	

of their vast cellular diversity, there is no evidence that these organoids show complex and 22	

functional neural network activity that resembles early human brain formation (Birey et al., 2017; 23	

Quadrato et al., 2017). Therefore, researchers have not yet clearly determined whether organoids 24	

are a suitable model for neural network dynamics (Kelava and Lancaster, 2016; Pașca, 2018).   25	

Here, we use human iPSCs to generate cortical organoids that exhibit evolving and nested 26	
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oscillatory network dynamics over the span of several months. We subsequently investigated the 27	

molecular basis of human brain oscillatory activity formation, maintenance, and temporal control 28	

by gene targeting. Finally, we applied unsupervised machine learning to evaluate the similarity 29	

between electrophysiological activity patterns of the in vitro model and human preterm neonatal 30	

electroencephalogram (EEG). Our findings suggest that organoid models are suitable for the 31	

investigation of the physiological basis of network formation at early and late stages of the human 32	

brain development. This prolonged evaluation of cortical organoid activity expands our 33	

understanding of the emergence of network-level neurodynamics in humans. 34	

 35	

RESULTS 36	

Development of functional cortical organoids 37	

Despite the structural and transcriptional similarities between brain organoids and the 38	

developing nervous system, the emergence of higher-level complex network activity comparable 39	

to the living human brain remains largely untested (Figure 1A). To investigate the formation of a 40	

functional network, we promoted cortical specification by modifying previously described 41	

protocols (Paşca et al., 2015; Thomas et al., 2016) (Figure 1B, see Methods for details). At the 42	

beginning of differentiation, an abundance of proliferative neural progenitor cells (NPCs) (Ki67+, 43	

SOX2+ and Nestin+) that self-organized into a polarized neuroepithelium-like structure was 44	

observed. Similar to human cortical development in vivo, the proliferative zone around a lumen 45	

delimited by β-catenin+ cells was surrounded by progenitor cells. Progressively, the organoids 46	

increased in size and in the proportion of mature neurons (NeuN+ and MAP2+) to ultimately 47	

develop into concentric multi-layer structures composed of NPCs, intermediate progenitors 48	

(TBR2+, also known as EOMES), and lower (CTIP2+, also known as BCL11B) and upper 49	

(SATB2+) cortical layer neurons (Figure 1B-E and S1A-C). Although the initial fraction of glial 50	

cells was less than 5%, this population increased to about 30-40% after 6 months of differentiation 51	

(Figure 1D, 1E and S1D-H). The maturation level of the cells is reflected by the presence of 52	
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pyramidally-shaped neurons and formation of dendritic spine-like protrusions and synaptic 53	

structures (Figure 1F and 1G).   54	

To further characterize the cellular diversity of a cortical organoid, we performed single-55	

cell gene expression profiling in 6-month-old organoids and used unbiased clustering to classify 56	

the main existing cell types. From two independent differentiation replicates (Figure S2), seven 57	

distinct clusters were characterized based on their differential gene expression patterns (Figure 58	

S3, S4 and Table S1) including: progenitors, glia, and cortical neurons, which could be further 59	

subdivided into lower and upper layer based on the expression of the layer-specific markers 60	

CTIP2 and SATB2, respectively (Figure 1H-K and Figure S1). 61	
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 62	

Figure 1. Cellular and molecular development of human cortical organoids. (A) Overview of 63	

human neural network formation and dynamics evaluation using organoids. (B) Schematic of the 64	

protocol used to generate cortical organoids. Scale bar, 200 µm. (C) Organoid growth during 65	

different developmental stages. (D) Representative immunostainings showing proliferating NPCs 66	

(Ki67+ and Nestin+), lower (TBR1+ and CTIP2+) and upper (SATB2+) cortical layer neurons and 67	
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glial cells (GFAP+) overtime. Scale bar, 50 µm. (E) Population analysis of specific markers 68	

indicating stages of maturation and multiple neuronal subtypes. The data are shown as mean ± 69	

s.e.m. (n = 8). (F) Representative image of a pyramidal neuron (left panel); dendritic spine-like 70	

structures (arrow) are observed in cells transduced with the SYN:EGFP reporter (middle panel; 71	

scale bar, 5 µm). Immunohistochemical detection of the synaptic protein Syn1 (right panel; scale 72	

bar, 50 µm). (G) Electron microscopy of synaptic structures in 4-month-old cortical organoids 73	

(blue). (H) t-distributed stochastic neighbor embedding (tSNE) plot of 3,491 cells from 6-month-74	

old organoids. Colors denote seven main cell clusters. (I) tSNE plots depicting cell-type specific 75	

marker expression levels (red denotes higher expression). (J) Heatmap of average expression 76	

for representative gene markers by cluster and cell-type (see also Figure S4). (K) Violin plots 77	

showing transcript levels for representative markers of each cluster (see Figure S3 for additional 78	

markers). 79	

 80	

Emergence of nested oscillatory network activity 81	

Considering the observed cellular diversity and expression of synaptic markers, we further 82	

interrogated the presence of functional network activity. We performed weekly extracellular 83	

recordings of spontaneous electrical activity using multi-electrode arrays (MEA). We separately 84	

analyzed single-channel and population firing characteristics derived from channel-wise spike 85	

times, and the local field potential (LFP); a measure of aggregate synaptic currents and other 86	

slow ionic exchanges (Buzsáki et al., 2012) (Figure 2A). The spikes from each channel do not 87	

represent putative single-unit action potentials. Since the spatial resolution of MEA electrodes 88	

was sparse, the total population spiking of a well was submitted for further analysis, rather than 89	

individual spike trains. Over the course of 10 months, organoids exhibited consistent increases in 90	

electrical activity, as parametrized by channel-wise firing rate, burst frequency, and spike 91	

synchrony (Chen et al., 2009; Lisman, 1997), which indicates a continually-maturing neural 92	

network (Figure 2B-D and S5). Organoid firing rates were far higher than previously observed in 93	
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studies using iPSC-derived neurons or cerebral organoids (Figure S6). Additionally, the variability 94	

between replicates over 40 weeks of differentiation was significantly lower compared to iPSC-95	

derived neurons in monolayer cultures (Figure 2C inset and S5E). 96	

Population-level signals typically observed in in vivo electrophysiology were analyzed to 97	

further probe the network properties of cortical organoids. During individual recordings, cultures 98	

displayed a robust pattern of activity, switching between long periods of quiescence and short 99	

bursts of spontaneous network-synchronized spiking (hereafter referred to as “network events”). 100	

These network events are periodic but infrequent early in development (~2 months), occurring 101	

roughly every 20 seconds and decayed monotonically after the initial onset, similar to previously 102	

reported network “oscillations” in primary cultures and organoids (Figure 2E). From 4-months 103	

onwards, a secondary peak emerged 300-500 ms after the initial network activation, leading to 104	

the presence of a nested fast oscillatory (2-3 Hz) pattern up to 6-months in culture (Figure 2F and 105	

Figure S7). Notably, this robust fast timescale oscillation was not observed in 3D neurospheres, 106	

suggesting that the spherical arrangement of neurons is insufficient for the emergence of nested 107	

oscillations (Figure S8). The regular oscillatory activity during network events transitioned to 108	

stronger, yet more variable, oscillations over time. To quantify this network complexity, we tracked 109	

the regularity (coefficient of variation of inter-event intervals, CV) and the spatial and temporal 110	

correlation between spontaneous network events. The inter-event interval CV consistently 111	

increased over 10 months of differentiation (Figure 2G), from extremely regular latencies (CV ≅ 112	

0) at 2 months to irregular, Poisson-like (CV ≅ 1) at 10 months. This indicates increased variability 113	

between consecutive network events initiation. Additionally, spatial and temporal irregularity on a 114	

shorter time-scale (within-event) also increased with development, suggesting a breakdown of 115	

deterministic population dynamics from the onset of network events (Figure S7G).  116	

Periodic oscillatory activity is often defined as a “bump” over the characteristic 1/f 117	

background noise in the power spectral density (PSD) of extracellular signals above-and-beyond 118	

the aperiodic 1/f signal (Buzsáki et al., 2013; Gao et al., 2017). In organoid LFPs, we observed 119	
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both prominent oscillatory peaks in the low-frequency range (1-4 Hz) and in the aperiodic signal 120	

characteristic of neural recordings (Ben-Ari, 2001; Voytek et al., 2015). The development of 121	

oscillatory activity in cortical organoids over time was quantified by computing the PSD for each 122	

LFP recording (Figure 2H, inset). Oscillatory power in the delta range (1-4 Hz) increased for up 123	

to 24 weeks in culture, tapering off slightly in subsequent recordings and plateauing during the 124	

last 10 weeks. This inverted-U trajectory reflects the network’s initial acquisition of oscillatory 125	

modes at steady frequencies and the dispersion of this regularity at later time points. The LFP 126	

results reveal the development of the cortical organoid cultures across different network states: 127	

from sparse activity with extreme rigidity and regularity, to one that acquires repetitive, perhaps 128	

overly-regular oscillatory patterns (Voytek and Knight, 2015), until it finally reaches a stage of 129	

higher spatiotemporal complexity and variability that is reminiscent of self-organized critical 130	

networks (Tetzlaff et al., 2010) (Figure S7C-G).  131	
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 132	

Figure 2. Oscillatory network dynamics in long-term cortical organoids. (A) Schematic of 133	

the organoid signal processing pipeline. Raw MEA data is analyzed as population spiking and 134	

LFP separately. Synchronous network events are highlighted in yellow. (B) Raster plot of network 135	

spiking activity after 1.5 and 6 months of maturation. A 3-s interval of activity over 5 channels is 136	

shown in the upper right corners. (C) Cortical organoids show elevated and continuously 137	

increasing mean firing rate compared to 2D monolayer neurons (n = 8 organoid cultures, and n = 138	

12 for 2D neurons). Inset, correlation of the firing rate vector over 12 weeks of differentiation (from 139	

8 to 20) between pairs of cultures showing reduced variability among organoid replicates. (D) 140	
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Temporal evolution of cortical organoid network activity. Detailed definitions and further 141	

parameters are presented in Figure 5B and 5C. (E) Time series of population spiking and LFP 142	

during network events in cortical organoid development. Each trace represents a single event 143	

during the same recording session. (F) Oscillatory dynamics within network events develop 144	

nonlinearly, following an inverted-U trajectory. (G) Increase of network variability dynamics 145	

throughout development. (H) Oscillatory power increases up to the 25th week in culture and 146	

plateaus at 30 weeks. Inset, Oscillatory power is calculated by fitting a straight line (dashed) over 147	

the aperiodic portion of the PSD and taken as the height of narrow peaks rising above the linear 148	

fit. The data shown in C, D, F, G and H are presented as mean ± s.e.m. *P < 0.05, **P < 0.01, 149	

