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Abstract 

Each decade, billions are invested in Tuberculosis (TB) research to further characterize M. tuberculosis 

pathogenesis. Despite this investment, nearly half of the 4,031 M. tuberculosis protein-coding genes lack 

descriptive annotation in community databases, due largely to incomplete reconciliation with the 

literature and a lack of structure-based methods for functional inference. We coin the term 

“hypotheticome” as the set of genes in an organism without known function. For M. tuberculosis’ 

hypotheticome, we compiled the set of genes lacking functional assignment in the most frequently used 

Mycobacteria annotation database through systematic, exhaustive manual literature curation and 3D-

protein structure-based inference, and reconciled these annotations with frequented functional databases, 

creating a comprehensive M. tuberculosis functional knowledge-base. In doing so, we also introduce 

standard usage of qualifying adjectives based on quantitative measures of certainty with the hope that 

this approach is adopted in choosing qualifiers for future functional assignments. 

Through these methods we functionally annotated 41.3% of the M. tuberculosis hypotheticome, and 

provide insight into its pathogenesis, antibiotic-resistance, and virulence. Processes implicated in the 

unique lifestyle of M. tuberculosis of long-term persistence and obligate pathogenesis in genotoxic host 

microenvironments – lipid metabolism, polyketide biosynthesis, and membrane transport and efflux – 

were overrepresented in our annotation. Our structural similarity approach unturned proteins that appear 

critical in host-interaction through apparent host mimicry, particularly involving the phagosome and 

vesicle-mediated transport, as well as putative structural analogs for highly mutable protein classes, 

including dozens of PE/PPE family proteins which are major players at the host-pathogen interface, and 

sixteen potential efflux pumps which are integral to M. tuberculosis drug tolerance. Hypotheses drawn 

from these proteins’ function may help characterize the onset of latency and identify therapeutic targets. 

A unified annotation is essential for clear communication about M. tuberculosis. These improvements 

provide the most comprehensive M. tuberculosis genome annotation to date, and the approach presented 

can be applied to systematically annotate the genome of other organisms. We provide our novel 

annotations in General Feature Format with Enzyme Commission and Gene Ontology terms for 

integration into existing annotation frameworks. 

Keywords: genome annotation, hypothetical genes, H37Rv, structural homology, functional genomics, tuberculosis, host 

mimicry, convergent evolution 
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Introduction 

Basic Mycobacterium tuberculosis (M. tuberculosis) biology research underlies Tuberculosis (TB) 

eradication efforts. As genome sequencing improves and becomes more accessible, we have 

unprecedented capabilities to understand how chromosomal alterations affect mycobacterial physiology 

and steer evolution of pathogenicity, virulence, antibiotic resistance, and other phenotypic characteristics 

that challenge effective TB treatment. This opportunity, however, is limited by the quality, quantity, and 

recency of genome annotation. 

 

Outdated annotations disconnect discoveries about M. tuberculosis from what is readily accessible, 

impeding research progress. Without an up-to-date annotation, laboratories must either maintain an 

annotation in villa, periodically perform time-intensive, exhaustive literature searches, or draw 

conclusions from incomplete information. While other databases have emerged in recent years1–5, 

TubercuList remains the primary source for annotation information6. 

 

Most studies are performed on M. tuberculosis reference strain H37Rv, a descendant of strain H37, 

isolated from a pulmonary tuberculosis patient in 1905 and kept viable through repeated subculturing7. 

Following sequencing of the H37Rv genome, function was assigned to  40% of its 3,924 open reading 

frames (ORFs)8, and in 2002 H37Rv was re-annotated, with  52% of its, then, 4,006 ORFs 9. H37Rv 

annotations had continued to be added by TubercuList until March 2013. Despite being nearly five years 

outdated, TubercuList remains the primary resource for gene annotation for many TB researchers6. 

 

Research that infers phenotypic features from genomic data is challenged by the quarter of the genome 

(1,057 genes) completely lacking annotation on TubercuList, listed in “conserved hypotheticals” or 

“unknown” functional categories. Genes are classified as hypothetical when one or more open reading 

frames (ORFs) are identified through in silico methods, indicating the possible presence of a protein-

coding region10, but whether the gene encodes a functional protein is uncertain11. In addition to the 1,057 

hypothetical and unknown genes on TubercuList, hundreds of others have product annotations that 

convey little or no meaning, such as “possible membrane protein”. We refer to the set of these genes 

collectively as the “hypotheticome”. Several attempts have been made to predict annotations for these 

genes, drawing from inferential techniques such as protein homology12,13, protein fold similarity14, 

metabolic pathway gap-filling15, and STRING interactions16. However, these predictions require tenuous 

assumptions, and though useful for hypothesis generation in the absence of experimental evidence, can 

be incorrect, and produce potentially spurious conclusions. 

 

In addition to M. tuberculosis databases, useful annotations can be found in global databases. Most 

notable of these is UniProt, which contains annotations for many proteins encoded by genes of the 

hypotheticome17. UniProt employs field experts who manually confirm and quality-check experimental 

characterization of previously unannotated proteins (through SwissProt) according to standardized 

protocols. UniProt also has a inferential branch, TrEMBL, to give in silico predictions of lower-

confidence, based primarily on amino acid (AA) sequence identity17. Though UniProt contains many 

useful annotations, their integration into TubercuList and other TB databases is inconsistent and does not 

distinguish between low-confidence, unreviewed annotations predicted through AA sequence identity 

and high-quality, manually curated, reviewed annotations. To facilitate a measured interpretation of gene 

annotations and invoke skepticism where merited, the TB community needs a resource that provides 

annotations explicit in their source and reliability of evidence. 

 

While current resources regularly incorporate computational annotation predictions via domain 

homology and sequence similarity, none, to our knowledge, implement large-scale annotation through 

structural similarity, leaving latent annotations undiscovered. Increasingly sophisticated structural 
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threading algorithms leverage structural and functional conservation to enable annotation of proteins 

where sequence has diverged. One such tool, Iterative Threading ASSEmbly Refinement (I-TASSER), 

predicts three-dimensional protein structure from AA sequence by building protein structure models 

through multiple threading alignment of Protein Data Bank (PDB)18 templates, followed by iterative 

fragment assembly simulations19. I-TASSER provides superior structural prediction capabilities 

compared to similar programs20–24, outputs well-defined estimation of model quality25 (C-score) and 

pairwise structural similarity26 (TM-score), and integrates function and structure prediction tools27 

(COACH and COFACTOR). Integrated functional predictions consist of Gene Ontology (GO) terms28, 

Enzyme Commission (EC) numbers29, and Ligand Binding Sites (LBS)30.These schemes are widely 

adopted by enzymologists and bioinformaticians and incorporated into numerous other classification 

schemes, providing valuable integrability with other representations of biochemical knowledge and 

genome annotation frameworks. 

 

To infer hypotheticome protein annotations, we classified 1,725 as the M. tuberculosis hypotheticome 

and generated high quality structure models using I-TASSER. These genes comprised 668 

uninformatively annotated genes and the 1,057 unknown/hypothetical genes. To annotate function from 

these structural models, we transferred EC numbers and GO terms from structurally similar proteins of 

known function in the Protein Data Bank (PDB), which enabled us to name gene products systematically 

and identify pathways, subsystems, and processes enriched among novel annotations. We then 

supplemented these annotations with product names derived from manual comparison where putative 

analogs and homologs in PDB were not given EC and GO assignments and additional structural and 

ligand-binding site annotations. 

 

We guided this effort with the following aims and philosophies:  

1. Provide a comprehensive annotation resource that reconciles TubercuList’s last update (March 2013) 

with all knowledge in the literature (File S1)  

2. Use structural similarity as a means of annotation orthogonal to manual curation and sequence 

similarity to maximize the number of genes annotated with strong predictions while minimizing 

"overannotation", a problematic phenomenon that perpetuates incorrect annotations31,32.  

3. Use structural similarity to identify proteins most challenging to find through experiment and 

sequence similarity, such as transport proteins and structural analogs.  

4. Assess potential functional implications of newly annotated gene products and functional notes.  

5. Highlight the genes that remain uncharacterized, and discuss the common features prohibiting their 

characterization.  

 

We refer to manual annotations as “mannotations” throughout the manuscript to differentiate them from 

“annotations” in the general sense. For simplicity, we refer to hypotheticome protein structure models 

that are structurally similar to known structures on PDB as “matches” when it is not clear if they 

descended from a common ancestor (“homologs”) or converged upon similar structure independently 

(“analogs”).  
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Results 

Approach and scope 

To fulfill the study aims, we designed annotation procedures and inclusion criteria to maximize true 

annotations while minimizing false annotations. Accordingly, we incorporated annotations 

hierarchically, prioritizing more reliable sources and methods. For resolving candidate annotations 

within each computational method, we consulted benchmarks of likelihood of correctness conducted in 

this work and from previous studies. The resulting annotation is, to our knowledge, substantially more 

complete and transparent than available elsewhere. These annotations were furnished through several 

thousand person-hours of manual literature curation, quality-assurance, consolidation of annotations 

from veritable databases, and functional inference through structural similarity according to precision 

benchmarks, incorporating only confident annotations. 

 

We focused the scope of our annotation on 1,725 genes of unknown function (“GUF”) that lacked 

informative product annotation on TubercuList. These GUF included all genes categorized as “conserved 

hypothetical” or “unknown” on TubercuList and all remaining ambiguous gene product annotations in 

other categories (S1 Table). Annotations were considered ambiguous if they were qualified by an 

adjective connoting low confidence, such as “predicted” or “possible”, or if their annotation described 

only location (e.g. “membrane protein”) or responses to a particular stimulus (e.g. “isoniazid-inducible 

protein A”), but not its immediate function. We also included the sparsely annotated PE_PPE genes as 

GUFs since most are not functionally characterized.  

 

We first exhaustively searched the literature to include all experimentally proven annotations and 

identified functional annotations for the GUF, which annotated many GUF, but left the majority (1,448) 

without annotation. Next, we inferred function from predicted structural similarity with sufficient 

evidence, but prioritized manual annotations in cases of conflict. Annotations describing purely 

structural (CATH topology39, see Methods) or local binding (COFACTOR ligand binding site 

predictions, described below) properties were included irrespective of gene product annotation since they 

describe attributes orthogonal to primary protein product function.  

