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Abstract 20 

 Initial attachment to a surface is a key and highly regulated step in biofilm 21 

formation.  In this study, we present a platform for reversibly functionalizing bacterial cell 22 

surfaces, with an emphasis on designing biofilms. We engineered the Lap system of 23 

Pseudomonas fluorescens Pf0-1, which is normally used to regulate initial cell surface 24 

attachment, to display various protein cargo at the bacterial cell surface and control 25 

extracellular release of the cargo in response to changing levels of the second messenger c-26 

di-GMP.  To accomplish this goal, we fused the protein cargo between the N-terminal 27 

retention module and C-terminal secretion signal of LapA, and controlled surface 28 

localization of the cargo with natural signals known to stimulate or deplete c-di-GMP levels 29 

in P. fluorescens Pf0-1. We show this system can tolerate large cargo in excess of 500 amino 30 

acids, direct P. fluorescens Pf0-1 to surfaces it does not typically colonize, and program this 31 

microbe to sequester the toxic medal cadmium.   32 

 33 

Text 34 

 The bacterial biofilm lifestyle is profoundly consequential to human health and 35 

industry. Although the concerning link between biofilm formation and increased antibiotic 36 

tolerance has been known for some time (1, 2), only recently have the benefits of some 37 

surface-attached communities become appreciated.  Such beneficial roles include 38 

competitively excluding pathogen colonization (3), bioelectricity generation (4), and 39 

enhancing bioleaching (5, 6).  Furthermore, recent microbiome research cataloging various 40 

beneficial relationships between bacterial biofilms and their human host has caused a 41 

paradigm shift from the desire to inhibit biofilm formation towards also designing biofilms 42 
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for therapeutic purposes (7).  One goal of synthetic biology is to program bacterial cell 43 

surfaces to perform customized functions under an exclusive set of environmental 44 

conditions, such as binding a defined surface or remediating a toxic metal from an 45 

environment.  46 

 The first stage of biofilm formation is when a bacterium makes initial contact with a 47 

substratum while later stages are focused on reinforcing the biofilm matrix after 48 

committing to a surface. To establish a biofilm, many bacteria employ surface-associated 49 

adhesins to initially bind a surface (8–10) and subsequently secrete adhesins, small 50 

amyloid proteins and/or complex exopolysaccharides to “glue” the bacteria together within 51 

the biofilm (11, 12). Synthetic biologists have exploited strategies for manipulating these 52 

two stages of biofilm formation; however, many of these biofilm engineering tools are 53 

restricted to displaying relatively small protein domains. To promote initial contact, 54 

bacterial surfaces have been modified to display surface tags (13),  light-responsive 55 

amphiphiles (14), photoswitchable proteins (15), and photoswitchable azobenzene linkers 56 

(16). Likewise the small, self-assembling amyloid protein CsgA of E. coli has been 57 

functionalized for nanoparticle templating as well as mercury bioremediation (17, 18). 58 

However, these strategies are often unable to accommodate large domains (>60 aa), 59 

limiting their versatility and thus downstream applications. Interestingly, exploiting the 60 

natural bacterial decision-making process to tune initial attachment and biofilm formation 61 

has also been largely overlooked, with researchers favoring synthetic, UV light- or blue 62 

light-oriented strategies.  63 

 Here, we describe a new approach for reversibly customizing the bacterial cell 64 

surface using the Lap system of P. fluorescens Pf0-1, which is naturally used to promote 65 
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initial attachment and thus biofilm formation by a variety of microbes (19). The Lap system 66 

was recently characterized as a novel subgroup of T1SS transporters and substrates (20).   67 

This system is comprised of 3 components: a type 1 secretion system (T1SS) apparatus 68 

(LapEBC), a giant adhesin (LapA), and a inside-out regulatory component (LapGD) that 69 

controls levels of LapA at the cell surface in response to the second messenger c-di-GMP 70 