***P < 0.001, unpaired Student’s t-test (C), quadratic (F) and linear (G) regression. 150	

 151	

Oscillatory coordination of neural ensembles and its synaptic mechanisms 152	

Oscillatory dynamics in the functioning brain have been postulated to coordinate spiking 153	

across neural ensembles1. In the LFP and other mesoscopic brain signals, this manifests as a 154	

phenomenon known as cross-frequency phase-amplitude coupling (PAC) (Voytek and Knight, 155	

2015), wherein the high-frequency content of the LFP is entrained to the phase of slow oscillations 156	

(Manning et al., 2009; Miller et al., 2007; Mukamel et al., 2005). PAC in the neocortex and 157	

hippocampus has been shown to be functionally relevant in a range of behaviors and neurological 158	

disorders (de Hemptinne et al., 2015; Voytek and Knight, 2015; Voytek et al., 2015). In the 159	

organoids, we observed greater PAC between oscillatory delta (1-4 Hz) and broadband gamma 160	

activity (100-400 Hz, see Methods) during network events compared to quiescent periods (Figure 161	

3A-C). This result suggests that oscillations in the organoid may reproduce dynamics relevant for 162	

the intact brain and could serve as a model to understand the fundamental mechanisms behind 163	

the emergence of oscillatory networks in the developing human brain.  164	

We further evaluated the role of glutamatergic and GABAergic synaptic transmission in 165	

forming oscillations by pharmacological intervention. Organoid neural networks were susceptible 166	
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to both glutamate receptor antagonists (AP5 and CNQX; NMDA and AMPA/kainate, respectively) 167	

and GABA receptor agonists (muscimol, GABAA; baclofen, GABAB) by significantly reducing the 168	

number of spikes and bursts, with a subsequent extinction of synchronous activity. The electrical 169	

activity was abolished in the presence of tetrodotoxin (TTX) (Figure 3D and 3E). Notably, 170	

blockade of GABAergic transmission by bicuculline increased the number of network-171	

synchronized events and did not affect peak population firing rates, but abolished nested 2 Hz 172	

oscillatory activity by erasing subsequent reverberant peaks (Figure 3F). The findings suggest 173	

that GABA transmission is crucial for the maintenance, but not the initiation of faster oscillatory 174	

activity. This is consistent with accounts of inhibition rhythmically coordinating pyramidal 175	

populations activity during early development (Opitz et al., 2002). 176	
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 177	

Figure 3. Cortical organoid serves as a model of functional oscillations and their synaptic 178	

mechanisms. (A-C) Phase-amplitude coupling is observed in organoid LFP during network 179	

events, a phenomenon proposed to mediate neural communication in vivo. (A) Example of raw 180	

LFP during a network event decomposed into its low-frequency component (1-4 Hz delta) and the 181	

amplitude envelope of the high-frequency, broadband gamma component (200-400 Hz). Analysis 182	

was repeated for 100-200 Hz with near identical effect size and significance. (B) Normalized 183	
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gamma amplitude binned by delta phase during network events (black) shows greater modulation 184	

depth by low frequency delta than during non-event periods (red). (C) Phase-amplitude coupling 185	

during network events is significantly greater than non-event periods in all batches. (D) Effect of 186	

selective drug treatments on neuronal electrical activity in 6-month-old organoids. Representative 187	

raster plots and burst measurements of untreated and treated organoids. Scale bar, 20 s. 188	

Exposure to AP5 + CNQX, baclofen and muscimol reversibly extinguish the network bursts 189	

(synchrony), while no changes were promoted by bicuculline. (E-F) Pharmacological perturbation 190	

of oscillatory activity during network events in 6-month-old organoids. Application of bicuculline 191	

increases the number of network events, while CNQX + AP5 and baclofen completely abolish 192	

synchronized network events. Bicuculline blocks oscillatory network activity but not the network 193	

event itself. Data are shown as mean ± s.e.m.; unpaired Student’s t-test. 194	

 195	

MECP2 is essential for the timely emergence of network oscillations 196	

In addition to modeling the typically-developing brain, cortical organoids can also shed 197	

light on the mechanism behind functional deficits in neurodevelopmental disorders (Birey et al., 198	

2017; Lancaster et al., 2013; Thomas et al., 2016). Normal oscillatory network dynamics in the 199	

brain are often shown to break down in psychiatric and neurological conditions (Uhlhaas and 200	

Singer, 2010). However, the mechanisms by which that happens and its impact on the circuit are 201	

difficult to elucidate. Thus, we next investigated whether cortical organoids could be used to model 202	

oscillatory network defects. Previous work evidenced that patients with autism spectrum disorder 203	

exhibit reduced alpha oscillation power (8-12 Hz) and evoked gamma (40-60 Hz) response, as 204	

well as reduced PAC (Khan et al., 2013; Mohammad-Rezazadeh et al., 2016). Mutations in the 205	

Methyl-CpG-binding protein 2 (MECP2) gene lead to a severe disruption in cortical development 206	

that account for many symptoms of Rett syndrome, autism, schizophrenia and other neurological 207	

disorders (Amir et al., 1999; Cohen et al., 2002; Du et al., 2016; Liu et al., 2016; Wen et al., 2017). 208	

MECP2 is involved in the epigenetic regulation of target genes by binding to methylated CpG 209	
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dinucleotides promoter regions, acting as a transcriptional modulator (Figure 4A). 210	

 To model MECP2 deficiency during neurodevelopment, we a generated pluripotent stem 211	

cell model with two different cell lines, each carrying a distinct MECP2 mutation that lead to a 212	

nonfunctional protein (Figure S9). Human MECP2-mutant neurons in vitro exhibit fewer synapses, 213	

smaller soma size, altered calcium signaling and electrophysiological defects compared to 214	

controls (Marchetto et al., 2010). Based on the observed reduction in the number of layer V 215	

neurons in Mecp2-mutant mice (Stuss et al., 2012) and documented clinical data of microcephaly 216	

in Rett syndrome patients (Amir et al., 1999), we sought to examine transcriptomics, cellular and 217	

structural differences using MECP2-KO cortical organoids. The delay in the maturation process 218	

was accompanied by a significant decrease in the diameter of MECP2-KO organoids, spine-like 219	

density and synaptic puncta at later stages of differentiation (Figure 4B-D). Additionally, a 220	

significant reduction in the proportion of CTIP2+ and SATB2+ neurons was observed by targeted 221	

single-cell analysis (Figure 4E-G) and corroborated by immunostaining (Figure 4h). MECP2-KO 222	

cortical organoids also showed reduced neural activity leading to an absence of network 223	

oscillations, which supports a delay in the maturation process (Figure 4I and 4J). The inability to 224	

entrain into a functionally connected network at early stages of development might underlie the 225	

core deficits found in MECP2-deficient related disorders. More importantly, these results highlight 226	

the contribution of specific genes in the formation of a network circuitry and the emergence of 227	

oscillatory activity. 228	
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 229	

Figure 4. MECP2 contribution to the emergence of network oscillations. (A) MECP2-230	

knockout neurons (MECP2-KO) show reduced spine-like density and soma size compared to 231	

controls. (B) Organoid diameter quantification (CTR, n = 210 organoids; KO, n = 333 organoids). 232	

(C) Spine-like density and (D) synaptic puncta are reduced in MECP2-KO neurons. Scale bar, 50 233	

µm. (E-H) Targeted single-cell analysis of neural markers and cortical layer-related genes over 234	

defined control Ct value. In 3-month-old cortical organoids, a significant decrease in the number 235	

of CTIP2+ and SATB2+ neurons was observed. (I) MECP2-KO cortical organoids show 236	

decreased mean firing rate after 5 months of maturation (n = 6 organoid cultures). (J) Lack of 237	

oscillatory network events in 5-month-old MECP2-KO organoids. Each trace represents a single 238	

event during the same recording session. For B, C, D, G, H, I and J, data are shown as mean ± 239	

s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test. 240	

 241	
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Organoid network development recapitulates preterm EEG 242	

Despite similarities between the complex oscillatory network activity in organoids and the 243	

in vivo brain, it is unclear whether the spontaneous developmental trajectory observed is 244	

representative of programmed early neurodevelopment. While network activity from organoids 245	

does not exhibit the full temporal complexity seen in adults, the pattern of alternating periods of 246	

quiescence and network-synchronized events is similar to electrophysiological signatures present 247	

in preterm human infant EEG. During trace discontinu (Tolonen et al., 2007), quiescent periods 248	

are punctuated by high-amplitude oscillations (spontaneous activity transients, SATs) lasting a 249	

few seconds. Intervals of complete quiescence disappear as infants become of term, and the 250	

EEG is dominated by continuous and low-amplitude desynchronized activity in adult brains 251	

(Figure 5A). The time-frequency representation of network events in organoids also resembled 252	

the oscillatory bursts in preterm EEG, with power localized in the low frequencies and often 253	

accentuated within a narrow oscillatory band (Figure S10).  254	

To quantitatively compare network activity in cortical organoids to preterm human EEG, 255	

we trained (with cross-validation) a regularized regression model (L1 & L2 regularized, ElasticNet) 256	

on a subset of features relating to SATs from a dataset of 567 preterm neonatal EEGs (Stevenson 257	

et al., 2017) (24-38 post-conception weeks, PCW). We emphasize that the regression model was 258	

thus only optimized to predict preterm infant age based on their own brain features, and has not 259	

seen any organoid data whatsoever up to this point. After training, we submitted analogous 260	

features computed from organoid LFPs to the model and asked it to predict organoid “brain age” 261	

over time (Figure 5B). Notably, the mean model-generated organoid “brain age” was 262	

indistinguishable from its “true age” (in vitro) after 28 weeks (Figure 5C). In other words, organoids 263	

past 28 weeks in culture exhibit similar developmental trajectories of electrophysiological features 264	

as preterm neonates. Next, we examined the similarities between brain organoids and preterm 265	

humans by looking at each specific feature (Figure 5C and 5D). Of all features, “SATs per hour” 266	

(“events per hour” in organoids) showed strikingly similar values and growth, while “root-mean-267	
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square SAT duration” showed a similar decline (but not in absolute value) over 25 to 38 weeks in 268	

both datasets (Figure 5E, S10B and 10C). Therefore, while the developmental trajectory of 269	

cortical organoids is not identical to that of the fetal brain, a machine learning model trained only 270	

on preterm neonatal EEG features was able to predict organoid culture age, demonstrating that 271	

the observed network electrophysiological features may share similarities representative of 272	

genetically programmed developmental timelines. 273	

 274	
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Figure 5. Organoid network dynamics mimic premature neonates after 28 weeks of 275	

maturation. (A) Representative LFP trace from cortical organoid, highlighting instances of 276	

network events (yellow). Comparable events between periods of quiescence (discontinuous 277	

network dynamics) are shown in human preterm neonate EEG at 35 weeks gestational age, while 278	

a different pattern of continuous activity is observed in adult EEG. SAT: spontaneous activity 279	

transient. (B) Schematic of machine learning pipeline for organoid “brain-age” prediction: 9 EEG 280	

features from 39 premature babies (n = 567 recordings) between 25 and 38 PCW were used to 281	

train and cross-validate a regularized regression model (ElasticNet) to optimally predict neonate 282	

brain age, which was then applied directly to organoid LFP features to predict organoid “brain-283	

age”. (C) Predicted organoid “brain age” plotted against actual organoid age. Black stars denote 284	

time points where mean predicted age is not significantly different from actual age under 1-sample 285	

t-test (P < 0.05, n = 8). (D) Resampled Pearson’s correlation coefficient between age and 286	

electrophysiological features for both organoid and premature neonates show different degrees 287	

of developmental similarity for individual features. (E) EEG/LFP features over time for organoids 288	

and premature neonates show various levels of similarity. 289	

 290	

DISCUSSION 291	

Development of functional human brain networks is an activity-dependent process guided 292	

by genetic and molecular programs, shaped by emerging cellular diversity. Neonatal neural 293	

networks share many features with adult brains, despite the fundamental structural differences 294	

(Power et al., 2010). Even though the chronological stages of the human cortical network 295	

formation are not well understood, it is suggested that emerging cognitive functions during infancy 296	

are a result of different brain regions and environmental cues (Johnson, 2001). However, in utero 297	

development is vital for the establishment of neuronal circuitry and healthy functioning of the brain. 298	

The second and third trimester of gestation are when the corticothalamic network is formed via 299	

transient connections of the subplate GABAergic neurons and the emergence of synchronized 300	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358622doi: bioRxiv preprint 

https://doi.org/10.1101/358622
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trujillo, Gao, Negraes et al. 