 

An expanded Mycobacterium tuberculosis reference genome annotation 

Through mannotation and structural inference we annotated 713 GUF with products, shrinking the 

hypotheticome by 41.3% to 1,012 GUF (Table 1). Between these 713 annotated GUFs and those we 

annotated with CATH topologies or functional notes, 987 GUF (57.2%) received original annotation,  

providing more than half of M. tuberculosis hypotheticome with novel information with respect to the 

widely accessed TubercuList38 (Table 1 and Fig 1). While manual curation presents the strongest 

evidence and notably expanded the set of annotated genes (283 added), our pipeline for annotation 

through structural inference permitted an additional 430 GUF to be assigned putative or probable 

functions. Functional hints were recorded in the form of notes for an additional 274 GUF, derived both 

from sub-threshold structural similarities, and literature-curated evidence insufficient to assign a product. 
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Table 1. Hypotheticome annotation summary. 

 

Product annotations from each method were incorporated only if the gene had not yet had one assigned by a 

method higher in the hierarchy, except for EC-derived gene product annotations, which were reconciled with 

manual annotations. Ligand-binding, notes, and CATH structural annotations do not conflict with gene product 

annotations and thus are included irrespective of gene product annotation. Cumulative gene counts refer to the 

union of all genes annotated with at least one gene product, CATH topology, Ligand binding site, or functional 

note. Hypotheticome fractions refers to cumulative genes/1,725 GUF.  
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Fig 1. Updated annotations from structure and literature reduce the M. tuberculosis 

hypotheticome.  

Circos plots illustrating annotation coverage (A) prior to the annotation effort and following it (C), colored 

according to annotation status. In plots A and C, all 4,031 CDSs are represented as segments of equal width while 

(B) segments the ring into only the 1,725 genes of the hypotheticome. Plot A reflects only what is on TubercuList, 

with the gray genes indicating they were considered “annotated” and are mutually exclusive from the 1,725 genes 

of the hypotheticome, colored in white. The circos plot of B shows only the 1,725 genes of the hypotheticome, 

while the circos plot in C merges A and B and includes all 4,031 original CDS. The plots inside of the circos rings 

in B and C are stacked bar charts with CDSs were split into 100kb bins, according to start position. Height of each 

color in a bin represents the proportion of genes annotated to that level out of total genes in the bin, and the total 

height of non-white bar represents total proportion annotated in that bin.  

 

 

Of the 738 GUF remaining without product annotations or notes (S2A Table), 135 have quality structure 

models (C-score > -1.5)19, but could not have annotations inferred through our methods (S2C Table). 

Meanwhile, 182 of those remaining have annotations conveying product function in UniProt (S2D 

Table) and/or Mtb Network portal (S2E Table), and Remaining still, however, are 427 GUF with no hint 

of function (S2B Table). Many of these genes cluster consecutively along the genome (105 genes across 

15 clusters, S3 Table), indicating potential operons of unknown function. 
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We classified PDB template hits into candidate annotation categories according to the regression of 

precision against TM-score and AA% (Methods & Materials). More PDB templates qualified for transfer 

of lower confidence and specificity thresholds than for higher tiers (S1 Fig). Many templates with high 

TM-score but low AA% qualified for CATH annotation transfer, which underscores the utility of 

structure-based annotation in the absence of sequence homology. We then combed through genes with 

high structural similarity to pull in similar structures not annotated correctly in PDB, as well as proteins 

disfavored under the combined AA% and structure-based inclusion criteria due to low AA%—

transporter proteins42 and analogs43.  

Several PDB templates were 100% identical to query proteins, representing protein sequences of M. 

tuberculosis or closely related mycobacteria (Supplementary Note). Overall, model quality was high for 

annotations that passed inclusion criteria; PDB:query relationships meeting criteria for EC, GO or 

CATH inclusion had a mean C-score of 0.634 and distributed according to their confidence and 

specificity (S2D Fig). Similarly, model quality of relations not meeting inclusion criteria (gray and 

black) were lower than the relations meeting any of the inclusion criteria (red, greens, and blues, S2 Fig), 

demonstrating annotations were derived from high quality structural models, rather than false similarity 

from noisy structural predictions.  

Systematic literature curation increases annotation over existing databases 

We compared annotation distributions for common frameworks between frequently cited databases for 

M. tuberculosis to determine which GUF lacked annotation globally. Of these databases, BioCyc and 

UniProt are the most comprehensive for GO term annotations, while UniProt and Mtb Network Portal 

have the fewest hypothetical proteins (Table 2).  

 

Table 2. Whole Proteome annotation comparison to the databases commonly referenced for M. 

tuberculosis annotation.  

 
“Functional assignments” refer to annotations that describe protein function, and excluded hypothetical, 

unknown/uncharacterized, and PE/PPE family proteins. Counts are current as of May 17, 2017 for RefSeq34, 

PATRIC2 and Mtb Network Portal5 and current as of June 23, 2017 for KEGG36 and UniProt17. The number of 

CDSs in KEGG is reported as 3906 as they include only protein coding genes. The annotation for M. tuberculosis 

in KEGG is referenced from TubercuList38. 

 

Our mannotation produced annotations and functional notes novel compared to TubercuList, as well as 

the other most frequented databases for M. tuberculosis annotations. With respect to the last TubercuList 

update (March 2013), we mannotated 283 genes with new products: 138 definite, 105 probable, and 47 

putative (one gene can have multiple products). Among the products annotated are 122 enzymes, 81 

antigens, 28 regulatory proteins, 12 binding proteins, and 55 in various other categories (File S1 and S4 

Table). Additionally, 316 genes were annotated with at least one functional note (S5 Table), amassing 

599 (34.7% of the GUF) in total. Functional notes include information implicating drug resistance, 

pathogenesis, virulence, and more. 

These genes’ functions were diverse, but a few functions were particularly well-represented. Fourteen 

gene products that reduce oxidative stress were curated, which are critical for the bacillus to withstand 
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the oxidative species generated by the host. Also prevalent among mannotation and crucial for cellular 

and genomic integrity and were proteins mediating RNA and DNA function, tallying 22 in total. Many 

serine hydrolases were mannotated, and mostly derived from a single study44 that identified serine 

hydrolases in non-replicating hypoxic culture, a valuable addition considering their inaccessibility using 

traditional methods. Also of note are eight transporters/efflux pumps curated through our mannotation, 

which are crucial to drug tolerance and homeostasis. 

 

We compared these 283 product mannotations to four other frequently cited databases. We initially 

compared our mannotations to UniProt’s because their team of curators follow a standardized manual 

protein annotation curation protocol, and regularly update annotations45 (S6 Table). This comparison 

revealed 139 GUF with mannotations absent in UniProt and an additional 33 GUF with mannotations 

more complete than in UniProt (S6 Table). We then compared these 172 GUF to Entrez, Mtb Network 

Portal, and PATRIC, revealing 118 GUF more thoroughly annotated in our mannotation than in any of 

the databases, and 54 not solely annotated as an antigen (Table 3). In total, 135 GUF received some level 

of new annotation (68 not solely as antigens).We distinguished genes annotated solely as antigens from 

those with other annotations because while antigenic properties are the primary function of some 

proteins, many have different primary functions and are simply recognized by the host. 

 

Table 3. Comparison of manually curated GUF products with annotations novel to UniProt to 

three other databases. 

 

The set of 172 manually curated GUF products novel with respect to UniProt were compared to Mtb Network 

Portal5, PATRIC2, and RefSeq34 and categorized as follows: (1) Annotated genes lacking prior annotation: 

GUF given a new mannotation when its previous annotation was “hypothetical/uncharacterized/unknown protein” 

or an annotation not descriptive of the protein’s function (e.g. PE family protein, which describes a motif, not 

function). (2) Genes annotated more thoroughly than in other databases: Our mannotation contained a more 

informative product than that in all other databases: e.g. an annotation of “flippase” for a particular GUF in our 

annotation was considered more specific than annotations of “membrane protein” or “cell division protein” in 

other databases. (3) Subtotal: new products: the union of the first two categories. The set of GUF with more 

thorough annotation than the databases in the comparison. (4) Genes annotated with additional products 

compared to other databases: GUF with a valid mannotation distinct from annotation in at least one other 

database. (5) Total: the union of all three categorizations as GUF with annotations absent from all databases in the 

comparison. “All annotations” is inclusive of proteins annotated as antigens: due to the inconsistent nature of the 

inclusion of antigen annotations or how regularly they are updated, a separate count was produced for each of the 

five above classifications that excluded these annotations. 

 

Until now, research into the functional implications of these genes would have been uninformed of these 

functions, regardless of which database the researchers used, missing potentially critical information. 

The novel genes annotated in our curation effort are highlighted in Table 4 and can be explored in more 

detail in S7 Table.  
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Table 4. Novel annotations with respect to major databases 
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Annotations are separated into those completely novel, those with similar annotations but with greater specificity, 

and those with an additional, orthogonal annotation compared to what is in the databases of Table 2. Pubmed IDs 

(PMID) from which annotations for each product were derived are included as well. Members of the PE/PPE 

family are indicated by asterisk. For the full set of such annotations, see S8 Table. 

 

EC number assignments for the 1725 GUF were identified in BioCyc, TubercuList, UniProt, and KEGG 

and compared with the EC numbers assigned during manual curation (Materials and Methods). The 

presence of the EC number annotation was compared between the databases and manual annotation and 

depicted in Fig 2A. EC numbers were assigned manually to 111 GUF, 59 of which are genes newly 

characterized with EC numbers in this study (Fig 2A). EC numbers for the 1725 GUF were retrieved for 

the above-mentioned databases and compared across the databases. The 111 GUF were annotated with 

one or more of 98 unique EC number assignments with varying degrees of specificity (Fig 2B). Of the 

98 EC numbers assigned to the GUF, 59 were unique to this study resulting in potential expansion of the 

enzymatic capabilities of M. tuberculosis. BioCyc was excluded from Fig 2A due to sparse annotation of 

the ’hypotheticome’ GUF. 

 

   

Fig 2. EC number annotation in the manual curation effort compared to widely used databases. 
(A) Mannotations were compared with those in the databases in Table 2 to identify the presence or absence of EC 

number in GUF annotations. The ovals in plot A represent the set of GUF annotated with an EC number in each of 

the five databases compared. The non-overlapping segments indicate the number of GUFs annotated uniquely in 

the that database. For example, 59 GUFs were annotated with an EC number in the manual curation effort in this 

study and these genes are not annotated with an EC number in TubercuList, UniProt, KEGG and BioCyc. (B) EC 

numbers were enumerated for the GUF for each of the database and unique EC numbers were identified and 

compared to the unique EC numbers manually curated. The ovals in plot B represent the set of unique EC 

numbers annotated for the GUF in each of the 4 databases compared. For example, the manual curation effort 

yielded 61 unique EC number assignments to the GUF indicating curation of previously unannotated function to 

these genes in this study.   