(Figure 1). LapA is a ~520 kDa adhesin with extensive internal repeats that are sandwiched 71 

between an N-terminal retention module and C-terminal secretion signal (20, 21). The level 72 

of surface-associated LapA corresponds with cellular c-di-GMP concentrations, allowing 73 

rapid, tunable changes in biofilm assembly and disassembly (22). The inner membrane-74 

bound c-di-GMP receptor, LapD, controls the activity of the periplasmic LapA-targeting 75 

protease, LapG.  LapG cleaves LapA at a characterized dialanine site; however, when bound 76 

to c-di-GMP, LapD sequesters LapG to protect LapA, and thereby promote LapA surface 77 

localization and thus biofilm formation (23, 24).  78 

 To develop the Lap system as a platform for customizing the P. fluorescens Pf0-1 cell 79 

surface, we sought to first delete the gene encoding the giant adhesin, lapA, then use the 80 

regions critical for LapA cell surface localization (20) and secretion (21) to deliver and 81 

control cell surface release of different cargo proteins of interest. We have previously 82 

shown a 3XHA epitope tag N-terminally fused to LapA’s C-terminal secretion signal (pC235, 83 

5012M-5246S; Figure 2A,B) is secreted directly into the supernatant independent of LapG 84 

activity (20).  To determine if LapA’s N-terminal domain (1M-272I) is sufficient to display 85 

the 3XHA-tagged secretion signal of LapA at the cell surface, we fused this N-terminal 86 

region to C235 to generate the pN272 construct (pN272; Figure 2A).  The pC235 and 87 

pN272constructs were then expressed in the lapA and lapAlapG mutant backgrounds and 88 
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assayed for cell surface localization and LapG-dependent release into the extracellular 89 

environment. Here, the lapA mutant has a functional LapG protease capable of cleaving the 90 

N-terminal retention module of LapA (see Figure 1) while the lapAlapG mutant lacks the 91 

protease and thus the retention module of LapA remains intact and functional. We 92 

predicted the N272 fusion protein, despite containing only ~10% of the full-length LapA 93 

protein, should localize to the cell surface and require LapG proteolysis for release into the 94 

supernatant similarly to the full-length LapA.  95 

 Western blot analysis indicated the N272 fusion is displayed at the cell surface 96 

(Figure 2B, cell surface).  Furthermore, consistent with previous studies with full-length 97 

LapA (25), extracellular release of N272 requires LapG proteolysis, as indicated by 98 

comparing the molecular weight of N272 in the whole cell (WC, intact N272, #) and 99 

supernatant fractions (S, proteolyzed N272, ##) when LapG is absent (-) or present (+) 100 

(Figure 2B, bottom, far right). Conversely, control strains expressing LapA’s 3XHA-tagged 101 

secretion signal demonstrate this variant lacking LapA’s retention module is unable to 102 

associate with the surface and is secreted directly into the extracellular environment 103 

independent of LapG activity (Figure 2B, p235, middle, *).   104 

 Cell surface levels of LapA can be tuned by modulating cellular levels of c-di-GMP or 105 

by inhibiting the proteolytic activity of the calcium-dependent protease, LapG. Phosphate 106 

robustly stimulates c-di-GMP production in P. fluorescens Pf0-1 while phosphate-limiting 107 

conditions activate the Pho regulon, leading to transcriptional activation of the 108 

phosphodiesterase RapA and depletion of c-di-GMP levels, thus decreasing LapA at the cell 109 

surface and reducing biofilm formation (26). Alternatively, LapG, a calcium-dependent 110 

protease, can be chemically inhibited with micromolar amounts of calcium chelators such 111 
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as EGTA or citrate, leading to LapA retention and biofilm formation independently of c-di-112 

GMP (27). We took advantage of this knowledge to determine if we could control release of 113 

the pN272 construct into the supernatant. The lapA mutant expressing pN272 was grown 114 

in a high phosphate medium supplemented with the calcium chelator 0.2% citrate to 115 

discourage LapG proteolysis. This LapG-inhibiting medium was then exchanged with the 116 

same base medium, except depleted for phosphate and lacking citrate, both of which 117 

stimulate LapG activity. Cleaved N272 in the supernatant fraction was then monitored for 118 