18 

network activity (Kostović and Judaš, 2010). Thus, early cortical functional maturation follows an 301	

independent sensory-input pathway, guided by spontaneous activity and associated with synaptic 302	

regulating mechanisms (Uhlhaas et al., 2010).  303	

Here we report the formation of small-scale functional electrophysiological networks in 304	

cortical organoids, similar to those observed in the developing brain. While we do not claim 305	

functional equivalence between the organoids and a full neonatal cortex, the current results 306	

represent the first step towards an in vitro model that captures the complex spatiotemporal 307	

oscillatory dynamics of the human brain. Robust extracellular electrical activity was established 308	

at earlier stages and progressively developed into an organized oscillatory network similar to that 309	

observed in human EEG. As such, we show that features of early functional network dynamics 310	

(e.g., spontaneous activity transients) can be recapitulated by an in vitro model of the developing 311	

cortex, with no additional constraints other than structural and genetic similarities. This offers 312	

strong evidence for a convergent experience-independent neurodevelopmental program of the 313	

neocortex prior to birth. Given the potential roles of synchronized and oscillatory network 314	

dynamics in coordinating information flow between developed cortical brain regions during human 315	

cognition (Uhlhaas et al., 2010), these results highlight the potential for cortical organoids to 316	

advance our understanding of functional electrophysiology, brain development, and neuro-317	

genetic disorders. Finally, our findings may ultimately reframe the ethical discussions on human 318	

brain organoid research and offer an innovative link between microscale organoid physiology and 319	

cognitive neuroscience. 320	

321	
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FIGURE LEGENDS 599	

Figure 1. Cellular and molecular development of human cortical organoids. (A) Overview of 600	

human neural network formation and dynamics evaluation using organoids. (B) Schematic of the 601	

protocol used to generate cortical organoids. Scale bar, 200 µm. (C) Organoid growth during 602	

different developmental stages. (D) Representative immunostainings showing proliferating NPCs 603	

(Ki67+ and Nestin+), lower (TBR1+ and CTIP2+) and upper (SATB2+) cortical layer neurons and 604	

glial cells (GFAP+) overtime. Scale bar, 50 µm. (E) Population analysis of specific markers 605	

indicating stages of maturation and multiple neuronal subtypes. The data are shown as mean ± 606	

s.e.m. (n = 8). (F) Representative image of a pyramidal neuron (left panel); dendritic spine-like 607	

structures (arrow) are observed in cells transduced with the SYN:EGFP reporter (middle panel; 608	

scale bar, 5 µm). Immunohistochemical detection of the synaptic protein Syn1 (right panel; scale 609	

bar, 50 µm). (G) Electron microscopy of synaptic structures in 4-month-old cortical organoids 610	

(blue). (H) t-distributed stochastic neighbor embedding (tSNE) plot of 3,491 cells from 6-month-611	

old organoids. Colors denote seven main cell clusters. (I) tSNE plots depicting cell-type specific 612	

marker expression levels (red denotes higher expression). (J) Heatmap of average expression 613	

for representative gene markers by cluster and cell-type (see also Figure S4). (K) Violin plots 614	

showing transcript levels for representative markers of each cluster (see Figure S3 for additional 615	

markers).  616	

 617	

Figure 2. Oscillatory network dynamics in long-term cortical organoids. (A) Schematic of 618	

the organoid signal processing pipeline. Raw MEA data is analyzed as population spiking and 619	

LFP separately. Synchronous network events are highlighted in yellow. (B) Raster plot of network 620	

spiking activity after 1.5 and 6 months of maturation. A 3-s interval of activity over 5 channels is 621	

shown in the upper right corners. (C) Cortical organoids show elevated and continuously 622	

increasing mean firing rate compared to 2D monolayer neurons (n = 8 organoid cultures, and n = 623	

12 for 2D neurons). Inset, correlation of the firing rate vector over 12 weeks of differentiation (from 624	
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8 to 20) between pairs of cultures showing reduced variability among organoid replicates. (D) 625	

Temporal evolution of cortical organoid network activity. Detailed definitions and further 626	

parameters are presented in Figure 5B and 5C. (E) Time series of population spiking and LFP 627	

during network events in cortical organoid development. Each trace represents a single event 628	

during the same recording session. (F) Oscillatory dynamics within network events develop 629	

nonlinearly, following an inverted-U trajectory. (G) Increase of network variability dynamics 630	

throughout development. (H) Oscillatory power increases up to the 25th week in culture and 631	

plateaus at 30 weeks. Inset, Oscillatory power is calculated by fitting a straight line (dashed) over 632	

the aperiodic portion of the PSD and taken as the height of narrow peaks rising above the linear 633	

fit. The data shown in C, D, F, G and H are presented as mean ± s.e.m. *P < 0.05, **P < 0.01, 634	

***P < 0.001, unpaired Student’s t-test (C), quadratic (F) and linear (G) regression. 635	

 636	

Figure 3. Cortical organoid serves as a model of functional oscillations and their synaptic 637	

mechanisms. (A-C) Phase-amplitude coupling is observed in organoid LFP during network 638	

events, a phenomenon proposed to mediate neural communication in vivo. (A) Example of raw 639	

LFP during a network event decomposed into its low-frequency component (1-4 Hz delta) and the 640	

amplitude envelope of the high-frequency, broadband gamma component (200-400 Hz). Analysis 641	

was repeated for 100-200 Hz with near identical effect size and significance. (B) Normalized 642	

gamma amplitude binned by delta phase during network events (black) shows greater modulation 643	

depth by low frequency delta than during non-event periods (red). (C) Phase-amplitude coupling 644	

during network events is significantly greater than non-event periods in all batches. (D) Effect of 645	

selective drug treatments on neuronal electrical activity in 6-month-old organoids. Representative 646	

raster plots and burst measurements of untreated and treated organoids. Scale bar, 20 s. 647	

Exposure to AP5 + CNQX, baclofen and muscimol reversibly extinguish the network bursts 648	

(synchrony), while no changes were promoted by bicuculline. (E-F) Pharmacological perturbation 649	

of oscillatory activity during network events in 6-month-old organoids. Application of bicuculline 650	
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increases the number of network events, while CNQX + AP5 and baclofen completely abolish 651	

synchronized network events. Bicuculline blocks oscillatory network activity but not the network 652	

event itself. Data are shown as mean ± s.e.m.; unpaired Student’s t-test. 653	

 654	

Figure 4. MECP2 contribution to the emergence of network oscillations. (A) MECP2-655	

knockout neurons (MECP2-KO) show reduced spine-like density and soma size compared to 656	

controls. (B) Organoid diameter quantification (CTR, n = 210 organoids; KO, n = 333 organoids). 657	

(C) Spine-like density and (D) synaptic puncta are reduced in MECP2-KO neurons. Scale bar, 50 658	

µm. (E-H) Targeted single-cell analysis of neural markers and cortical layer-related genes over 659	

defined control Ct value. In 3-month-old cortical organoids, a significant decrease in the number 660	

of CTIP2+ and SATB2+ neurons was observed. (I) MECP2-KO cortical organoids show 661	

decreased mean firing rate after 5 months of maturation (n = 6 organoid cultures). (J) Lack of 662	

oscillatory network events in 5-month-old MECP2-KO organoids. Each trace represents a single 663	

event during the same recording session. For B, C, D, G, H, I and J, data are shown as mean ± 664	

s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test. 665	

 666	

Figure 5. Organoid network dynamics mimic premature neonates after 28 weeks of 667	

maturation. (A) Representative LFP trace from cortical organoid, highlighting instances of 668	

network events (yellow). Comparable events between periods of quiescence (discontinuous 669	

network dynamics) are shown in human preterm neonate EEG at 35 weeks gestational age, while 670	

a different pattern of continuous activity is observed in adult EEG. SAT: spontaneous activity 671	

transient. (B) Schematic of machine learning pipeline for organoid “brain-age” prediction: 9 EEG 672	

features from 39 premature babies (n = 567 recordings) between 25 and 38 PCW were used to 673	

train and cross-validate a regularized regression model (ElasticNet) to optimally predict neonate 674	

brain age, which was then applied directly to organoid LFP features to predict organoid “brain-675	

age”. (C) Predicted organoid “brain age” plotted against actual organoid age. Black stars denote 676	
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time points where mean predicted age is not significantly different from actual age under 1-sample 677	

t-test (P < 0.05, n = 8). (D) Resampled Pearson’s correlation coefficient between age and 678	

electrophysiological features for both organoid and premature neonates show different degrees 679	

of developmental similarity for individual features. (E) EEG/LFP features over time for organoids 680	

and premature neonates show various levels of similarity. 681	

 682	

	  683	
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EXPERIMENTAL PROCEDURES 684	

Cell source. iPSC lines derived from control individuals have been previously characterized 685	

elsewhere (Gore et al., 2011; Nageshappa et al., 2016). Human embryonic stem cell (ESC) and 686	

iPSC colonies were expanded on Matrigel-coated dishes (BD Biosciences, San Jose, CA, USA) 687	

with mTeSR1 medium (StemCell Technologies, Vancouver, Canada). The cells were routinely 688	

checked by karyotype and CNV arrays to avoid genomic alterations in the culture. The study was 689	

approved by the University of California San Diego IRB/ESCRO committee (protocol 141223ZF). 690	