A B 
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Gene products inferred from structure despite low AA% similarity 

Annotations in Table 5 demonstrate the utility of structure-based annotation for inferring function where 

other methods cannot. The table contains annotations inferred from high structural similarity to a PDB 

template despite lacking appreciable sequence similarity. Some of these affirm tentative or unreviewed 

annotations in UniProt or Mtb Systems Portal, others expand on them, and others project functions 

where there were previously none. Affirmatory annotations support the existing annotations and indicate 

their predictive strategies and structural inference converge while novel annotations mark exciting 

prospects for experimental validation.  

Table 5. Novel annotations transferred through structural similarity despite low sequence 

similarity. 

A subset of the novel annotations from I-TASSER models with high structural similarity to solved PDB crystal 

structures of known function. All annotations either extend those found in frequently updated databases or are new 

entirely. Sequence similarities among proteins displayed range from well-below (<20%) to modestly above 40% 

sequence similarity, which unofficially demarcates the “twilight zone” of sequence homology, beyond which only 

structure-based similarity methods can detect remote homology46. High TMADJ reflects that the true structure is 

similar to that of the PDB template. TMADJ above 0.52 indicates that the template and the GUF share the same 

structural fold, and higher scores indicate greater degrees of similarity in structure and, by extension, function. For 

each locus tag, annotations from UniProt, Mtb systems Portal, TubercuList, the highest structural similarity (after 

adjusting for expected error, “TMADJ”; Equation 1, Supplemental Note) PDB template and its identifier (“PDB”), 

and its final annotation (File S1) are displayed, along with the amino acid identity, and type of characterization. 

Those listed as “affirmatory” corroborate the annotations in UniProt or Mtb Network Portal. “Novel” are entirely 

novel annotations to those in UniProt and Mtb Network Portal, while “more specific” are in accord with 

annotations in other databases but describe product function in greater detail. S9 Table contains all PDB matches 

with TMADJ greater than 0.52.  

 

Structural analogs of our GUF span diverse functional classes. We highlight analogs relevant to open 

questions in M. tuberculosis pathogenesis, along with some that are otherwise novel or surprising. 

 

The structural analogy of Rv1139c to an integral membrane methyltransferase implies a potential role in 

virulence, as one-carbon transfers modify mycolic acids embedded in the M. tuberculosis cell wall. 
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Mycolic acids feature prominently in the repertoire of pathogenic weaponry wielded by M. tuberculosis 

and are essential to virulence47. 

 

Rv1766 is a putative transcription factor that structurally resembles a copper-responsive 

metalloregulatory protein. Transcription factors of M. tuberculosis are considered mostly identified, with 

substantial efforts undertaken toward their systematic characterization, so if this gene truly encodes a 

transcription factor it would be significant48,49. Meanwhile, Rv0052 and Rv3192 play putative roles in 

the redox response, critical to enduring host attacks in macrophage50. These highlight a few of the many 

annotations afforded by inference through structural similarity. 

 

Similarity to host-like structures suggest host-mimicry in many M. tuberculosis hypothetical 

proteins 

Though our inclusion criteria balance stringency and quality, proteins with structural analogs (as 

opposed to homologs) may be overlooked, due to their low AA% (Materials and Methods). As an 

obligate pathogen, M. tuberculosis likely harbors proteins convergently evolved to mimic host protein 

structure51,52. To scan for such cases, we re-examined hits with TMADJ values that indicated matching 

topology (Supplemental Note, Equation 1) and low sequence similarity. Remarkably, several were 

analogous to host-proteins involved in TB infection dynamics, but not yet attributed to a protein M. 

tuberculosis (Table 6). 
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Table 6. Protein models with high similarity to known players in immunity and the host-pathogen 

interface. 

All matches in the table exceed TM
ADJ

 of 0.52 and mediate functions associated with host subversion in other 

pathogens, or are structurally similar to host proteins implicated in immunity, suggesting analogy. These functions 

were not necessarily included in the annotation .gff file (File S1) because their low AA% prevented them from 

meeting inclusion criteria, but represent interesting candidates for experimental testing. 
 

 

These may clarify incompletely characterized elements of mycobacterial lifestyle in the host, particularly 

in immune-cell fate and transport into, and regulation of the cellular environment in which M. 

tuberculosis resides during infection. More broadly, the recurrence of these analogs suggests that 

pathogen host-mimicry for manipulating host cell phenotype may be a more widespread and tightly 

orchestrated phenomenon than currently appreciated.  

Perhaps most fascinating of these putative analogs is Rv0193c, which encodes a protein structurally 

resembling Niemann Pick 1 protein (NPC-1) (Fig 3). NPC-1 mediates an inherited lipid storage disorder 

in human lysosomes53. The overlapping portion of the two structures span multiple regions of NPC-1 

annotated on UniProt as dipping into the lumen, suggesting this potential mycobacterial analog may 

attach to the phagosomal lumen. A potential hypothesis is that within the lysosome, secreted NPC-1 

analogs competitively antagonize native host proteins, initiating cholesterol accumulation. This protein’s 

effect on the NPC-1 pathway may contribute to phagosomal maturation arrest, calcium dyshomeostasis, 
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altered mycolic acid production or influence host metabolism and transport of cholesterol and other 

lipids54. Potential roles of these proteins are expanded upon in the Discussion. 

   

Fig 3. Structural similarity between Rv0193c modeled structure and Niemann-pick C1 protein 

(NPC1) from homo sapiens.  

(A) Superimposition of the larger NPC-1 crystal structure (PDB Template 3jdB, charcoal) and the predicted model 

structure of Rv0193c (.pdb structure predicted from I-TASSER, cyan). Structures are rendered translucent to 

depict their relative positions. (B) The region of NPC-1 which Rv0193c aligns to (RMSD = 2.72). All structures 

were derived from PDB files and visualized in pymol. 

 

PE/PPE protein structure models similar to diverse proteins 

Candidate structural matches for 7 of 36 (19.4%) PE family proteins and 11 of 68 (16.2%) PPE family 

proteins were identified through structural alignment to solved structures from PDB. However, these 

proportions are well below the genome-wide proportion of proteins with matches by the same criteria 

(521/1725, 30.2%), likely due to the uniqueness of the PE/PPE families. Any clues to the function of 

these hardly characterized protein functions are valuable nonetheless, as they are unique to the MTBC 

complex and repeatedly implicated in pathogenesis. Effector proteins from other pathogens and human 

proteins were prevalent among those with similar PDB templates (Table 7), supporting the notion that 

PE/PPE proteins are integral to host-pathogen interaction in M. tuberculosis. 

Table 7. Protein models of PE and PPE family genes with similar proteins  

A B 
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Potential analogs to host proteins, which may mimic or act to subvert the host are bolded (both the template and 

the locus tag). Only models with at least one match exceeding TMADJ of 0.52 (the TM-score corresponding to 

matching topologies > 50% of the time)25 are shown. Proteins and the organism expressing them are listed. Where 

multiple matches exceeded the threshold, only the top three hits are displayed.  

 

 

Though lacking obvious relevance to the host-environment, the analog of Rv0755 is interesting: Rubber 

oxygenase (RoxA) from plant pathogen Xanthomonas, which aligns across 97% of the polypeptide. 

Latex degradation would be an unexpected capability of M. tuberculosis without known utility in the 

lung, to our knowledge. Alternatively, this protein may catalyze degradation of some form(s) of 

isoprenes, a group of latex-related compounds which mediate important processes in virulence and cell 

wall metabolism55.  

 

The strong similarity between PE_PGRS family Rv3507, and a fatty acid synthase (FAS) subunit is 

intriguing, as functions  of the PE_PGRS protein family are largely unknown. On the one hand, this 

annotation should be taken with skepticism;  PE_PGRS protein models closely resembled FAS subunit 

protein structures with conspicuous frequency, particularly Saccharomyces cerevisiae PDB template 

2pff. Perhaps this similarity is merely an artifact of their high GC-content and the resulting glycine 

abundance aligning to the hydrophobic region of large eukaryotic synthases, inflating their predicted 

similarity score. On the other hand, Rv3507 and a handful of others exhibit similarity in structure, but 

not sequence, to additional eukaryotic FAS enzymes, suggesting a true relationship, though this could 

indirectly result from threading guided by 2pff during I-TASSER modelling19.  

CATH structural topologies 

In parallel with functional annotations, structure can be annotated systematically through transfer of 

CATH “topologies”, often referred to as protein “folds” from structurally similar PDB entries56.Protein 
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structure models for 373 GUF had matches meeting the CATH inclusion threshold with PDB entries 

annotated with CATH topologies, 39 of which had no gene product annotation (S10 Table).  

 

Some CATH topologies encompass multiple protein superfamilies that carry out diverse reactions, while 

others are nearly invariant in function across all members of the topology57. Both cases are represented 

in commonly transferred CATH annotations (Table 8). For example, members of the “TIM Barrel” 

topology (Table 8) vary wildly in function58,59, and “alpha-beta plaits” comprise over 90 superfamilies 

and thousands of domains39,60. In contrast, “Tetracycline repressor; domain 2” (TetR) topology members 

vary in sequence, are structurally homogeneous61, and function nearly exclusively as concentration-

dependent transcriptional activators. Transcriptional repressors dissociate from their target DNA in the 

presence of substrate, activating transcription, which, in some cases, are antibiotics, or other compounds 

of clinical interest62. TetR repressors serve important functions in M. tuberculosis. They control 

expression of the primary proteasomal complex responsible for degrading damaged proteins62; of 

isocitrate lyase, a critical metabolic switch that initiates the glyoxylate shunt to reprioritize nutrient 

utilization63; and of drug efflux pumps in response to antibiotic concentration61. All GUF with TetR 

CATH topologies are listed S11 Table, along with the PDB templates from which they were transferred. 

  

Table 8. Most commonly transferred CATH topologies and their associated functions 

 

 

Expanded metabolic capabilities of M. tuberculosis 

EC numbers describe catalytic function hierarchically, through a four-tiered numerical identifier, and 

allow systematic description and classification of the enzymatic capabilities. Levels of this hierarchy 

funnel from general enzyme class (e.g. ligase, oxidoreductase) down to substrate specificity with atomic 

precision29. 

 

Cumulatively, annotations yielded 222 unique EC number assignments spread across 313 GUF. Of this 

unique set of EC numbers, 165 are specific to this M. tuberculosis annotation, and 222 (not to be 

confused with the 222 unique EC numbers) of the 313 genes are annotated with an EC number unique to 

this annotation (Fig 4). 
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Fig 4. Updated M. tuberculosis EC number annotation compared to widely used databases. 