30 minutes. Western blot analysis indicates LapG activation enriches the supernatant 119 

fraction with cleaved N272 peptide within 15 minutes, illustrating the rapid 120 

responsiveness of this system (Figure 2C).  121 

 Given that LapA naturally contains an extensive and complex domain architecture, 122 

we hypothesized this LapA-based platform could be utilized to reversibly display various 123 

protein cargo on the bacterial cell surface.  To test this idea, we cloned several cargo 124 

proteins into the N272 system, as shown in Figure 2A. We then assayed for LapG-125 

dependent, cell-surface release of the cargo to determine if this platform could be applied 126 

to differentially functionalize the P. fluorescens Pf0-1 cell surface. The spectrum of cargo 127 

tested ranged from a cytoplasmic Heavy-Metal Associated domain (the HMA from the ABC 128 

transporter CadA of Listeria), to a protease secreted by a Gram-positive bacterium 129 

(subtilisin E of Bacillus subtilis), as well as the fluorescent protein tdTomato and small 130 

epitope tags (3XHA and 2X Strep-tactin) (Figure 2A). Notably, all of the cargo tested was 131 

displayed at the cell surface and released in response to LapG activity (Figure 3); however 132 

Western analysis of the whole cell fraction indicated some variability in cargo stability 133 

(Figure 3, pN272-SubE-HA vs pN272-HA-tdTomato). The breadth of cargo size successfully 134 
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displayed and release from the P. fluorescens Pf0-1 cell surface suggests this system can 135 

tolerate large, multifunctional cargo and can display proteins and domains of cytoplasmic 136 

or extracellular origin.  137 

  Because the lapA mutant does not form a biofilm under our laboratory conditions, 138 

we next asked if a cargo displayed at the cell surface in the pN272 variants could direct P. 139 

fluorescens Pf0-1 to bind a surface of interest. To test this idea, we performed a competitive 140 

binding assay with lapA mutants expressing either empty vector or pN272-SubE-HA mixed 141 

at a 1:1 ratio. The cell mixture (input) was applied to protein G magnetic beads bound to 142 

αHA anti-body to determine if presentation of the HA epitope conferred selective binding 143 

to the functionalized beads. After a short incubation period, the resin-bound bacteria were 144 

isolated from the mixture with a magnet and the free-floating population was collected and 145 

characterized (Figure 3, right). While the input contained equal numbers of binding to non-146 

binding cells, the output, which represents cells that could not bind the functionalized 147 

beads, was almost exclusively binding-defective cells expressing the empty vector  (Figure 148 

4, right).  These data suggest the Lap system may be utilized to direct P. fluorescens to 149 

functionalized or novel surfaces for various biotechnological applications. 150 

 Designing microbes for bioremediation purposes is also of immense interest to 151 

synthetic biologists. Thus, we next wanted to ask if the Lap system could be used to design 152 

P. fluorescens Pf0-1, a natural plant symbiont, to bind the heavy-metal cadmium, which is 153 

highly toxic to plants. To test this idea, we expressed the cytoplasmic cadmium-binding 154 

HMA domain from the P1-type ATPase CadA of L. monocytogenes (28) in our N272 system 155 

(Figure 2A, pN272-HA-HMA ) and assayed for cadmium binding. We used ICP-MS to 156 

compare cellular cadmium levels between the P. fluorescens Pf0-1 lapAlapG mutant 157 
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expressing pN272-HA-HMA or empty vector (pMQ72) after being exposed to 12 µM 158 

cadmium sulfate (CdSO4) for 30 minutes. The modest, but statistically significant increase 159 

in bound cadmium suggests the cytoplasmic HMA domain is functional when displayed at 160 

the P. fluorescens Pf0-1 cell surface.  These data are consistent with the HMA domain 161 

sequestering cadmium, suggesting the Lap system may be engineered for bioremediation 162 

purposes. 163 

 In summary, we present a platform to customizing bacterial cell surfaces using the 164 