 691	

Teratoma formation. iPSC colonies were dissociated, re-suspended in PBS-Matrigel, and 692	

injected subcutaneously in NOD SCID mice. The tumor was dissected, fixed in and paraffin 693	

embedded after 8 weeks. Sections of 10 µm thickness were stained with hematoxylin and eosin, 694	

and analyzed for the presence of the three germ layer tissues. Protocols were approved by the 695	

UCSD Institutional Animal Care and Use Committee. 696	

 697	

MECP2-KO cell line generation. MECP2-deficient cell lines were generated by inducing 698	

pluripotency in fibroblasts derived from a male patient. Additionally, we used H9 human ESC with 699	

the CRISPR/Cas9 genome-editing system to induce frameshift mutations in the MECP2 locus. 700	

This incorporation resulted in the creation of early stop codons rendering a non-functional MECP2 701	

protein. Mutagenesis and off-targets were confirmed by exome sequencing techniques. The 702	

CRISPR-Cas protocol can be found elsewhere (Thomas et al., 2017). Once we confirmed the 703	

pluripotency state of the cellular models, we differentiated them into 2D neuronal monolayer 704	

cultures (Thanathom et al., 2016) and cortical organoids. 705	

 706	

Generation of cortical organoids. Feeder-free iPSCs were fed daily with mTeSR1 for 7 days. 707	

Colonies were dissociated using Accutase (Life Technologies, Carlsbad, CA, USA) in PBS (1:1) 708	

for 10 minutes at 37 °C and centrifuged for 3 minutes at 150 x g. The cell pellet was resuspended 709	
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in mTeSR1 supplemented with 10 µM SB431542 (SB; Stemgent, Cambridge, MA, USA) and 1 µM 710	

Dorsomorphin (Dorso; R&D Systems, Minneapolis, MN, USA). Approximately 4 × 106 cells were 711	

transferred to one well of a 6-well plate and kept in suspension under rotation (95 rpm) in the 712	

presence of 5 µM ROCK inhibitor (Y-27632; Calbiochem, Sigma-Aldrich, St. Louis, MO, USA) for 713	

24 hours to form free-floating spheres. After 3 days, mTeSR1 was substituted by Media1 714	

[Neurobasal (Life Technologies) supplemented with Glutamax, 2% Gem21 NeuroPlex (Gemini 715	

Bio-Products, West Sacramento, CA, USA), 1% N2 NeuroPlex (Gemini Bio-Products), 1% MEM 716	

nonessential amino acids (NEAA; Life Technologies), 1% penicillin/streptomycin (PS; Life 717	

Technologies), 10 µM SB and 1 µM Dorso] for 7 days. Then, the cells were maintained in Media2 718	

[Neurobasal with Glutamax, 2% Gem21 NeuroPlex, 1% NEAA and 1% PS] supplemented with 719	

20 ng/mL FGF2 (Life Technologies) for 7 days, followed by 7 additional days in Media2 720	

supplemented with 20 ng/mL of FGF2 and 20 ng/mL EGF (PeproTech, Rocky Hill, NJ, USA). 721	

Next, cells were transferred to Media3 [Media2 supplemented with 10 µg/mL of BDNF, 10 µg/mL 722	

of GDNF, 10 µg/mL of NT-3 (all from PeproTech), 200 µM L-ascorbic acid and 1 mM dibutyryl-723	

cAMP (Sigma-Aldrich)]. After 7 days, cortical organoids were maintained in Media2 for as long as 724	

needed, with media changes every 3-4 days. 725	

 726	

Mycoplasma testing. All cellular cultures were routinely tested for mycoplasma by PCR. Media 727	

supernatants (with no antibiotics) were collected, centrifuged, and resuspended in saline buffer. 728	

Ten microliters of each sample were used for a PCR with the following primers: Forward: 729	

GGCGAATGGGTGAGTAAC; Reverse: CGGATAACGCTTGCGACCT. Only negative samples 730	

were used in the study. 731	

 732	

Immunofluorescence staining. Cortical organoids were fixed with 4% paraformaldehyde 733	

overnight at 4°C and then transferred to 30% sucrose. After the 3D structures sink, they were 734	
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embedded in O.C.T. (Sakura, Tokyo, Japan) and sliced in a cryostat (20 µm slices). Following air 735	

dry, the slides containing the sliced samples were permeabilized/blocked with 0.1% triton X-100 736	

and 3% FBS in PBS for 2 hours at room temperature, and incubated with primary antibodies 737	

overnight at 4°C. Primary antibodies used in this study were: mouse anti-Nestin, Abcam 738	

(Cambridge, UK) ab22035, 1:250; rat anti-CTIP2, Abcam ab18465, 1:500; rabbit anti-SATB2, 739	

Abcam ab34735, 1:200; chicken anti-MAP2, Abcam ab5392, 1:2000; rabbit anti-Synapsin1, EMD-740	

Millipore AB1543P, 1:500; mouse anti-NeuN, EMD-Millipore MAB377, 1:500; rabbit anti-Ki67, 741	

Abcam ab15580, 1:1000; rabbit anti-SOX2, Cell Signaling Technology 2748, 1:500; rabbit anti-742	

GFAP, DAKO Z033429, 1:1000; rabbit anti-TBR1, Abcam ab31940, 1:500; rabbit anti-TBR2, 743	

Abcam ab23345, 1:500; rabbit anti-beta-catenin, Abcam E247, 1:200; mouse anti-GABA, Abcam 744	

ab86186, 1:200; rabbit anti-PROX1, Abcam ab101651, 1:250. Next, the slices were washed with 745	

PBS and incubated with secondary antibodies (Alexa Fluor 488-, 555- and 647-conjugated 746	

antibodies, Life Technologies, 1:1000) for 2 hours at room temperature. The nuclei were stained 747	

using DAPI solution (1 µg/mL). The slides were mounted using ProLong Gold antifade reagent 748	

and analyzed under a fluorescence microscope (Axio Observer Apotome, Zeiss). 749	

 750	

Synaptic puncta quantification. Pre-synaptic Syn1+ puncta were quantified after 3D 751	

reconstruction of z-stacks of random images from randomly selected regions of all lines and from 752	

two independent experiments. Only puncta overlapping MAP2-positive processes were scored. 753	

 754	

Immuno-gold electron microscopy (EM). Immuno-gold EM was performed at the CMM Electron 755	

Microscopy Facility at University of California San Diego. Four-month-old organoids were fixed 756	

using 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4). Fixed cells were pelleted and 757	

washed with 0.15 M glycine/phosphate buffer, embedded in 10% gelatin/phosphate buffer and 758	

infused with 2.3 M sucrose/phosphate buffer. Blocks of cells with 1 mm3 were mounted onto 759	

specimen holders and snap frozen in liquid nitrogen. Ultracryomicrotomy was carried out at –760	
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100°C on a Leica Ultracut UCT with EM FCS cryoattachment (Leica, Bannockburn, IL) using a 761	

Diatome diamond knife (Diatome US, Hatfield, PA). 80 to 90 nm frozen sections were picked up 762	

with a 1:1 mixture of 2.3 M sucrose and 2% methyl cellulose (15cp) and transferred onto Formvar 763	

and carbon-coated copper grids. Briefly, grids were placed on 2% gelatin at 37 °C for 20 min, 764	

rinsed with 0.15 M glycine/PBS and the sections were blocked using 1% cold water fish-skin 765	

gelatin. Grids were analyzed using a Tecnai G2 Spirit BioTWIN transmission electron microscope 766	

equipped with an Eagle 4k HS digital camera (FEI, Hilsboro, OR). 767	

 768	

Targeted single-cell qRT-PCR and analysis. Specific target amplification was performed in 769	

individual dissociated cortical organoids using C1 Single-Cell and BioMark HD Systems (Fluidigm, 770	

San Francisco, CA, USA), according to the manufacturer’s protocol and as previously described 771	

(Thanathom et al., 2016). Briefly, cortical organoids were mechanically dissociated after 30 772	

minutes of incubation in Accumax (Innovative Cell Technologies, San Diego, CA, USA) at 37 °C 773	

under rotation. After passing through 100-µm and 40-µm strainers, cells were centrifuged and 774	

resuspended in Media2 (see Generation of cortical organoids). Single cortical cells were captured 775	

on a C1 medium chip and cell viability was assessed using a LIVE/DEAD Cell Viability/Cytotoxicity 776	

kit (Life Technologies). The targeted single-cell qPCR was performed using DELTAgene primer 777	

pairs in the 96.96 Dynamic Array IFC chip. The results were analyzed using Fluidigm Real-time 778	

PCR Analysis Software and Singular Analysis Toolset 3.0 (Fluidigm). 779	

 780	

10X genomics single-cell and analysis. After organoid dissociation, single cells were processed 781	

through the Chromium Single Cell Gene Expression Solution using the Chromium Single Cell 3’ 782	

Gel Bead, Chip and Library Kits v2 (10X Genomics, Pleasanton) as per the manufacturer’s 783	

protocol. In brief, single cells were resuspended in 0.1% BSA in PBS. Five thousand cells were 784	

added to each channel with an average recovery rate of 1,746 cells. The cells were then 785	

partitioned into Gel Beads in Emulsion in the Chromium instrument, where cell lysis and barcoded 786	
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reverse transcription of RNA occurred, followed by amplification, shearing and 5′ adaptor and 787	

sample index attachment. Libraries were sequenced on an Illumina HiSeq 2500. De-multiplexing, 788	

alignment to the hg19 transcriptome and unique molecular identifier (UMI)-collapsing were 789	

performed using the Cellranger toolkit (version 2.0.1) provided by 10X Genomics. A total of 3,491 790	

cells with approximately 53,000 reads per cell were processed. Analysis of output digital gene 791	

expression matrices was performed using the Seurat R package. Matrices for replicates were 792	

merged with the MergeSeurat function and all genes that were not detected in at least 5% of all 793	

single cells were discarded, leaving 10,594 genes for further analyses. Cells with fewer than 600 794	

or more than 8,000 expressed genes as well as cells with more than 50,000 UMIs or 0.1% 795	

mitochondrial expressed genes were removed from the analysis. Data were log normalized and 796	

scaled to 10,000 transcripts per cell. Variable genes were identified with the FindVariableGenes 797	

function. Principal components were evaluated for statistically significant gene expression signals 798	

using the JackStraw function. PCA was carried out, and the top 36 principal components were 799	

retained. With these principal components, t-SNE was applied with the RunTSNE function to 800	

visualize the cells in two dimensions and identified distinct cell clusters with the FindClusters 801	

function with resolution = 0.30. Differential expression to identify cluster markers was performed 802	

using the FindAllMarkers function. 803	

 804	

Data availability. All data and/or analyses generated during the current study are available from 805	

the corresponding author upon reasonable request. Single-cell RNA sequencing data that support 806	

the findings of this study have been deposited at NCBI GEO: GSE113089.  807	

Multi-electrode array (MEA) recording. Six-week-old cortical organoids were plated per well in 808	