C 
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EC number annotations assigned for manually curated gene products as well as the assignment using structural 

homology for the 1725 GUF were compared with EC number annotation in existing databases. The annotation 

effort yielded one or more EC number curation for 313 genes assigned manually or using structural homology 

prediction in the 1725 GUF. (A) Existing databases were compared to identify the presence of EC number 

annotations for the GUF. (B) EC numbers were enumerated for the GUF for each of the database and unique EC 

numbers were identified and compared to the unique EC numbers annotated in this study. (C) Distribution of EC 

numbers annotated across KEGG Subsystems and Pathways. Subsystems depicted are the generic KEGG 

subsystems, since they have yet to be assimilated into the metabolism of M. tuberculosis. Pathways within each 

subsystem are also depicted and the number of EC numbers mapping to them are displayed or all pathways with at 

least four genes, or the highest total within the subsystem if no pathways had four or more genes. The pie chart 

shows the proportion each subsystem comprised of the total added. 

 

These expand the annotated metabolic capabilities of M. tuberculosis across numerous pathways and 

subsystems (Fig 4C), several of which are underrepresented, scarcely characterized, or integral to 

pathogenesis. For instance, the novel candidate proteins mediating reactions involved in lipid 

metabolism may address open questions in how the elaborate lipidomic profile of M. tuberculosis is 

orchestrated, and how it contributes to pathogenesis. 

 

GO terms implicate proteins in physiological contexts and processes of the host environment 

GO terms describe gene products through three structured ontologies: biological processes (the processes 

in which the product plays a part), cellular components (its location within the cell), and molecular 

functions (its specific function)28,64. 

The distribution of GO terms transferred to GUF because of structural similarity indicates common 

themes in the new annotations, with several particularly relevant to pathogenic processes of M. 

tuberculosis (Fig 5). 
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Fig 5. Most frequently annotated GO terms. 
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Gene Ontology (GO) terms describe proteins by the cellular location where they perform their function (Cellular 

Component), their precise function (Molecular Function), and the processes/ pathways in which they are involved 

(Biological Processes). GO terms were incorporated as described in the flow diagram of Fig 8B. Terms from all 

three ontologies were included, and very general terms were culled (e.g. “catalytic activity”, “growth”, “metal ion-

binding”, etc.) from the plot, but remain in the .gff (File S1). Counts in the histogram span all 1,725 GUF. Only 

those terms with ten or more occurrences are plotted, and no attempt was made to collapse child ontologies into 

parents. GO terms implicating function specific to eukaryotic environment are shown in red.  

 

Top hits in the biological process ontology align with classic M. tuberculosis features: Myriad proteins 

to overcome oxidoreductive stress in the host environment, an elaborate array of lipid metabolic 

capabilities, and sophisticated transcriptional regulatory programs to cater phenotype to what best 

facilitates survival in any one of the many environments it must persevere in the host65.  

 

Several cellular component GO terms reference eukaryote-specific organelles, such as “nucleus” and 

“mitochondrion”, indicating candidate host-interaction proteins. Further implicating function at the host-

pathogen interface are the 27 GUF annotated with “extracellular exosome” (Fig 5). Exosomes provide a 

means of intercellular communication between species, and have recently gained recognition for their 

role is host-pathogen interaction66, particularly as an access point to the immune system for pathogen-

derived effectors67. 

Potential novel efflux pumps uncovered through structural similarity 

Apparent structural analogs of known transporters emerged from our 1,725 GUF; 60 met our annotation 

transfer criteria (S12 Table). These comprised diverse transporter classes, but sodium/hydrogen 

antiporters (Na+/H+ antiporters) were particularly abundant. (Na+/H+ antiporters) are implicated in 

proton import necessary to increase proton motive force (PMF) which, in turn, fuels the electron 

transport chain, generating ATP for active drug efflux posited to mediate intrinsic antibiotic resistance in 

M. tuberculosis68. Sixteen GUF shared structural similarity with drug transporters, the majority 

exhibiting similarity to PDB template 4zow, a Major Facilitator Superfamily family PMF antiporter 

isolated from E. coli69, totaling 24 likely analogs of PMF-driven antiporters among the GUF, a sizable 

addition to gene products implicated in drug efflux.  
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Discussion 

We isolated 1,725 genes products (GUF) in need of updated annotation on TubercuList, the most 

frequently cited database for M. tuberculosis6. Through manual literature curation, inference by 

structural similarity, and consolidation of existing databases, we annotated 987 of these GUF with 

functional notes, gene products, or CATH topologies, 713 of which are gene products, a vast 

improvement over other M. tuberculosis annotation resources Major implications for M. tuberculosis 

physiology and infection dynamics stem from these annotations. These implications span core 

metabolism, transport, pathogenesis, host-interaction, regulation, stress responses, DNA damage repair, 

drug resistance, and more. We highlight several of these to demonstrate how the new information from 

this article illuminates potential phenotypic inferences, and increases such studies’ value. We present 

these annotations in both human (S1 Table) and machine readable (S1 File) format to facilitate genome-

wide bioinformatics analyses, and targeted reference of particular genes for applications of narrower 

focus. This work advances the M. tuberculosis reference annotation and provides multiple resources to 

integrate into future analyses and exploration of those still unannotated. 

 

In the following sections we discuss the importance of manually curated annotations generally, and for 

M. tuberculosis particularly. We then discuss the novel annotations feasible through structure-based 

methods, focusing on PE/PPE genes and on annotations with mearing on the host-pathogen interface. 

We next discuss the implications of our annotation update to M. tuberculosis  metabolism, newly 

identified transport and efflux proteins, and how our annotation enriches an example transcriptomics 

study. Next, we discuss how our inclusion criteria were informed, and how to interpret each of the types 

of annotation included in this effort, and the limitations of our annotation. We then discuss the genes that 

remain uncharacterized, before exploring the potential application of these methods to other genomes.   

Regular Manual Curation is essential for well-studied organisms 

Manual curation is the most accurate form of extracting annotations from literature, and a critical 

component of annotation. While automation can help curators prioritize which papers to read in detail, 

current software tools developed to “read” scientific articles and extract information cannot reliably 

gauge strength of determination methods, leaving manual curation as the gold standard45. The curators of 

UniProt estimate they evaluated over 4,500 papers, but only used 1,368 of these in their annotation45. 

Our manual annotation cited 656 papers, but required reading of thousands, underscoring the magnitude 

of the task of manual curation. UniProt curators address this problem by 1) regularly reading through 

published articles (every 6 months) so literature review remains feasible 2) automated filtering of articles 

to determine which are worth curating manually for functional annotation45. We recommend these 

approaches to anyone desiring specific functional annotation for an organism of interest. The subjectivity 

of these calls should be minimized to keep a high standard of annotation accuracy, though attaining 

absolute objectivity is challenging. A key step in maximizing objectivity is following controlled 

vocabularies known as ontologies, several of which we implemented in our annotation procedures. 

Ontologies for several facets of annotation exist, including evidence assignment, function, and 

relationships between gene products28,70. The volume of new publications is simply too large for global 

curation efforts like UniProt to manually annotate all experimental characterizations. Research 

communities of widely studied organisms must initiate their own, complementary manual curation 

efforts to remain updated. To mitigate the manual component of this process, PubMed Central (PMC) 

can be accessed programmatically, and queried by a date range of publication dates, organism, and gene, 

and is a good place to start for those desiring the most up-to-date functional annotation for a particular 

organism.  
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Significance of Manually Curated Gene Products  

Mannotation provided important functional assignments, absent from regularly updated databases, to 85 

GUFs (29 excluding antigens) with high certainty. Particularly striking were annotations of PE and 

PE_PGRS genes with experimentally characterized functions (Table 4). These gene families are unique 

to mycobacteria, sparsely characterized, and difficult to accurately sequence due to highly repetitive 

regions and high GC-content71. Notably, Rv1430 (PE 16) encodes an esterase72. This catalytic capacity 

by a PE/PPE family gene is a crucial discovery that should not be obscured by the current disconnect 

between the M. tuberculosis bibliome and annotation databases.  

 

Highlighting more examples of important annotations absent from frequented databases demonstrates the 

depth of this issue: We mannotated Rv0024 as a probable peptidoglycan hydrolase, and noted its 

involvement in isoniazid and pyrazinamide (two first line antituberculosis drugs) resistance and biofilm 

formation73. This gene had been annotated as a putative secreted protein, which does not indicate its 

involvement in drug resistance and biofilm formation. Also among our unique mannotations is Rv1337 

as a rhomboid protease74, a far more informative annotation than that from TubercuList (possible integral 

membrane protein), PATRIC, RefSeq, or Mtb Network Portal (S7 Table). Also absent from these 

databases is the involvement of Rv1337 in ciprofloxacin and novobiocin resistance and in biofilm 

formation74, which we added as functional notes. Another mannotated gene, Rv3005c, encodes an 

oxidoreductase responsive to oxidative stress75. This stress response is important for in-host survival of 

M. tuberculosis76,77, but lacks annotation implicating this gene in common databases. Many other 

functional features and discoveries pertinent to pathogenesis, host-pathogen reaction, and antibiotic 

resistance are present in functional notes (File S1). We annotated 599 GUF with such notes, providing 

information on many lacking product annotation (S5 Table). 

 

Knowing these genes’ precise functions provides researchers greater context of the physiological 

capabilities when piecing together the mechanisms of resistance to drugs and the genomics underpinning 

their emergence. A more informed research community can speed the drug discovery process by 

clarifying fertile routes to pursue and by pruning dead-ends in these efforts. 

Structural analogs reveal candidate host-interaction proteins 

Identifying proteins at the host-pathogen interface is challenging. Technical limitations in faithfully 

representing the host environment hinder laboratory approaches, while sequence homology is 

ineffective, as these proteins often evolve convergently with low AA similarity rather than from common 

ancestry52. 

 

Annotation derived from structural similarity is data-driven, removing both the bias toward a priori 

assumptions and the constraint to evolutionarily close relatives inherent in approaches based on AA 

sequence-similarity. Therefore, structural similarity-based approaches can furnish annotations that run 

contrary to conventional predictions, while imparting greater significance to findings aligning with 

dogma, since they are found independent of prior assumption. These advantages manifest repeatedly in 

this annotation: I-TASSER runs revealed dozens of GUF models structurally analogous to crystallized 

proteins with functions specific to eukaryotic cellular environments, unmasking potential host-

interacting proteins. Many of these putative analogs fell in protein classes known to subvert host 

immunity in other intracellular pathogens, while others matched novel targets that are implicated in 

processes that contribute to M. tuberculosis pathogenesis, but lack known pathogenic effectors (Table 6). 