Lap system from P. fluorescens Pf0-1 and demonstrate its usefulness in biofilm design and 165 

bioremediation. Like most T1SS, the Lap system can accommodate large protein cargo 166 

unsuitable for other cell-surface display platforms, expanding potential downstream 167 

applications of this system. The customized cargo displayed at the cell surface can be tuned 168 

by modulating levels of the secondary messenger c-di-GMP or through chemical inhibition 169 

of the calcium-dependent protease LapG, allowing rapid, controlled biofilm assembly and 170 

disassembly.  Together, these features make the Lap system an attractive platform for 171 

functionalizing the bacterial cell surface. Although we have demonstrated this proof of 172 

concept in P. fluorescens Pf0-1, various Gram-negative bacteria encode the T1SS (19) 173 

suggesting it may be optimized to reversibly functionalize the cell surface of various Gram-174 

negative bacteria.  175 

 176 

Materials and Methods 177 

Plasmids, Bacterial Strains, and Growth Conditions.  The plasmid pMQ72 (29) was used 178 

as the backbone for all the constructs engineered for this study. The N-terminus and C-179 

terminus of LapA were PCR amplified from WT P. fluorescens Pf0-1. The Strep-Tactin and 180 
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CadA-HMA domain from L. monocytogenes DNA sequences were ordered from IDT. The 181 

gene coding for subtilisin E was cloned from Bacillus subtilis 168. The pRSF-Duet plasmid 182 

was a gift from Prof. Holger Sondermann. Plasmid carrying tdTomato was a gift from Prof. 183 

Deb Hogan. S17 E. coli was purchased from Life Technologies. The P. fluorescens lapA and 184 

lapAlapG clean deletion mutant strains, described previously (20), carrying pMQ72-based 185 

plasmid were grown overnight in LB + 30µg/mL Gentamycin and subcultured with rotation 186 

in K10T-1 (30) for 6 hours unless noted otherwise. 187 

 188 

Cloning of pN272 Cargo. Yeast cloning was used to fuse cargo with LapA N- and C-189 

terminal elements into pMQ72. The N- and C- terminus of LapA was amplified using PCR 190 

primers designed with ends homologous to SmaI digested pMQ72 to orient insertion. Each 191 

cargo was amplified with PCR primers designed with ends homologous to either the 3’ end 192 

of LapA’s N-terminus or 5’ end of LapA’s C-terminus to orient insertion.    193 

 194 

Western Blot Analysis. Standard practices for Western blot analysis and cell-surface LapA 195 

detection were used to detect the 3XHA or 6XHIS epitopes engineered into the pN272-196 

based constructs, as reported (21). For whole cell analysis, cells were normalized and 197 

resuspended in 1X SDS-page loading buffer. For supernatant analysis, the supernatants 198 

were concentrated in Amicon centrifugal 4 mL 30K NMWL spin columns (Millipore Cat. 199 

#UFC803096) and protein levels normalized following protein quantification using the 200 

Pierce BCA assay kit (Thermo #23227). 201 

 202 

Competitive Binding Assay.  P. fluorescens lapA mutants were subcultured in K10T-1 + 203 
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0.4% sodium citrate (Fisher, Cat. No. S279-500) to inhibit LapG activity, normalized, and 204 

applied to Pierce Protein G Magnetic Resin (Cat #88847) prepared and pre-incubated with 205 

1 µg a-HA anti-body (BioLegend #901503) according to the manufacture’s suggestions. 206 

Cells were incubated with anti-body bound magnetic resin at room temperature for 1 hr. 207 

The resin-bound fraction was separated with a magnet, and then the medium fraction 208 

containing the unbound bacteria was plated. Colony PCR was used to enumerate cells 209 

carrying pN272-SubE-HA and empty vector (pMQ72). 210 

 211 

Cadmium Binding.  P. fluorescens lapAlapG mutants expressing pN272-HA-HMA or empty 212 

vector (pMQ72) were subcultured for 5.5 hours and exposed to 10µM Cadmium sulfate 213 