12-well MEA plates (Axion Biosystems, Atlanta, GA, USA). Each well contains 64 platinum 809	

microelectrodes with 30 µm of diameter spaced by 200 µm, yielding a total of 512 channels. The 810	

plate was previously coated with 100 µg/mL poly-L-ornithine and 10 µg/ml laminin, and we 811	

performed four independent experiments in duplicates. Cells were fed twice a week and 812	
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measurements were collected 24 hours after the medium was changed, once a week, starting at 813	

two weeks after plating (8 weeks of organoid differentiation). Recordings were performed using a 814	

Maestro MEA system and AxIS Software Spontaneous Neural Configuration (Axion Biosystems) 815	

with a customized script for band-pass filter (0.1-Hz and 5-kHz cutoff frequencies). Spikes were 816	

detected with AxIS software using an adaptive threshold crossing set to 5.5 times the standard 817	

deviation of the estimated noise for each electrode (channel). The plate was first allowed to rest 818	

for three minutes in the Maestro device, and then four minutes of data were recorded. For the 819	

MEA analysis, the electrodes that detected at least 5 spikes/min were classified as active 820	

electrodes using Axion Biosystems’ Neural Metrics Tool. Bursts were identified in the data 821	

recorded from each individual electrode using an inter-spike interval (ISI) threshold requiring a 822	

minimum number of 5 spikes with a maximum ISI of 100 ms. A minimum of 10 spikes under the 823	

same ISI with a minimum of 25% active electrodes were required for network bursts in the well. 824	

The synchrony index was calculated using a cross-correlogram synchrony window of 20 ms. 825	

Bright-field images were captured from each well to assess for neural density and electrode 826	

coverage over time. 827	

  828	

Custom MEA analysis. Custom MEA analysis and neonatal EEG/organoid LFP regression 829	

model can be found in: https://github.com/voytekresearch/OscillatoryOrganoids. Raw MEA 830	

recordings were converted to .mat files using Axion-provided functions and analyzed offline using 831	

custom MATLAB functions and scripts. Local field potential signals (LFP) from each of the 64 832	

electrodes were generated by low-pass filtering (FIR filter) and downsampling raw signals from 833	

12,500 Hz to 1,000 Hz (resample.m). Multi-unit spikes were detected as follows: each channel 834	

was first referenced to the well median (64 channels). The median was used instead of the mean 835	

to avoid biasing the reference during high firing rate periods. Next, the re-referenced signal was 836	

bandpass filtered for 300-3,000 Hz with a 3rd-order Butterworth filter (butter.m). The spike 837	

threshold was set to be 5.5 standard deviations, where the standard deviation was estimated as 838	
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previously described (Quiroga et al., 2004) to avoid biasing the threshold for channels with high 839	

firing rates (thus an artificially high threshold). Spike timestamps were taken as the peak time 840	

after the absolute value of the signal crossed the threshold, but at least 1 ms from another spike 841	

(findpeaks.m). Spike timestamps were then converted into binary vectors (1 ms bin size), summed 842	

across 64 channels, and smoothed (conv.m) with a normalized 100-point Gaussian window 843	

(gausswin.m) to create a population spiking vector for each MEA well. Note that spikes from each 844	

channel do not represent putative single-unit action potentials, as the spatial resolution of MEA 845	

electrodes were too sparse. Multi-unit spiking were not sorted since total population spiking (of 846	

well) was submitted for further analysis, rather than individual spike trains.  847	

 848	

Network event analysis. A network event was detected when population spiking was i) greater 849	

than 80% of the maximum spiking value over the length of the recording; ii) at least 1 spike/s; and 850	

iii) 1 second away from any other network events. The first peak after all 3 criteria was satisfied 851	

was marked as t = 0, and the window of data from 0.5 s before to 2.5 s after the peak was collected 852	

as the network event. Nearly all spiking channels experienced a significant firing rate increase 853	

during network events. LFP data from all 64 channels from the same timeframe were also 854	

collected for analysis. All events from different MEA wells obtained on the same recording day 855	

were aggregated for statistical analysis and plotting. Subpeaks within an event were identified 856	

using findpeaks.m, where a subpeak must satisfy the following: i) peak height of at least 25% of 857	

the first peak; ii) peak width of at least 50 ms; iii) at least 200 ms away from the previous peak; 858	

and iv) peak prominence of 1 over Peak 1 height. Subpeak time and the height relative to the 859	

initial peak were recorded. The inter-event interval coefficient of variation (IEI CV) was calculated 860	

as the standard deviation of the inter-event interval divided by its mean, where IEI is the time 861	

between consecutive network events within the same MEA well. Event temporal correlation was 862	

calculated as the mean Pearson correlation coefficient of population spiking vector during each 863	

network event with every other network event in the same MEA well across a single recording 864	
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session. Event spatial correlation was calculated as the mean Pearson correlation coefficient 865	

between all pairs of 64 LFP channels during each 3-s network event.  866	

 867	

Oscillatory spectral power analysis. Power spectral density (PSD) estimates were computed 868	

using Welch’s method (pwelch.m), with a window length of 2 s and overlap of 1 s. Oscillatory 869	

power was defined as peaks in the PSD above the aperiodic 1/f power law decay. Thus, for each 870	

channel, a straight line was fit over the PSD in double-log space between 0.5-20 Hz using robust 871	

fit (robustfit.m), and oscillatory power was computed as the difference between the mean log PSD 872	

power and the mean log fitted power (baseline), over 2.5-4.5 Hz. 873	

 874	

Regression models. For analysis in Figure 2F, G and S7C, F, G, we fit regression models 875	

(LinearModel.fit,MATLAB) using organoid age (in days) as input and electrophysiological features 876	

as output. Order-1 (linear) models were fit for Figure 2G and and S7C, G, and order-2 (quadratic) 877	

models were fit for Figure 2F, 3C and Figure S7F. Reported R2 and p values are model statistics 878	

over the entire dataset. All events from different MEA wells on the same recording day were 879	

aggregated as samples drawn from the same distribution. To predict culture age, we used 3 880	

electrophysiological features as input: event latency, event peak spiking, and oscillatory power; 881	

and their square roots to account for the nonlinear inverted-U features. These were used to build 882	

a regression model. Within-well models were fit over all data points of the same well, and 883	

goodness-of-fit was reported as the model R2 and the RMSE. Across-well models were trained 884	

and evaluated using leave-1-out cross-validation, and goodness-of-fit is reported as the R2 and 885	

the RMSE computed over the validation set, not the training set. 886	

 887	

Phase Amplitude Coupling (PAC). LFP data from all 64 channels of each well was first 888	

lowpass/bandpass filtered (eegfilt.m, EEGLAB) for delta (0-4 Hz) and high-frequency, broadband 889	

gamma (100-400 Hz) activity. Delta phase was extracted by taking the phase angle of the 890	
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bandpassed delta signal Hilbert transform (hilbert.m, angle.m), while gamma power was extracted 891	

by taking the squared magnitude of the filtered gamma. Gamma power was smoothed with the 892	

same delta-band filter for display purposes, but not for subsequent analysis. Note that analysis 893	

was done for 100-200 Hz and 200-400 Hz separately, as LFP spectrum follows an inverse power 894	

law (1/f), and grouping a wide frequency band (100-400 Hz) together will bias power estimates 895	

towards lower frequency limits (~100 Hz). To compute PAC, instantaneous delta phase was 896	

binned into 20 equidistant bins between -π and π, and gamma power was sorted based on the 897	

corresponding delta phase at the same sample time and averaged across the same phase bin. 898	

This procedure was performed separately for event and non-event indices, where event indices 899	

are the same 3-s windows as described above in Network Event Analysis. Modulation Index was 900	

computed as the Kullback-Leibler divergence between the sum-normalized distribution of gamma 901	

power across phase bins and a uniform distribution (Tort et al., 2010). Figure 3C presents well-902	

averaged MI across all 64 channels. For visualization in Figure 3b, the binned gamma vector for 903	

each channel was circularly shifted such that the phase of maximum gamma power was -π.  904	

 905	

Pharmacology. The pharmacological manipulation was performed using the following drugs: 10 906	

µM bicuculline, 50 µM muscimol, 20 µM CNQX, 20 µM AP5, 25 µM baclofen and 1 µM TTX. In 907	

this assessment, baseline recordings were obtained immediately before and 15 min after the 908	

addition of the compound. Three washes with PBS for total removal of the drug were performed 909	

in washout experiments; fresh media was added and another recording was conducted after 2 910	

hours. 911	

 912	

Preterm neonatal EEG. A preterm neonatal EEG dataset was obtained elsewhere (Stevenson 913	

et al., 2017). Raw recordings were not available due to patient confidentiality concerns. The 914	

dataset includes 567 recordings from 39 preterm neonates (24-38 weeks old conception age), 915	

consisting of 23 EEG features computed from the entirety of each recording, as well as during 916	
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“low-activity periods” (46 features in total), and the post-conception age in weeks.  917	

 918	

Neonate-organoid age prediction model. To compare the developmental trajectory of cortical 919	

organoids and the preterm human brain, we trained an Elastic Net (L1- and L2- regularized) 920	

regression model on only the preterm neonatal EEG features and used that model (with all 921	

parameters held the same) to generate an equivalent organoid “brain-age” for each recording 922	

time point over 40 weeks in culture. Specifically, the training dataset consists of a subset of the 923	

preterm EEG data; of the 46 included features, we discarded all “low-activity-period” features 924	

(Lisman, 1997) since there was no equivalent period for organoid recordings, as well as features 925	

for which we could not sensibly compute from organoid LFPs, such as interhemispheric 926	

synchrony. This selection was done a priori, and 13 features remained, including 4 features for 927	

relative spectral power in distinct frequency bands, which were further discarded due to 928	

frequency-dependent filtering properties of the skull and difference in spatial integration of 929	

currents in macroscopic EEG electrodes compared to microscopic planar MEA electrodes. The 930	

remaining 9 features correspond to aspects of spontaneous activity transient (SAT) timing, such 931	

as SATs per hour and SAT duration, which were similarly computed on organoid LFPs after 932	

network event detection described earlier (see Supplementary Table 2 for a full list of included 933	

and rejected features). This latter organoid LFP test dataset was never seen by the regression 934	

model until prediction time. Training was performed using scikit-learn linear model module 935	

[(ElasticNetCV (Pedregosa et al., 2011)], with K-Group shuffle split cross-validation on 936	

regularization hyperparameters, where K = 25% of groups, N = 200 shuffles. In other words, we 937	

found the best regularized linear model possible for predicting the conception age of preterm 938	

neonates using those 9 precomputed EEG features. This model was directly applied on organoid 939	

LFP features to determine the corresponding “brain age” of the organoids during 40 weeks in 940	

culture. 1-sample t-tests were performed from every time point to test whether the mean predicted 941	

“brain age” was significantly different from the organoid culture age. 942	
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 943	

Resampled feature correlation. We computed Pearson’s correlation coefficient between 944	

neonate age and each of the 9 EEG features, after a leave-K-groups-out resampling procedure 945	