 

The mechanisms of these putative pathogenic effectors can be divided into four broad categories: (1) 

Influencing vesicle trafficking to various organelles, (2) Manipulating host transcription, (3) 

Manipulating immune cell fate, and (4) Localizing pathogen-derived cargoes across membranes into host 
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organelles. Analysis of putative structural analogs also added pathogenic functions to those already 

known for the Rv3365c-Rv3361c operon, and revealed an unexpected pattern of M. tuberculosis proteins 

analogous to human proteins implicated in lysosomal storage diseases. 

Vesicle trafficking. 

One of two primary routes to lysosomal degradation of M. tuberculosis is mediated by small GTPases. 

Small GTPases influence vesicular transport to orchestrate M. tuberculosis delivery to the lysosome78. 

Interestingly, Rv3362 matched six Ras GTPase proteins as structural analogs (S9 Table). Ras GTPases 

interact with host effectors to regulate membrane trafficking and vesicle transport to coordinate immune 

responses and influence how immune cells mature into different states (maturation into phagosome, for 

instance)79. Some known M. tuberculosis effectors act on Ras proteins to increase M. tuberculosis 

replication78,80. 

 

Rv3362 may interfere with native eukaryotic Ras signaling, uncoupling or modifying host signals to 

serve interests of the pathogen. In addition, Rv3362 may contribute to the observed subversion of 

autophagy by M. tuberculosis, or perhaps has distinct, complementary roles in host subversion. 

 

Another surprising apparent host analog is Rv2082, the structural model of which resembles a 

“coatomer” protein. Coatomer proteins drive vesicular formation and subcellular trafficking from the 

Golgi, and are repurposed similarly in phagosomes81. This leaves one to wonder whether M. tuberculosis 

is mimicking the coatomer to disrupt proper function of the phagosomal transport machinery, or if this is 

a ’Trojan horse’ of sorts; a means for entry and delivery of nefarious signals to host nuclei for 

manipulation of programmed immune responses. 

Subverting host immune defense programs by manipulating transcription. 

Direct manipulation of host transcription has recently been characterized as a route for pathogenic 

control of host processes. At least two known proteins of M. tuberculosis exert epigenetic control on host 

transcription: a histone methyltransferase to modify higher order chromatin organization, and a DNA 

methyltransferase to modify host DNA directly, but others may have similar roles82. 

 

One such candidate arose in the hypotheticome GUF: Rv1179c structurally resembles a type ISP 

restriction-modification enzyme of Lactococcus lactis, which comprises DNA endonuclease and DNA 

methyltransferase activity. It is the only structural match for Rv1179c and overlaps with the C and N-

terminal helicase as well as the N6-adenine DNA methylase domains annotated on InterPro. DNA 

methylation in M. tuberculosis has been reported but accounted for by three other enzymes83,84, 

suggesting that if truly a DNA methyltransferase, Rv1179 may be host-directed. Alternatively, it could 

be a self-directed RM-system that is yet undiscovered. 

Driving immune cell fate for replication-permissive niches in vivo. 

Another potential effector modulating host cell fate is Rv3304, which structurally resembles human 

gamma-glutamyl transferase (Table 6), which upregulates cytochrome C from the mitochondria, a 

central player in apoptosis induction85,86. This potential mimicry may allow M. tuberculosis to 

manipulate host immune cells toward or away from apoptotic cell death. Modeled Rv2998A bears a 

structure analogous to a sec7 guanine exchange factor (GEF), which can affect host GTPases to 

influence directionality of vesicular transport. This phenomenon is one of few well-characterized in host 

mimicry, which has recently gained appreciation as a widespread means of pathogen adaptation52,81. 

Pathogens can mimic their host through horizontal acquisition or convergent evolution. Host mimicry of 
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Sec7 has been characterized in fellow obligate pathogens Legionella pneumophila and Rickettsia 

prowazekii, as an effector molecule translocated into host cytosol via their type IV secretion system87,88.  

Localizing pathogen products to host organelles. 

The discovery of eukaryotic nuclear import analogs provides candidates for mediating delivery of 

pathogen-created elements to the host nucleus for transcriptional manipulation. The Rv3737 model 

structurally resembles a cell-cycle dependent nuclear import subunit from S. cerevisiae (Table 6), with 

slightly lesser similarity to human importins (S9 Table). Similarly, models of Rv1278 and Rv0585c 

resemble human Transportin 3, a nuclear import factor that localizes extranuclear cargoes to the nucleus, 

particularly splicing factors89. Intriguingly, Transportin-3 is also implicated in HIV-1 replication, 

presenting a theoretical mechanism for potentiating HIV-1 and TB coinfection beyond their known 

synergies90. 

The Rv3361c-Rv3365c operon is heavily implicated in pathogenic processes. 

Though known as an important virulence operon, several structural analogies suggest multiple 

pathogenic mechanisms are encoded by the Rv3361c-Rv3365c operon, which is starkly upregulated 

upon macrophage entry91. Rv3361c confers resistance to quinolones, ciprofloxacin, and sparfloxacin92, 

while its structure also closely resembles a patatin autotransporter, a virulence factor contained in the 

whooping cough vaccine, which provides immunity to Bordetella pertussis, its etiological agent93. 

Rv3362c is a structural analog of the small GTPases that orchestrate vesicular transport. Together with 

previously characterized effectors Rv3364c (a serine protease inhibitor that binds Cathepsin G to halt a 

pro-apoptotic signaling cascade91), this operon comprises a formidable cluster of virulence factors. 

Potential analogs of proteins implicated in lysosome storage diseases. 

Perhaps most unique among these potential effector proteins is Rv0193c (Table 6), which appears 

analogous to human protein “Niemann-Pick protein 1” (NPC-1). Dysfunctional NPC-1 causes a 

eukaryotic disease characterized by lipid accumulation and defective lipid transport in lysosome53. 

Incredibly, M. tuberculosis-infected macrophage phenotypically resemble cells afflicted with Niemann-

Pick disease in their accumulation of cholesterol and other lipids, and decreased calcium concentration. 

This phenotypic parallel Niemann-Pick diseased cells and M. tuberculosis infected macrophages 

between prompted investigation earlier this year, which heralded inhibition of the Niemann-Pick 

pathway as a mechanistic explanation for intracellular persistence, but did not identify a corresponding 

genetic determinant in mycobacteria54. Rv0193c may be a principal element of M. tuberculosis 

responsible for their findings. 

 

Like NPC-1 and Rv0193c, Rv1191c structurally resembles a human protein that, when dysfunctional, 

characterizes a lysosomal storage disease: cathepsin A. Cathepsins are proteolytic, and degrade 

pathogenic proteins in the lysosome. M. tuberculosis appears to avoid this fate by knocking down 

cathepsin transcription and activity in macrophage, which improves survival. The authors noted that 

cystatins—natural cathepsin inhibitors—were upregulated early in the course of infection in activated 

macrophage, implying M. tuberculosis acted early to curtail cathepsin production94. An intriguing 

hypothesis is that through its similarity to cathepsins, Rv1191c signals a cystatin-cathepsin negative 

feedback loop without expression of host cathepsin, but rather with the M. tuberculosis analog 

(presumably inactive). An alternative hypothesis is that the M. tuberculosis cathepsin analog competes 

for limited cofactors or binding partners, perhaps the host cathepsin precursor for the (yet unknown) 

activator it requires in the lysosome95, antagonizing formation of active cathepsins, thereby reducing its 

proteolytic activity and enhancing mycobacterial survival. 
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The convergence of structural analogs of M. tuberculosis proteins associated with lysosomal storage 

disorders paints a picture where, through structural mimicry of host proteins, M. tuberculosis induces a 

lysosomal phenotype resembling multiple diseased states. These present exciting opportunities for future 

work and foreshadow a larger set of effector proteins tailored to subvert the host immune system than 

currently characterized. A larger set would be unsurprising; many obligate pathogens have dozens, or 

even hundreds (Legionella, for example87) of secreted effectors that reconfigure the wiring of host 

immunity programs85.  

 

These candidate pathogenic effectors compel further investigation. If legitimate, they are appealing drug 

targets; their inhibition could potentiate the mechanisms of immunity they normally disrupt. Host-

interaction is widely acknowledged to mediate fundamental M. tuberculosis survival strategies in vivo, 

but most such mechanisms are characterized scarcely, at best96. These candidate effector proteins are 

high priority candidates for experimental elucidation. 

Structural analogs among PE/PPE proteins 

Several trends among the elusive PE/PPE genes emerged based on the proteins they shared structural 

similarity to (Table 7). While PE_PGRS proteins mainly matched structures of eukaryotic fatty acid 

synthases, there emerged a more diverse array of structural matches among the other two PE/PPE 

families. 

 

Five from the PPE family had significant homology to PPE41, one of the better understood PPE 

proteins. Among these, the structure model of PPE57, (encoded by Rv3425) resembles both a Ras 

GTPase and PPE41, which, in its heterodimeric form (with PE25) preferentially induces necrosis over 

apoptosis in murine macrophage, though the precise mechanism is unclear97. This concomitant similarity 

with PPE41 and Ras GTPases suggest PPE57 may encode a protein that carries out a similar function, 

and perhaps provides the unknown mechanism of necrosis inhibition carried out by the PE25/PPE41 

heterodimer, since it shows homology to both PPE41 and to a reasonable cause of immune cell fate 

manipulation (through interfering with Ras signaling). The homology with PPE41 of four other PPE 

proteins suggests they may also be secreted effectors, perhaps after dimerizing with a PE gene, or, like 

PPE57, after being expressed on the mycobacterial membrane surface. 

 

Several matches to PPE structure models suggest function in the host-environment. PPE64 and PPE53 

structurally resemble serine protease autotransporters, which are secreted effectors widely implicated in 

bacterial pathogenesis. They play a variety of immunomodulatory and cytotoxic roles, such as degrading 

host proteins98. 

 

Interestingly, three PE proteins’ top structural matches were colicins. Colicins are often secreted and 

translocated into neighboring bacteria, where they degrade nucleic acids to reduce competition99. M. 

tuberculosis may utilize these compounds to outcompete its non-pathogenic counterparts of the healthy 

lung microbiome. Alternatively, these matches could be host-directed, and damage host DNA and RNA 

through a similar mechanism.  