(Fisher Cat. # C19-500) for 30 min. To prepare for ICP-MS analysis, the dry cell pellets were 214 

weighed and resuspended in 25mM Tris pH7.4, then boiled for 20 min at 100˚C. The cell 215 

debris was removed with centrifugation and the lysate submitted for analysis. 216 

 217 
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Figure 1.  Lap system diagram 310 

  311 

Figure 1.  Model of the LapA adhesion system.  The C-terminal domain of LapA includes 312 

the secretion signal, which engages the T1SS (panel 1).  LapA is secreted C-terminal end 313 

first (panel 2), and when c-di-GMP levels are high the N-terminal retention domain anchors 314 

LapA to the cell surface via retention in the outer membrane component of the T1SS (panel 315 

3).  If c-di-GMP levels fall, the LapG protease is released from the LapD receptor and LapG is 316 

free to cleave the N-terminal retention domain of LapA (panel 4).  The LapA lacking the N-317 

terminal domain is release from the cell surface (panel).  A portion of this figure was 318 

published previously (20).  Figure copyright William Scavone, 2018. Used with permission. 319 
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 320 

 321 

Figure 2.  (A) Schematic representation of N272 variants described in this study. The 322 

legend indicates the various domains in each construct.  The C-terminal domain of LapA 323 

(light blue) contains the secretion signal, and is common to all constructs.  The pink domain 324 

is the “retention module” of LapA and is required to anchor LapA to the cell surface (see 325 

Figure 1). (B) Cell surface association and regulation of the N272 construct requires the N-326 

terminal retention module. Cell surface, whole cell (WC), and supernatant (S) levels of the 327 

indicated proteins after subculturing for 6 hr. The presence (+) of absence (-) of LapG in the 328 

strain is indicated. (C) Controlled extracellular release of surface associated N272 in 329 

response to phosphate starvation and removal of the calcium chelator. Strains were 330 

subcultured for 5.5 hr in a LapG-inhibiting medium (0 min), the medium was replaced with 331 

a LapG-activating medium and the supernatant sampled over 30 min for the presence of 332 

cleaved N272.  333 

 334 

 335 
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 338 

Figure 3. Extracellular release of cargo requires LapG activity. Western blot analysis of the 339 

whole cell (WC) and supernatant (S) fractions from the lapA mutant (LapG, +) and the 340 

lapAlapG mutant (LapG, -) mutant strains expressing the indicated constructs. 341 
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 343 

 344 

Figure 4. Competitive binding assay (outlined on left) between P. fluorescens Pf0-1 lapA 345 

mutants expressing pN272-SubE-HA (binding-positive) or empty vector (binding-346 

negative). The two strains were mixed at a 1:1 ratio (input) then incubated with αHA 347 

antibody-bound protein G magnetic resin. Cells bound to the resin were removed from the 348 

mixture using a magnet, and the supernatant fraction with unbound cells collected 349 

(output).  Cells from the input and output were plated. Colony PCR was performed on 100 350 

random colonies from the input and output to enumerate cells carrying empty vector 351 

(pMQ72) or pN272-SubE-HA. Error bars are SEM of three biological replicates. Two-way 352 

ANOVA statistical analysis was performed (***, p<0.0001). 353 
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 355 

Figure 5. P. fluorescens Pf0-1 displaying the HMA domain from CadA of L. monocytogenes 356 

show increased cadmium binding. The P. fluorescens Pf0-1 lapAlapG mutant expressing the 357 

indicated plasmids were subcultured for 5.5 hr and then exposed to 10 µM Cadmium 358 

sulfate for 30 minutes. Weighed cell pellets were resuspended in equal volume of buffer 359 

and lysed. Cadmium levels were determined using ICP-MS. Error bars are SEM of three 360 

biological replicates. Two-tailed t-test was performed (*, p<0.05). 361 
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