N times, where K is the number of neonates from whom all recordings were left out in computing 946	

the correlation (50% of all neonates, resampling N = 100). An identical procedure was performed 947	

to compute the correlation between organoid culture age and LFP features (K = 4 out of 8, 50%, 948	

N = 100). Mean and standard deviation were then computed over all resampled draws in order to 949	

compare between organoid LFP and neonatal EEG. 950	

 951	

Statistical analysis. Data are presented as mean ± s.e.m., unless otherwise indicated, and it was 952	

obtained from different samples. No statistical method was used to predetermine the sample size, 953	

and no adjustments were made for multiple comparisons. The statistical analyses were performed 954	

using Prism software (GraphPad, San Diego, CA, USA). Student’s t-test, Mann–Whitney-test, or 955	

ANOVA with post hoc tests were used as indicated. Significance was defined as P < 0.05(*), P < 956	

0.01(**), or P < 0.001(***). Blinding was used for comparing affected and control samples. 957	

	  958	
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SUPPLEMENTARY FIGURE LEGENDS 959	

Supplementary Figure 1. Cellular and molecular characterization of human cortical 960	

organoids. (A) Schematic of the protocol used to generate cortical organoids. Scale bar, 200 µm. 961	

(B) Reproducibility of organoid size at 2 months of maturation (n = 20 independent experiment, 7 962	

different cell lines). (C) Organoids are composed of a proliferative region surrounded by 963	

intermediate progenitor cells, cortical and GABA+ neurons. Scale bar, 50 µm. (D) Principal 964	

component analysis (PCA) of cells projected onto the first two components. Overlaid populations 965	

of 2- and 10-month-old cortical organoids are compared to 2-month-old 2D monolayer neurons. 966	

All timelines for this and the subsequent experiments consider the iPSC stage as day 0 (n = 2 967	

independent cell lines for each cortical culture; n = 3 for 2D monolayer neurons). (E-F) Violin plots 968	

illustrate the differences in single-cell expression of target genes in cortical organoids and 2D 969	

neurons. (G-H) Unsupervised hierarchical clustering single-cell analysis. Genes were clustered 970	

using the Pearson correlation method and cells were clustered using the Euclidean method. 971	

 972	

Supplementary Figure 2. Reproducibility and single-cell characterization. (A) Schematic 973	

showing the single-cell approach performed to access reproducibility of organoid generation using 974	

two control iPSC lines. (B) tSNE plot of single-cell mRNA sequencing data from 6-month-old 975	

organoids color-coded by replicate. (C) Split Dot Plot depicting the correlation between expression 976	

patterns of representative markers and cell populations identified within the dataset. The size of 977	

the dots represents the percentage of cells expressing a given gene, while the intensity of the 978	

color denotes the average expression level (grey, low expression; red/blue, high expression). (D) 979	

Population ratio of each cluster by replicate. 980	

 981	

Supplementary Figure 3. Cell diversity in cortical organoids. Violin and tSNE plots of selected 982	

genes depicting the proportion of cells contributing to each cluster. For the violin pots, the dot 983	

denotes a cell while colors correspond to their cluster identity. The tSNE plots show the 984	
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contribution of an individual cell-type marker within each cluster (red denotes higher expression). 985	

 986	

Supplementary Figure 4. Cell type identity of 6-month-old cortical organoids. Heat map 987	

reports scaled expression of discriminative gene sets for clusters defined in Figure 1h with AUC 988	

cutoff ≥ 0.80. Color scheme is based on z-score distribution from –2.5 (blue) to 2.5 (red). For gene 989	

lists and AUC values see Supplementary Table 1. 990	

 991	

Supplementary Figure 5. Long-term MEA network activity. (A) Representative bright-field 992	

images of cortical organoids over time on the MEA plate. (B) Schematic representation of the 993	

electrical activity features analyzed from the MEA recordings. Each bar represents a spike; and 994	

a spike cluster (in blue) represents a burst. Bursts occurring at the same time in different channels 995	

characterize a network burst. The synchrony index is based on the cross-correlogram and 996	

represents a measure of similarity between two spike trains. (C) Temporal evolution of network 997	

activity characterized by different parameters. (D) Raster plots illustrating the development of 998	

network activity. (E) Consistent and reproducible development of electrical activity in cortical 999	

organoids over time. The data are shown as mean ± s.e.m (n = 8, independent experiments 1000	

performed in duplicates using two clones of a control iPSC line).  1001	

 1002	

Supplementary Figure 6. MEA electrical activity comparison of cortical organoids with 1003	

available published data from iPSC-derived neurons, organoids, rodent primary cultures 1004	

and primate models. (A) Long-term network activity of our cortical organoids is shown for 1005	

individual wells. Comparison of network activity between cortical organoids and iPSC-derived 1006	

cortical neurons (B), rodent primary neuronal cultures and primate models (C). The data shown 1007	

in B and C for cortical organoids are presented as mean ± s.e.m. (n = 8, independent experiments 1008	

performed in duplicates) (Amin et al., 2016; Bardy et al., 2015; Barz et al., 2017; Brown et al., 1009	
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2016; Cesca et al., 2015; Clements et al., 2016; Cotterill et al., 2016; Harrill et al., 2015; Marchetto 1010	

et al., 2016; McSweeney et al., 2016; Odawara et al., 2014, 2016; Roy et al., 2016; Strickland et 1011	

al., 2016; Tukker et al., 2016; Uesaka et al., 2007; Vessoni et al., 2016; Wallace et al., 2015; Xu 1012	

et al., 2017; Yang et al., 2016). 1013	

 1014	

Supplementary Figure 7. Extended characterization of network electrophysiology. (A) 1015	

Spikes detected on 9 channels. Black traces represent single spikes, blue and red traces 1016	

represent the average of positive and negative spikes, respectively. Spike trains are not sorted 1017	

for their polarity in the subsequent analyses, as total population spiking is the main feature of 1018	

interest. (B) Representative oscillatory network events. Each overlapping trace represents a 1019	

single occurrence of an event recorded on the same channel. LFP polarity of events differs 1020	

between channels due to the spatial configuration of cells around the electrode. (C) Event onset 1021	

peak (Peak 1) increases in amplitude until 30 weeks, while (D) subpeak amplitude continues to 1022	

increase (for the 2nd-4th peak) throughout development. (E) Subsequent peaks occur with a 1023	

consistent latency of ~400 ms after the previous peak, particularly for Peak 3 and 4. (F) Temporal 1024	

similarity of network events during the 3-s window is high at early time points, but decreases with 1025	

development, acquiring more variable dynamics within an event. (G) Temporal similarity of 1026	

network events during the 3-s window is high at early time points, but decreases with 1027	

development, acquiring more variable dynamics within an event. The data showed in C, F and G 1028	

are presented as mean ± s.e.m., linear (C, G) or quadratic (F) model regression. 1029	

 1030	

Supplementary Figure 8. MEA recording from 3-month-old neurospheres. (A) Comparison 1031	

of the protocol for neurosphere and cortical organoid generation. (B) Network-wide giant 1032	

depolarizing potentials occur at a similar rate to those found in organoids recordings, and visible 1033	

perturbations are observed in the LFP trace. However, the network recruitment in neurospheres 1034	

is lower than in organoids (less than 8 spikes/s), and events have significantly shorter duration. 1035	
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No coherent low-frequency depolarizations are observed in filtered LFP events (C). 1036	

Supplementary Figure 9. MECP2-KO cell line characterization. (A) Schematic overview of the 1037	

MECP2 locus in iPSCs derived from fibroblasts of a male patient (Q83X), and CRISPR/Cas9 1038	

induced MECP2 mutation in an embryonic stem cell line (K82fs, H9 ESC). Q83X cell line 1039	

characterization is shown elsewhere (Zhang et al., 2016). DNA sequence chromatogram shows 1040	

the nucleotide deletion in the MECP2 gene leading to a frameshift mutation (K82fs) and a 1041	

predicted premature stop-codon at the end of exon 3 (asterisk). The WT82 and WT83 were used 1042	

as controls. The Q83X and K82fs do not express MECP2 protein. Blue line represents the guide 1043	

RNA target locus. (B) Gel images showing Surveyor nuclease assay of genomic DNA extracted 1044	

from FACs sorted H9 ESC. Expected PCR products were 278 bp and 220 bp. (C) Exome 1045	

sequencing analysis to evaluate CRISPR off-target mutations. Numbers indicate the amount of 1046	

reads across the lines. Off-target gene mutations induced by MECP2 CRISPR/Cas9 are shown 1047	

in the lower table. (D) Isogenic pairs of MECP2-mutant and control cell line colonies showing the 1048	

expression of the pluripotency marker Nanog. Scale bar, 100 µm. (E) Eosin and Hematoxylin 1049	

stains of teratomas showing the presence of all three germ layers. Scale bar, 200 µm. (F) Western 1050	

blot of the isogenic pluripotent stem cells showing the absence of MECP2 in the mutant line. (G) 1051	

Karyotypes of cell lines displaying no chromosomal abnormality. (H and I) Expression of 1052	

pluripotency markers and MECP2 by qPCR. GAPDH was used as housekeeping gene. 1053	

 1054	

Supplementary Figure 10. Network activity in cortical organoids mimics oscillatory 1055	

features in the developing human brain. (A) Spectral representation of time series data from a 1056	

6-month-old cortical organoid, demonstrating oscillatory phenomenon. Spectrogram (left) of 1057	

organoid LFP shows bursts of activity localized at low frequencies, while power spectral density 1058	

(PSD, right) displays canonical 1/f power law decay and a narrow oscillatory peak at 3 Hz. (B) 1059	

Comparison of 9 preterm neonate EEG and cortical organoid features over time. For included 1060	

EEG features, see Table S2. (C) Distributions of resampled Pearson correlation coefficients 1061	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358622doi: bioRxiv preprint 

https://doi.org/10.1101/358622
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trujillo, Gao, Negraes et al. 