Novel metabolic annotations fill knowledge gaps and may improve metabolic modeling 

Newly annotated metabolic products fill pathway gaps and further characterize genome-wide metabolic 

reconstructions in silico for systems inquiry. Functional annotation of genes and proteins involved in 

carbohydrate metabolism point to novel substrate utilization capabilities in M. tuberculosis, and perhaps 

identify alternative in known metabolic pathways and help explain the remarkable resilience of M. 

tuberculosis100. 
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Polyketide and terpene metabolism mediate pathogenic processes unique to M. tuberculosis and are 

overrepresented in (Fig 9C). Polyketides are implicated heavily in virulence101–103, make up part of the 

outer lipid layer of the M. tuberculosis bacillus, the host-pathogen interface104, where they mediate 

processes to subvert mechanisms of host immunity105. Meanwhile, terpenes play an immunomodulatory 

role during early stages of M. tuberculosis infection and phagosomal maturation106–108. Recently, terpene 

products unique to M. tuberculosis expressed on the cell membrane surface were discovered109 and 

others show potential as agonists of antibiotics for TB treatment110, underscoring the importance of 

understanding their metabolism. Identifying products that metabolize virulence and antibiotic resistance 

components should accelerate advancements in understanding and treating M. tuberculosis.  

Expanded set of putative transport and drug efflux proteins identified 

Particularly relevant to M. tuberculosis research and clinical communities, are 60 GUFs implicated in 

membrane transport and efflux (see S12 Table for the complete list). These proteins are prime targets for 

inference through structural homology: due to structural preservation in their membrane-spanning 

regions, transport proteins exhibit a far lower degree of sequence conservation than globular 

proteins42,111 relative to structure. This structural conservation likely owes to restricted structural 

freedom while embedded in the membrane. These putative transporters are candidate contributors to 

intrinsic antibiotic resistance and tolerance, which is often enacted through upregulation of membrane 

efflux in M. tuberculosis112. Others may serve homeostatic roles, such as regulating pH, the proton-

motive force, or the relative concentration of metal ions. These are each tightly regulated to maintain a 

viable internal state, in vivo113,114 . These GUFs are important to characterize experimentally, since efflux 

proteins are integral to understanding short-term drug response and baseline homeostasis. Their 

characterization would enhance the utility of in silico systems modeling approaches, and contribute to 

our basic understanding of M. tuberculosis homeostasis.  

Greater annotation coverage in omics studies 

To illustrate this immediate relevance to the M. tuberculosis research community, we chose two recent, 

genome-wide transcriptomics screens under novel conditions—iron deprivation115 and exposure to the 

soluble fraction of activated lysosome116—to see if genes they reported as hypothetical are characterized 

in our annotation. We found that our annotations provided products for 16/31 and 18/37 genes listed as 

unknown or hypothetical among the differentially transcribed genes unique to the iron and lysosomal 

studies, respectively (S13 Table). This amounts to 50% of genes unannotated by their sources, similar to 

the fraction annotated in this work (45%). If available to the authors, these annotations could have 

affected the conclusions drawn these studies, or enabled more informed discussion.  

Interpreting computationally derived annotations 

To complement our manual literature curation, we further annotated the GUF through inferential 

methods. Each of these annotation sources have their own set of advantages, assumptions, limitations, 

discussed below.  

Metabolic annotation: enzyme commission number. 

The binomial regression in Fig 8 does not definitively predict precision at a given value of TMID, nor 

was it designed to. Rather, it provides a clear interpretation of how terms were derived, and an 

approximate, conservative projection of precision. This projected precision likely underestimates true 

precision: False negatives occur when the query protein EC is predicted and either 1) The EC of the PDB 

template is incorrectly annotated 2) The PDB template is incompletely annotated (the reaction described 

by the EC has multiple valid EC assignments) 3) The protein of the PDB template has multiple true ECs, 

of which only a subset are annotated 4) Our EC assignment was incomplete or incorrect for reasons 1-3. 
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In contrast, false positives are vanishingly rare; either the query or PDB EC assignment would have to be 

incorrect on a particular EC number of over 7,00029. 

 

Annotations were incorporated hierarchically using boundaries of 50% and 75% projected precision for 

the 3rd and 4th EC tiers (Fig 8C). The 3rd level of EC numbers describe detailed catalytic function (e.g., 

3.1.6.- describe “Sulfuric ester hydrolases”), only lacking their specific preferred substrate(s). 

CATH topologies. 

Topology annotations derived through CATH had limited AA% in most instances (S2 Fig) which makes 

their incorporation valuable where genes would have no annotation otherwise117. Closer inspection of 

topologies with little functional diversity could allow valid inference that the protein of interest shares 

the function common to the topology, but we did not attempt to make such distinctions in this work. 

Gene Ontology Terms. 

The GO framework is unique in that it describes gene products in a species-independent manner and at 

varying degrees of specificity70,118. These features make GO terms useful for relating gene products 

across databases and drawing parallels between products from different species share function not 

apparent in their primary names. For example, "multidrug resistance protein" and "neurexin 1" sound 

unrelated, but can be unified by the GO term "transmembrane transport". This cross-species unification 

is particularly useful for reconciling annotation transfers of analogs and distant homologs into gene 

product names relevant to the organism of interest. 

 

GO terms convey meaning at multiple functional levels and should be interpreted differently depending 

on their ontology and specificity. Molecular function ontology terms are likely the most reliable; they 

typically convey information that depends less on the genetic background of the organism than the other 

ontologies and are thus more likely conserved across similar structures in different organisms. 

 

We implemented inclusion criteria for GO terms mirroring EC number cutoffs because they ultimately 

convey similar information: the propensity of structural similarity to PDB templates to imply shared 

function. GO terms encode diverse biological information and are frequently used to identify enriched 

processes and functions in a set of genes, such as those with upregulated expression under a particular 

condition, or those found mutated across clinical isolates during treatment of a particular drug. These GO 

terms increase the annotation coverage of M. tuberculosis H37Rv reference genome, and may help to 

uncover latent commonalities among gene sets, making them a useful component of this annotation 

update.  

Ligand-binding sites. 

Ligand-binding sites (LBS) were included from COFACTOR at C-score
LBS

 values corresponding to 

precision > 0.6 in a recent benchmarking study27. LBS have narrower use than EC or GO terms, but can 

identify putative ligand-protein interactions, and elemental requirements. These binding site predictions 

and the residues predicted to coordinate binding are contained in S14 Table. These can be interpreted as 

being at least 60% likely to be true27, though most have greater confidence.  

Rationale for inclusion criteria and related procedures 

Manual annotations, EC numbers, and GO terms were annotated hierarchically among one another 

because they describe general function (except for GO terms describing local properties, e.g. “metal-ion-

binding protein”), and thus a GUF correctly annotated with a function is less likely to truly have an 

additional, distinct function (though possible, hence the inclusion of multiple EC numbers in some cases, 
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Fig 9). In contrast, CATH topologies annotate structure alone, which, while ultimately giving rise to 

function, is orthogonal to GO and EC annotations in meaning and in method of derivation. Ligand-

binding site (LBS) annotations are orthogonal to both annotation of large structural features and overall 

gene product function, as they are dictated primarily by local structure. Therefore, LBS and CATH 

topologies were annotated irrespective of EC, GO, or manual annotation, as well as one another.  

 

“Overannotation”119 with low-confidence predictions is the primary cause of annotation errors. To 

mitigate these errors, we sought to maximize annotation coverage only insofar as prior data (e.g. 

benchmarks, annotation status) suggested it more likely true than false. We chose 50% as the lowest 

precision incorporated so that any annotation incorporated was more likely correct than not (Figs 3-5). 

We used few broad classifications rather than many granular ones to 1) minimize false prioritization of 

PDB templates that appear more similar to native protein structure than true matches, due to inherent 

variability in structure prediction, and 2) to identify instances where templates with a similar degree 

structural similarity differed in function, for careful assessment. We employed one threshold above 50% 

to demarcate “putative” and “probable” qualifying adjectives.  For parsimony, we chose 75%, the 

midpoint between 50% (“putative”) and 100% (absolute certainty). TM-score error levels prevent more 

granular classification, as they would introduce false annotations at the expense of correct ones. 

 

This approach of iterative inclusion with coarse hierarchical steps allowed differentiation of degrees of 

similarity when their difference was large (and thus more often encoding true differences in degree of 

similarity) without errant detection owing to noise from the limitations of structural prediction. 

 

Error and bias in resolving protein structure and function are numerous, incompletely characterized, and 

distributed unevenly across protein classes and families119. This uncertainty and heterogeneity make 

accounting explicitly for sources of error challenging and time-consuming, if not intractable. To 

circumvent complications in accounting for these errors explicitly, we used the precision:TMID relation 

to capture PDB annotation reliability in a single metric and inform our inclusion criteria (Fig 8) With this 

approach, precision is considered independently of how PDB entries were annotated, and the observed 

precision (Fig 8B) reflects what was attained despite potential flaws or inconsistencies in PDB 

annotation procedures.  

Remaining uncharacterized genes 

Despite our multifaceted approach to annotation, many gene products remain unannotated. Among these 

are members of the enigmatic PE/PPE gene family. These genes are unique in their anomalously high 

GC% content and are specific to mycobacteria120. Their uniqueness to the MTBC complex makes 

finding homologs in PDB unlikely, particularly if their catalytic domains are absent or represented 

sparsely in PDB. Further clouding their characterization is the intracellular lifestyle of M. tuberculosis, 

which may render some of these proteins dependent on metabolic contexts or immunological cues 

specific to host microenvironments, and thus inactive in vitro. Ultimately, full characterization of the M. 

tuberculosis hypotheticome likely requires high-throughput biochemical assays, perhaps following 

methods development that allow direct assay or precise reconstruction of particular host 

microenvironments, in vitro or ex vivo. These present formidable logistical and technological challenges 

that may well take decades to resolve. In the meantime, our most capable inferential methods serve as 

valuable surrogate, albeit with caveats, limitations, and assumptions of their own. 

 

Unfortunately, of the 1,711 GUF for which we were able to complete an I-TASSER run, over half (871, 

S15 Table) produced models of insufficient quality (C-score > -1.5)25 to confidently imply structural 

similarity. Several phenomena may challenge effective modeling of this gene set: 1) No proteins of 

similar folds have been solved, leaving little to thread to 2) The protein is highly disordered121 3) These 
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are multi-domain proteins that need to be split into individual domains19 4) sequencing errors or gene 

coordinate misannotation122. 

 

We suspected reason 3 might be a primary cause, as I-TASSER documentation recommends breaking up 

multi-domain polypeptides into their constituent domains19, which we did not. However, upon evaluating 

whether protein length differed between proteins of high (greater than -1.5) and low (below -1.5) C-

scores, we found their respective distributions nearly indistinguishable (S4 Fig). This suggests multi-

domain proteins did not cause poor modeling, at least in most cases. 

 

The unexpected trove of apparent homologies/analogies where M. tuberculosis proteins appear to 

masquerade as host proteins for manipulation of host immune responses suggest that many of the genes 

not yet characterized play their roles in the host environment, perhaps in unique ways that challenge 

discovery through homology or analogy. 

Limitations 

Manual annotation. 

While manual literature annotations are the most reliable, they are not immune to inaccuracy. For 

example, in one paper123 Rv1818c, annotated as PE_PGRS33 by TubercuList, is mentioned as being 

down-regulated during nutrient starvation and oxygen depletion; however, their cited source124 says that 

PE_PGRS33 showed no significant change in expression in any condition they tested, including nutrient 

starvation. Illustrating a more serious error, a 2013 paper claimed that Rv1749c is part of a VapBC 

toxin-antitoxin system in M. bovis125, but their cited source126 mentioned Rv1749c neither in the paper 

nor in the supplementary material. The same paper claims Rv0988 is a hydrolase, but provides no 

citation for this claim125, and no major database supports this claim2,5,17,34–36,38. These examples 

underscore the need for skepticism and caution when evaluating evidence for functional annotation in 

literature.  

 

Functional annotations in several genes may be contradicted by information published since the original 

annotation. We did not attempt to resolve such conflicts, as they should be resolved by specialists, 

particularly when the reason for discordant results between two groups were unclear. 

Functional inference through structural similarity. 

Limitations of our approach to functional inference from PDB similarity include our focus on global, 

rather than local, structural similarity. This approach makes functional inference challenging for proteins 

with functionally diverse folds127 Other proteins that challenge functional annotation inference through 

this approach include those with active sites exhibiting a high degree of dynamism128 or context-specific 

conformation and activity129. 

 

Not all GUF ran through I-TASSER produced complete models; fourteen of the 1,725 GUF failed their 

I-TASSER runs. Of these, six are annotated as pseudogenes in TubercuList, and their annotated AA may 

be unthreadable due to early termination codons. The remaining eight sequences belong to either PPE or 

PE_PGRS gene families, which are unique to mycobacteria, especially prone to sequencing errors, and 

intrinsically hypervariable71 This may explain their inability to be resolved by I-TASSER’s threading 

algorithm.  

 

Another limitation lies in the overrepresentation of model organisms and human proteins that have been 

crystallized and uploaded to PDB, which could have exaggerated the prevalence on apparent human 

analogs to an extent. 
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Resources for further characterization 

For accessibility, we provide final annotations in common machine and human readable formats. We 

provide a machine-readable GFF3 file containing our updated annotation (File S1). This file includes EC 

numbers, GO terms, CATH topologies, and product name annotations, and is ideal for reference transfer, 

variant effect prediction, and other bioinformatic analyses (File S1). If one wishes to create a GFF3 file 

with thresholds of greater or lesser stringency, they can do so using the Supplementary code and 

specifying altered thresholds. 

 

Annotations in the GFF3 are defined by our inclusion criteria. PDB templates with structures similar yet 

below our criteria can consult S16 Table, which contains the top 3 PDB templates for each of the 1,711 

GUF based on TMID, and S9 Table, which holds all matches where a TMADJ > 0.52 (Equation 2, 

Supplementary note) and/or TMID > EC3 (putative) threshold. Further exploration of GUF structure can 

be carried out by analyzing the I-TASSER output for each of the GUF at 

www.tuberculosis.sdsu.edu/resources/annotation/I-TASSER once files are made available, including 

functional predictions by COFACTOR, predicted ligand binding sites, local secondary structure 

confidence, and other potentially useful metrics. 

Application of approach to other genomes 

Our hierarchical, precision-guided approach to incorporating annotations protects against overannotation 

while increasing annotation coverage. These are desirable features for expanding annotation of any 

organism and should become more effective over time: Structural prediction methods should improve in 

accord with algorithm design, become more accessible as computational costs lower, and provide greater 

coverage as more protein structures and functions are elucidated. While we implemented this approach 

to maximize annotation of M. tuberculosis, it can be applied to other species. Employing these 

approaches to other species would help reconcile functional characterizations in the literature with what 

can be inferred from conservation of structure and function, and increase quality of functional data. We 

next plan to develop these methods into a tool with tunable inclusion criteria parameters, incorporate 

additional annotations from local features, and make the precision regression more robust and capable of 

considering additional parameters, such as overlap length. 

Conclusion 

To our knowledge, this work comprises the most comprehensive functional annotation of M. 

tuberculosis to date. Though inevitably containing some misannotations, this update provides a more 

complete view of the metabolic and pathogenic capabilities of M. tuberculosis, and clearly defines how 

annotations were derived. We will update this annotation on our GitLab site (see Data availability), 

where others can also submit merge requests to incorporate recent functional characterizations, which 

will be added following quality control (Methods). 

 

We hope these annotations help the TB research community interpret and design future studies and 

prioritize candidate gene products for experimental characterization. Literature-curated annotations will 

better inform research design, and interpretation of functional implications from omics studies. 

Structurally inferred annotations supplement the manual curations, and enable target prioritization for 

confirmatory wet-lab work by the TB community, perhaps accelerating discovery in function of those 

gene with functions that remain unconfirmed. This update should be seen as an iteration, and re-

implemented periodically to keep pace with future M. tuberculosis GUF characterizations. Periodic 

updates will also leverage the expanding set of solved structures to screen against and continuously 

integrate into reference and clinical strain annotation. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/358986doi: bioRxiv preprint 

http://www.tuberculosis.sdsu.edu/resources/annotation/I-TASSER
https://doi.org/10.1101/358986
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

In principle, three main factors limit annotation: (i) Experimental and structural characterization of gene 

product function. (ii) Faithful annotation of function to sequence and function to structure in centralized 

databases. (iii) The capability of transferring annotations to similar products. With our strategy of 

controlled curation of empirically determined gene function followed by structured, informed 

incorporation of gene product annotation, the community can actualize the growing knowledge base of 

structure-function relationships in PDB, experimental characterizations of M. tuberculosis gene product 

function, and capability of sequence-structure-function prediction tools such as I-TASSER as they 

become more capable and resource-efficient. If we fail to implement such a workflow, we risk functional 

misattribution and propagation of aberrant annotation. Such gaps and falsehoods in our collective 

knowledge confuse and mislead research initiatives: well-reasoned decisions can misallocate resources, 

subvert the validity of high-throughput analyses, and, ultimately, stunt progress toward eradicating TB. 

The annotations collected, collated, and organized in this work step toward a more unified and effective 

path where gene product annotations are collected and stored in a standardized manner. Continuing and 

integrating this effort with the larger TB research community is essential to maintaining and accelerating 

progress toward understanding M. tuberculosis pathogenesis and reducing the global burden of 

Tuberculosis on public health. 
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Materials and Methods 

Systematic manual literature curation 

We followed a standardized procedure to systematically curate gene function annotations from the 

literature, as outlined in Fig 6. The annotation of each GUF was extracted from TubercuList, comprising 

1,057 unannotated (“hypothetical” or “unknown” functional categories) and 668 with ambiguous 

annotations (totaling 1,725 GUF). These annotations were converted to feature table format for ease of 

analysis and editing by curators, and version control through git was used to allow curators to work in 

parallel and track annotation progress of each gene. Each GUF was assigned to two curators to ensure no 

existing literature annotations were missed, and to remove any human bias in annotation. Each GUF was 

searched in Google scholar in format “mycobac* <GUF locus tag>” (e.g. “mycobac* Rv0004”) and 

confined to publications between January 1st, 2010 and June 30, 2017. Earlier work was included when 

referenced in publications from the primary search. Patents and non-English articles were excluded. For 

each publication returned by the query, every mention of the locus tag or gene name was inspected 

manually unless it became apparent that the article did not contain information relevant to gene product 

function (e.g., purely an association study). Orthology and domain-based computational annotations 

were excluded when the sole basis of evidence, since TrEMBL annotations are regularly updated and are 

quality-controlled, and would likely catch such cases17. In contrast, orthology and domain-based 

annotation were included when combined with other evidence, such as using domain annotations to 

identify candidate genes for subsequent molecular docking simulations that putatively demonstrated 

product function. Curators evaluated experimental evidence for functional characterization and noted the 

methodology used to connect gene product and function according to NCBI Feature Table Format33, 

using as descriptive language as possible while remaining concise and accurately representing the 

methods used and conclusions drawn by the primary authors. 
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Fig 6. Information flow for producing annotations from literature curation. 

An initial extraction of the existing annotation every “conserved hypothetical” and “unknown” protein from 

TubercuList totaled 1,057 unannotated protein-coding genes. Additionally, a 668 “ambiguous set” was manually 

determined from the annotations on TubercuList, and these annotations were extracted and combined with the 

1,057 hypothetical and unknown proteins to give a total of 1,725 GUF. These genes were then searched in Google 

Scholar, and pertinent articles were analyzed for annotation information, which was recorded in NCBI’s Table 

File Format (.tbl extension) for each gene, one file per GUF. Every GUF annotated with a novel product was 

compared to annotation in other databases (Results). Decisions were made based on the criteria described above. 

 

Guidelines for manual product annotation. 

To facilitate consistent annotation, we described products in one of three ways:  

1. high-confidence - derived from evidence that, barring human error or data fabrication, definitively 

prove the annotated function is carried out by the GUF. This highest confidence assignment is implied 

by the absence of a qualifying adjective. Techniques warranting this annotation include protein 

purification with subsequent functional characterization through enzymatic assays, and gene 

knockout/complementation studies that isolate the GUF as the causal mechanism.  

2. probable - used for experiments that provide strong evidence that the GUF carries out a certain 

function, but require minor assumptions or rely on strong but fallible inferences. Such techniques 

include X-ray crystallography with molecular docking and transposon mutagenesis studies.  

3. putative- used for experiments where a non-trivial assumption or inference with well-known 

exceptions is required. Examples include gene-knockout and complementation studies where an 
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observed phenotypic change (e.g. localization of substrate to inner cell-membrane) correlates with 

KO/complementation status, indicating mediation by the GUF. The putative qualifier was also used 

for in silico functional predictions based on three-dimensional methods, such as molecular docking 

simulations (PatchDock).  

Experiments with insufficient evidence to assign “putative” annotation or higher were left with their 

product field unchanged, but annotated with a note, using either “potential” or “possible” as qualifiers, 

where the former connotes relatively higher confidence. The methods justifying these notes require 

significant assumptions, or are derived from incomplete information, and should be treated as tentative. 