45 

between feature and age for preterm neonate and organoid.  1062	

1063	
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SUPPLEMENTARY TABLES  1064	
 1065	
Supplementary Table 1. Top expressed genes of each cell cluster. 1066	

Cluster Gene myAUC avg_diff power avg_logFC pct.1 pct.2 p_val_adj 

Cortical 
neurons SOX11 0.889 1.29996 0.778 1.29996 0.996 0.864 NA 

Cortical 
neurons NEUROD2 0.886 1.366603 0.772 1.366603 0.944 0.382 NA 

Cortical 
neurons GPM6A 0.885 1.12235 0.77 1.12235 0.992 0.679 NA 

Cortical 
neurons SOX4 0.879 0.985057 0.758 0.985057 1 0.965 NA 

Cortical 
neurons MLLT11 0.856 0.916514 0.712 0.916514 0.998 0.869 NA 

Cortical 
neurons CCNI 0.843 0.707003 0.686 0.707003 1 0.994 NA 

Cortical 
neurons SLA 0.833 1.424488 0.666 1.424488 0.821 0.303 NA 

Cortical 
neurons MARCKSL1 0.832 0.578678 0.664 0.578678 0.999 0.981 NA 

Cortical 
neurons DCX 0.806 0.81224 0.612 0.81224 0.969 0.576 NA 

Progenitors NES 0.976 1.785855 0.952 1.785855 0.997 0.303 NA 

Progenitors ANXA2 0.972 2.407607 0.944 2.407607 0.976 0.149 NA 

Progenitors GYPC 0.963 1.587675 0.926 1.587675 0.954 0.065 NA 

Progenitors SPARC 0.958 1.745727 0.916 1.745727 0.978 0.24 NA 

Progenitors SDC2 0.944 1.388854 0.888 1.388854 0.924 0.08 NA 

Progenitors CRABP2 0.942 1.564316 0.884 1.564316 0.939 0.11 NA 

Progenitors NTRK2 0.941 1.61904 0.882 1.61904 0.912 0.057 NA 

Progenitors CCND1 0.941 1.505771 0.882 1.505771 0.909 0.046 NA 

Progenitors LGALS1 0.938 2.0633 0.876 2.0633 0.94 0.17 NA 

Progenitors SERF2 0.934 0.95158 0.868 0.95158 1 0.903 NA 

Progenitors MDK 0.933 1.279235 0.866 1.279235 0.996 0.832 NA 

Progenitors VGLL3 0.931 1.237999 0.862 1.237999 0.887 0.032 NA 

Progenitors S100A13 0.917 1.839522 0.834 1.839522 0.893 0.12 NA 

Progenitors PDLIM7 0.916 1.185298 0.832 1.185298 0.94 0.25 NA 
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Progenitors ANXA5 0.902 1.221643 0.804 1.221643 0.926 0.184 NA 

Progenitors PRSS23 0.901 1.501512 0.802 1.501512 0.836 0.06 NA 

Progenitors RPL41 0.897 0.625131 0.794 0.625131 1 0.999 NA 

Progenitors NPC2 0.895 1.182853 0.79 1.182853 0.951 0.407 NA 

Progenitors SEC11A 0.894 0.828695 0.788 0.828695 0.98 0.64 NA 

Progenitors PRDX6 0.892 0.981071 0.784 0.981071 0.98 0.555 NA 

Progenitors TPM1 0.887 1.731952 0.774 1.731952 0.938 0.518 NA 

Progenitors RHOC 0.887 0.962424 0.774 0.962424 0.907 0.206 NA 

Progenitors NEAT1 0.883 1.352256 0.766 1.352256 0.948 0.285 NA 

Progenitors RPL12 0.882 0.706881 0.764 0.706881 0.999 0.992 NA 

Progenitors RPL7A 0.881 0.613375 0.762 0.613375 1 0.997 NA 

Progenitors EEF1A1 0.879 0.651914 0.758 0.651914 1 1 NA 

Progenitors RPL28 0.876 0.592999 0.752 0.592999 1 0.995 NA 

Progenitors RPS6 0.871 0.711767 0.742 0.711767 0.997 0.994 NA 

Progenitors RPL23A 0.867 0.568383 0.734 0.568383 0.999 0.994 NA 

Progenitors TIMP1 0.865 0.772749 0.73 0.772749 0.895 0.173 NA 

Progenitors RPL8 0.864 0.572428 0.728 0.572428 0.999 0.997 NA 

Progenitors METRN 0.863 0.835332 0.726 0.835332 0.907 0.229 NA 

Progenitors WLS 0.859 0.916782 0.718 0.916782 0.736 0.023 NA 

Progenitors RPL27A 0.858 0.534803 0.716 0.534803 1 0.998 NA 

Progenitors CTGF 0.857 1.335629 0.714 1.335629 0.727 0.017 NA 

Progenitors RCN1 0.857 0.806462 0.714 0.806462 0.967 0.377 NA 

Progenitors PFN1 0.857 0.738107 0.714 0.738107 0.99 0.844 NA 

Progenitors PMP22 0.855 1.601169 0.71 1.601169 0.778 0.101 NA 

Progenitors ITGB8 0.855 1.138802 0.71 1.138802 0.868 0.201 NA 

Progenitors SERPINH1 0.854 0.713982 0.708 0.713982 0.846 0.143 NA 

Progenitors VIM 0.853 1.146246 0.706 1.146246 1 0.77 NA 

Progenitors NME4 0.852 0.813408 0.704 0.813408 0.945 0.457 NA 

Progenitors RPS7 0.852 0.558045 0.704 0.558045 0.999 0.997 NA 

Progenitors MYL12A 0.85 0.739735 0.7 0.739735 0.84 0.157 NA 

Progenitors RPS20 0.849 0.558658 0.698 0.558658 1 0.991 NA 
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Progenitors RPS2 0.848 0.524557 0.696 0.524557 0.999 1 NA 

Progenitors RPLP1 0.848 0.514123 0.696 0.514123 1 0.998 NA 

Progenitors RAB13 0.846 0.808108 0.692 0.808108 0.86 0.204 NA 

Progenitors TUBB6 0.845 0.757197 0.69 0.757197 0.806 0.121 NA 

Progenitors CRNDE 0.843 0.802352 0.686 0.802352 0.954 0.472 NA 

Progenitors TTYH1 0.84 0.971997 0.68 0.971997 0.963 0.416 NA 

Progenitors RPL23 0.84 0.546833 0.68 0.546833 1 0.997 NA 

Progenitors RPS19 0.84 0.516859 0.68 0.516859 1 1 NA 

Progenitors RPL29 0.84 0.464037 0.68 0.464037 1 0.997 NA 

Progenitors RPS14 0.839 0.462974 0.678 0.462974 1 0.999 NA 

Progenitors RPL3 0.838 0.497988 0.676 0.497988 1 0.998 NA 

Progenitors SLC25A6 0.835 0.71474 0.67 0.71474 0.995 0.891 NA 

Progenitors SPATS2L 0.831 0.9606 0.662 0.9606 0.811 0.193 NA 

Progenitors QPRT 0.83 0.651751 0.66 0.651751 0.855 0.198 NA 

Progenitors RPL35 0.83 0.470972 0.66 0.470972 0.999 0.993 NA 

Progenitors RPS18 0.828 0.49256 0.656 0.49256 1 1 NA 

Progenitors CLIC1 0.827 0.723496 0.654 0.723496 0.937 0.427 NA 

Progenitors RPS3 0.827 0.526597 0.654 0.526597 1 0.997 NA 

Progenitors RPL10A 0.827 0.523565 0.654 0.523565 1 0.994 NA 

Progenitors RPS28 0.825 0.506021 0.65 0.506021 1 0.993 NA 

Progenitors CD63 0.824 0.710828 0.648 0.710828 0.991 0.76 NA 

Progenitors PDPN 0.824 0.65191 0.648 0.65191 0.699 0.046 NA 

Progenitors ACTG1 0.824 0.488252 0.648 0.488252 1 1 NA 

Progenitors CCNG1 0.823 0.727443 0.646 0.727443 0.924 0.38 NA 

Progenitors CD99 0.82 0.68859 0.64 0.68859 0.953 0.405 NA 

Progenitors B2M 0.817 0.787786 0.634 0.787786 0.947 0.392 NA 

Progenitors CHCHD10 0.817 0.645222 0.634 0.645222 0.84 0.211 NA 

Progenitors RPLP0 0.817 0.469741 0.634 0.469741 1 0.997 NA 

Progenitors RPS27L 0.816 0.744701 0.632 0.744701 0.995 0.664 NA 

Progenitors COL1A2 0.815 0.896012 0.63 0.896012 0.647 0.019 NA 

Progenitors PFN2 0.815 0.622861 0.63 0.622861 0.991 0.763 NA 
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Progenitors UBB 0.813 0.783749 0.626 0.783749 0.978 0.588 NA 

Progenitors RPL37 0.813 0.465752 0.626 0.465752 1 0.995 NA 

Progenitors CRABP1 0.811 1.087669 0.622 1.087669 0.737 0.133 NA 

Progenitors RPL7 0.811 0.467728 0.622 0.467728 1 0.998 NA 

Progenitors FSTL1 0.81 0.761788 0.62 0.761788 0.737 0.123 NA 

Progenitors RPL36 0.81 0.434708 0.62 0.434708 1 0.992 NA 

Progenitors RPL19 0.81 0.401045 0.62 0.401045 1 1 NA 

Progenitors FGFR1 0.809 0.608769 0.618 0.608769 0.839 0.204 NA 

Progenitors ENO1 0.808 0.582772 0.616 0.582772 0.996 0.869 NA 

Progenitors RPS15 0.806 0.381154 0.612 0.381154 1 0.999 NA 

Progenitors MYL6 0.805 0.530039 0.61 0.530039 1 0.986 NA 

Progenitors GSTP1 0.804 0.634369 0.608 0.634369 0.996 0.92 NA 

Progenitors PODXL 0.804 0.622402 0.608 0.622402 0.67 0.06 NA 

Progenitors CNN3 0.804 0.616921 0.608 0.616921 0.992 0.669 NA 

Progenitors GNG11 0.803 0.751478 0.606 0.751478 0.668 0.064 NA 

Progenitors RPS4Y1 0.803 0.680093 0.606 0.680093 0.963 0.62 NA 

Progenitors AHNAK 0.803 0.651782 0.606 0.651782 0.64 0.036 NA 

Progenitors CST3 0.802 0.645478 0.604 0.645478 0.963 0.567 NA 

Progenitors RPS23 0.801 0.419435 0.602 0.419435 1 0.998 NA 

Progenitors RPL13A 0.801 0.409875 0.602 0.409875 1 1 NA 

Glia SFRP1 0.94 2.001041 0.88 2.001041 0.952 0.385 NA 

Glia SOX2 0.909 1.356804 0.818 1.356804 0.946 0.321 NA 

Glia C1orf61 0.893 1.500525 0.786 1.500525 0.984 0.749 NA 

Glia FABP7 0.887 1.707591 0.774 1.707591 0.985 0.736 NA 

Glia SLC1A3 0.88 1.56662 0.76 1.56662 0.807 0.119 NA 

Glia SYNE2 0.876 1.218806 0.752 1.218806 0.919 0.445 NA 

Glia PAX6 0.871 1.251984 0.742 1.251984 0.83 0.186 NA 

Glia HMGN3 0.866 0.91378 0.732 0.91378 0.978 0.849 NA 

Glia ID4 0.851 1.407158 0.702 1.407158 0.875 0.381 NA 

Glia MYO10 0.85 1.025069 0.7 1.025069 0.857 0.338 NA 

Glia DBI 0.842 1.242287 0.684 1.242287 0.958 0.709 NA 
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Glia PTN 0.836 1.579917 0.672 1.579917 0.948 0.752 NA 

Glia QKI 0.83 0.909655 0.66 0.909655 0.891 0.502 NA 

Glia LINC01158 0.818 0.903364 0.636 0.903364 0.901 0.546 NA 

Glia ZFHX4 0.817 1.004117 0.634 1.004117 0.707 0.132 NA 

Glia HES1 0.812 1.171994 0.624 1.171994 0.718 0.17 NA 

Glia HMGB2 0.809 1.270445 0.618 1.270445 0.921 0.594 NA 

Glia LHX2 0.806 0.931067 0.612 0.931067 0.846 0.398 NA 

Lower cortex SNAP25 0.942 1.540645 0.884 1.540645 0.987 0.415 NA 

Lower cortex GRIA2 0.892 1.185847 0.784 1.185847 0.96 0.352 NA 

Lower cortex CNTNAP2 0.88 1.447084 0.76 1.447084 0.876 0.272 NA 

Lower cortex CELF4 0.863 1.071334 0.726 1.071334 0.886 0.265 NA 

Lower cortex NSG2 0.851 1.031537 0.702 1.031537 0.96 0.403 NA 

Lower cortex SYT1 0.85 0.985569 0.7 0.985569 0.983 0.61 NA 

Lower cortex YWHAH 0.841 0.785308 0.682 0.785308 0.973 0.805 NA 

Lower cortex SNCA 0.839 0.953942 0.678 0.953942 0.914 0.451 NA 

Lower cortex BASP1 0.838 0.734567 0.676 0.734567 1 0.943 NA 

Lower cortex DOK6 0.831 1.000188 0.662 1.000188 0.814 0.264 NA 

Lower cortex RTN1 0.823 0.898627 0.646 0.898627 0.985 0.519 NA 

Lower cortex RUNX1T1 0.82 0.94366 0.64 0.94366 0.852 0.281 NA 

Lower cortex FAM49A 0.817 0.920672 0.634 0.920672 0.821 0.28 NA 

Lower cortex MAP1B 0.817 0.603691 0.634 0.603691 1 0.995 NA 

Lower cortex SYT4 0.816 0.939245 0.632 0.939245 0.821 0.262 NA 

Lower cortex B3GALT2 0.815 1.017411 0.63 1.017411 0.757 0.2 NA 

Lower cortex GABRB2 0.815 0.991632 0.63 0.991632 0.675 0.062 NA 

Lower cortex LMO3 0.814 1.36195 0.628 1.36195 0.688 0.101 NA 

Lower cortex SCG3 0.811 0.757346 0.622 0.757346 0.939 0.415 NA 

Lower cortex UCHL1 0.809 0.66339 0.618 0.66339 0.99 0.906 NA 

Lower cortex VAMP2 0.809 0.606955 0.618 0.606955 0.994 0.939 NA 

Lower cortex TMEM161B
-AS1 0.808 0.816917 0.616 0.816917 0.941 0.63 NA 

Lower cortex LY6H 0.806 0.807691 0.612 0.807691 0.88 0.34 NA 

Lower cortex MAPT 0.805 0.73704 0.61 0.73704 0.962 0.486 NA 
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Lower cortex CDKN2D 0.802 0.762383 0.604 0.762383 0.878 0.4 NA 

Lower cortex RAB3A 0.801 0.697869 0.602 0.697869 0.924 0.413 NA 

Upper cortex MEF2C 0.954 2.051853 0.908 2.051853 0.986 0.369 NA 

Upper cortex STMN2 0.885 1.043931 0.77 1.043931 1 0.644 NA 

Upper cortex NSG2 0.883 1.126043 0.766 1.126043 1 0.441 NA 

Upper cortex ARPP21 0.88 1.115469 0.76 1.115469 0.883 0.189 NA 

Upper cortex STMN4 0.874 0.982886 0.748 0.982886 1 0.696 NA 

Upper cortex MAPT 0.87 0.908315 0.74 0.908315 1 0.518 NA 

Upper cortex GRIN2B 0.869 1.002716 0.738 1.002716 0.9 0.246 NA 

Upper cortex CALM1 0.868 0.733117 0.736 0.733117 1 0.988 NA 

Upper cortex NELL2 0.861 0.95751 0.722 0.95751 0.973 0.409 NA 

Upper cortex SCD5 0.855 0.913699 0.71 0.913699 0.931 0.478 NA 

Upper cortex SATB2 0.853 0.902036 0.706 0.902036 0.811 0.125 NA 

Upper cortex PKIA 0.849 0.808509 0.698 0.808509 0.952 0.445 NA 

Upper cortex MAP1B 0.849 0.669352 0.698 0.669352 1 0.995 NA 

Upper cortex INA 0.847 0.831367 0.694 0.831367 0.966 0.437 NA 

Upper cortex STMN1 0.845 0.783568 0.69 0.783568 1 0.979 NA 

Upper cortex NEUROD6 0.843 1.007963 0.686 1.007963 0.986 0.502 NA 

Upper cortex VAMP2 0.843 0.689091 0.686 0.689091 0.993 0.943 NA 

Upper cortex DOK5 0.841 0.93379 0.682 0.93379 0.935 0.559 NA 

Upper cortex RASL11B 0.841 0.930199 0.682 0.930199 0.821 0.209 NA 

Upper cortex SNCA 0.841 0.896556 0.682 0.896556 0.952 0.482 NA 

Upper cortex R3HDM1 0.84 0.924861 0.68 0.924861 0.89 0.386 NA 

Upper cortex TTC9B 0.84 0.868857 0.68 0.868857 0.959 0.435 NA 

Upper cortex RAC3 0.83 0.70783 0.66 0.70783 0.945 0.624 NA 

Upper cortex CXADR 0.827 0.785512 0.654 0.785512 0.993 0.719 NA 

Upper cortex HN1 0.827 0.602815 0.654 0.602815 1 0.961 NA 

Upper cortex CAMK2B 0.822 0.749623 0.644 0.749623 0.897 0.279 NA 

Upper cortex RTN1 0.819 0.807888 0.638 0.807888 1 0.553 NA 

Upper cortex CHL1 0.819 0.775621 0.638 0.775621 0.918 0.374 NA 

Upper cortex NSG1 0.818 0.708593 0.636 0.708593 0.997 0.528 NA 
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Upper cortex TUBB2A 0.817 0.659235 0.634 0.659235 1 0.946 NA 

Upper cortex GABBR2 0.815 0.777596 0.63 0.777596 0.79 0.182 NA 

Upper cortex RBFOX2 0.814 0.677032 0.628 0.677032 0.99 0.662 NA 

Upper cortex CRMP1 0.813 0.666121 0.626 0.666121 0.979 0.79 NA 

Upper cortex GAP43 0.811 0.737576 0.622 0.737576 0.997 0.816 NA 

Upper cortex UCHL1 0.809 0.645161 0.618 0.645161 1 0.911 NA 

Upper cortex CDKN2D 0.808 0.694482 0.616 0.694482 0.935 0.43 NA 

Upper cortex NCAM1 0.805 0.694452 0.61 0.694452 0.955 0.551 NA 

Upper cortex MSRA 0.804 0.734229 0.608 0.734229 0.814 0.288 NA 

Upper cortex GPR85 0.801 0.76111 0.602 0.76111 0.766 0.189 NA 

Upper cortex DAAM1 0.801 0.628961 0.602 0.628961 0.993 0.776 NA 

Other ALDOA 0.917 1.757415 0.834 1.757415 0.963 0.838 NA 

Other EIF1 0.888 0.999198 0.776 0.999198 1 0.999 NA 

Other FTL 0.883 1.541462 0.766 1.541462 1 0.997 NA 

Other BNIP3 0.87 1.504624 0.74 1.504624 0.844 0.345 NA 

Other FAM162A 0.857 1.366057 0.714 1.366057 0.881 0.459 NA 

Other ARF4 0.848 1.242187 0.696 1.242187 0.889 0.715 NA 

Other ENO1 0.845 1.199331 0.69 1.199331 0.978 0.894 NA 

Other P4HA1 0.832 1.239505 0.664 1.239505 0.741 0.175 NA 

Other TRMT112 0.825 0.918451 0.65 0.918451 0.926 0.735 NA 

Other RPS13 0.822 0.756328 0.644 0.756328 0.993 0.998 NA 

Other TPT1 0.817 0.840456 0.634 0.840456 0.993 0.998 NA 

Other SEC61G 0.812 0.841716 0.624 0.841716 0.963 0.881 NA 

Other PGK1 0.809 1.333477 0.618 1.333477 0.881 0.803 NA 

Other GADD45A 0.802 1.332596 0.604 1.332596 0.741 0.3 NA 

Other ST13 0.801 0.866714 0.602 0.866714 0.963 0.878 NA 

Neural crest TAGLN3 0.922 1.681741 0.844 1.681741 1 0.686 NA 

Neural crest PBX3 0.917 1.457984 0.834 1.457984 0.878 0.154 NA 

Neural crest CRABP1 0.886 2.63702 0.772 2.63702 0.892 0.257 NA 

Neural crest MEG3 0.872 2.436136 0.744 2.436136 0.824 0.289 NA 

Neural crest ACTG1 0.851 0.573491 0.702 0.573491 1 1 NA 
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Neural crest MIAT 0.82 1.008958 0.64 1.008958 0.932 0.671 NA 

Neural crest KCNQ1OT1 0.818 1.242528 0.636 1.242528 0.905 0.547 NA 

Neural crest NEAT1 0.806 0.991861 0.612 0.991861 0.865 0.427 NA 

Neural crest ELAVL2 0.806 0.728978 0.612 0.728978 0.932 0.464 NA 

Neural crest RGMB 0.804 1.190676 0.608 1.190676 0.703 0.168 NA 

 1067	

 1068	

 1069	

 1070	

 1071	

 1072	
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Supplementary Table 2. Electrophysiological features in preterm neonatal EEG dataset and 1074	

analogous features computed in organoid LFP. 1075	

Neonatal EEG features Computed organoid LFP 
features 

Envelope (50%) None 

Envelope (5%) None 

Envelope (95%) None 

rEEG (50%) None 

rEEG (5%) None 

rEEG (95%) None 

SATs per hour Network Events per hour 

RMS SAT duration RMS network event duration 

SAT duration (50%) Network event duration 
(50%) 

SAT duration (5%) Network event duration (5%) 

SAT duration (95%) Network event duration 
(95%) 

RMS Inter-SAT Duration RMS Inter-event Duration 

Inter-SAT duration (50%) Inter-event duration (50%) 

Inter-SAT duration (5%) Inter-event duration (5%) 

Inter-SAT duration (95%) Inter-event duration (95%) 

Temporal Theta Power None 

Activation Synchrony 
Index None 

Interhemispheric 
Correlation None 

Total Spectral Power None 

Relative Delta Power Relative Delta Power 

Relative Theta Power Relative Theta Power 

Relative Alpha Power Relative Alpha Power 

Relative Beta Power Relative Beta Power 

Shaded cells indicate features used in the age-prediction model. 1076	

 1077	
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