Notes were also included for well-justified functional information not useful for defining a product 

name, such as “overexpression increases susceptibility to isoniazid in vitro”. 

Manual curation quality assurance. 

Each gene query was assigned to two investigators, while a third was designated as "polisher" and served 

to assure quality and consistency. To hedge against human error, two investigators curated annotation for 

each gene, independently. To resolve discrepant annotations, the two investigators would consult with 

one another to produce a consensus annotation. If two investigators could not resolve the annotation, a 

third investigator (not necessarily the investigator serving as “polisher”) would act as an arbitrator, and 

break the deadlock if no consensus could be reached.  

 

After manual curation, every gene for which a new function had been assigned was inspected by the 

polisher. Polishers went to the source from which the new annotation was derived, and verified that the 

conclusions drawn by the initial manual curation were valid, correctly cited, and properly formatted. 

When the polisher felt the original annotation was inconsistent with annotation guidelines, they and the 

original curator(s) would discuss discrepant interpretations, and form a mutual consensus. If they could 

not, an additional arbitrator would confer with them to break the deadlock. 

Comparison to existing databases. 

To assess the novelty of manual product annotations, we compared each to their counterparts on 

UniProt17, Mtb Network Portal5 (which included annotations from TBDB1), PATRIC2, RefSeq34, 

BioCyc35, and KEGG36. We obtained the UniProt, Mtb Network Portal, and RefSeq annotations for each 

of our genes with new product annotation programmatically. No parsable HTML could be obtained from 

the PATRIC website for the feature view of each gene, so PATRIC gene annotations were obtained 

manually. We then compared mannotations to annotations from each database. For each GUF, we 

determined whether the database annotations agreed or disagreed with our mannotations. For annotations 

that agreed, we recorded which source had the more descriptive annotation. Annotation from our 

literature curation absent in the other databases were considered candidate novel gene annotations. If the 

annotations disagreed, we considered our annotation a candidate for additional gene product annotation, 

since both our annotation and those in other databases may describe true functions 

(bifunctional/moonlighting proteins). Existence of functional annotations for these genes were tallied for 

each database to assess their comprehensiveness and identify discrepancies between them. Furthermore, 

genes unannotated in any of the listed databases, but with annotations assigned in this study, were 

identified and enumerated. EC number assignments were also compared among the databases (Results). 

Incorporation of previous in silico annotation efforts for M. tuberculosis. 

Previous large-scale in silico attempts at predicting hypothetical gene function were considered12–16, but 

we did not incorporate their results in this work because they were not assigned clear confidence metrics. 

We instead opted to run the 1,725 GUF through I-TASSER19 (See “Annotating genes of unknown 
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function via structural similarity”) and evaluated whether the suite could produce informative in silico 

predictions. 

Enzyme Commission number assignment. 

Enzyme Commission (EC) numbers are period-delimited, hierarchical descriptors of enzyme-catalyzed 

reactions. The four EC number digits correspond to progressively granular description of reactions, and 

when assigned to a protein, imply that it catalyzes the described reaction29 (Table 2). We annotated all 

literature-curated gene products with experimentally verified enzymatic activity with EC numbers. We 

used the EC number assigned by the authors of the source article of the annotation unless it did not 

follow International Union of Biochemistry and Molecular Biology (IUBMB) conventions29. When the 

authors assigned no EC number we assigned one ourselves according the reaction/EC number relations 

on the official IUBMB database29. EC numbers were assigned only to the degree of specificity warranted 

by experimental evidence (e.g. 3.1.-.- when esterase activity was shown, but evidence of no further 

substrate specificity was provided). 

Annotating genes of unknown function via structural similarity 

We designed our structural similarity-based annotation procedure to address the question “How likely is 

it that this annotation reflects true function?”, and reasoned the question could be applied to our data as: 

“How do structural and sequence similarities correlate with the likelihood of matching annotations?”. To 

answer this, we ran training genes products (TGP) of known function through I-TASSER (Iterative 

Threading ASSEmbly Refinement) suite (standalone, version 5.1) to observe how similarity metrics 

(TM-score, AA%, C-score, etc.) correlated with precision (Equation 2). 

 

Following GUF selection, amino acid (AA) sequences were extracted from TubercuList and run through 

a local installation of I-TASSER for structural prediction and identification of candidate homologs and 

analogs in the protein data bank (PDB) through structural alignment19,26. From I-TASSER, metrics are 

computed that describe similarity between the GUF structure model and solved structures on PDB. For 

each query:PDB template proteins pair, similarity metrics were extracted along with EC, GO, and CATH 

annotations of the known protein (from PDB)18. We focused on two of these metrics that best correlated 

with precision (supplementary note): AA identity (AA%) and Template-modelling score (“TM-score”, a 

measure of structural similarity independent of protein length). 

 

TM-score describes structural similarity ranging from 0 and 1. It represents the average root-mean 

squared deviation across all atoms in the structural prediction with respect to the PDB template, 

normalized to remove apparent deviation arising falsely due to local differences19,37 (Equation 1, as 

calculated by Zheng and Skolnick37). 

      TM-score = (1/𝐿N) ∑
1

(1+𝑑𝑖
2+𝑑0

2)

𝐿T
𝑖=1     (1) 

where LN is protein length, LT is the length of the aligned residues to the template, di is the distance of 

the ith pair of residues between two structures after an optimal superposition, and 𝑑0 = 1.24√𝐿𝑁 − 15
3

−

1.8, as described by Zhang et al.,   normalizes for protein length. This metric allows structural similarity 

to be compared across proteins of different length37. 

 

We then assessed how precision of EC number and GO term predictions (Equation 2) correlated with 

similarity metrics (S17 Table) through logistic regression to identify those metrics most predictive of 

precision. We calculated precision as follows:  
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                                                   𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
     (2) 

where TP = “True Positive”, and FP = “False Positive”.  We used 50% and 75% as the cutoff for usage 

of “putative” and “probable” adjectives, respectively. We derived our training data from mannotated 

GUF with “probable” confidence or higher (which totaled 163 GUF, S2 Table) and a randomly chosen 

set of 200 M. tuberculosis genes with products of known function from TubercuList38. EC numbers were 

extracted from these 363 genes. GO terms were restricted to those marked as experimentally verified in 

UniProt17 for the 200 random known genes and any in our GUF set. We ran these 363 sequences through 

I-TASSER to benchmark precision as a function of several similarity metrics, among which TM-score 

and AA% prevailed as the metrics most predictive of precision (Supplementary note).  

 

CATH topologies (see next section for background) were annotated according to a previously 

established posterior probability distribution25. These EC number, GO term, and CATH  thresholds were 

applied hierarchically (See next section for details) to update GUF annotations beyond what we could 

curate from the literature, and incorporated programmatically in NCBI’s Table File Format (.tbl files) 

using Genbank Prokaryotic Annotation Guide33 syntax and guidelines. Finally, we parsed the 

updated .tbl files with custom scripts (Supplemental Code) to produce a final GFF3 file (S1 File) of the 

updated H37Rv annotation for programmatic access and integration with common genomics programs. 

Fig 7 summarizes how the annotations were selected and integrated into a gene-based format 

distributable and integrable with common bioinformatics and annotation pipelines. Ligand-binding site 

(LBS) predictions from COFACTOR and product names inferred directly from homologous structure 

were included in a similar process but are omitted from Fig 7 to avoid crowding. 

 

Fig 7. Information flow for producing annotations from structural homology. 

The flow of information and procedures for acquiring, processing, filtering, and representing information, running 

from retrieval of amino acid sequences to the final updated H37Rv annotation. Some details are omitted for 

clarity. 
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Annotation describing structure (CATH) and function (EC, GO, and product name-based transfers) were 

transferred from qualifying PDB templates to our GUF. Inclusion criteria were handled differently 

depending on the assumptions of each annotation framework, and the degree to which each could be 

inferred from global structural similarity, and other available metrics (e.g., LBS predictions from 

COFACTOR). 

Inclusion criteria for annotations derived from structural similarity 

We surveyed how matching and discordant EC assignments between GUF and PDB templates similar to 

I-TASSER structure predictions distributed with respect to sequence identity (AA%) and structural 

similarity (TM-score). As expected, the proportion of EC assignments discordant between training gene 

products and predicted homologs increased with the number of EC tiers evaluated (Fig 8A). AA% and 

TM-score correlated strongly with one another (R=0.784, Pearson correlation coefficient), among both 

concordant and discordant EC numbers (Fig 8A), suggesting both are informative for setting inclusion 

thresholds. To represent both AA% and structural similarity, we took their geometric mean (which we 

call “TMID”). 
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Fig 8. Determination of inclusion criteria for EC and GO annotations. 

(A) TM-score and amino acid sequence identity (AA%) colored by correctness in the sample data. Dots represent 

pairwise relations between query protein and PDB template. Their position indicates structural similarity (TM-

score, y-axis) and AA% (x-axis) and their color indicates concordant (red) or discordant (blue) EC number, to the 

specificity indicated in the pane. (B) Precision of EC number as a function of the geometric mean of TM-score 

and AA% (“TMID”). Precision was regressed on TMID for each of the four tiers of EC specificity. Horizontal 

lines indicate the precision cutoffs used to set thresholds for hierarchical incorporation of annotations. Circles at 

the bottom and top are individual data points (representing 0 for incorrect and 1 for correct, at a particular TMID 

value). Circles are rendered at 10% opacity to visually depict observation density (C) Table showing TMID 

cutoffs corresponding to 50 and 75 percent precision for each of the 4 EC number digits. In all analyses, templates 

with AA% > 40% were excluded to isolate matches due to structural similarity rather than AA identity.  

 

We binomially regressed precision (Equation 2) against TMID using the training gene products to 

determine expected precision of EC of our GUF and PDB entries similar to its predicted structure (Fig 

8B). The resulting regression lines for each EC digit informed cutoffs in our inclusion criteria based on 

expected precision (Fig 8C).For benchmarking based on structure alone, only templates with C-scores 

above -1.5 were included, as structural predictions with lower confidence are unlikely to reflect correct 

protein topology19. 

 

A 

B 

C 
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Since TM-score and AA% were similarly predictive of precision (Fig 8), we used their geometric mean 

(Equation 1) to estimate precision of EC and GO predictions based on the logistic regression curves 

shown in Fig 8B. We used this estimated precision as the 50% and 75% cutoffs for “putative” and 

“probable” qualifying adjectives (Fig 8C).  

 

Though TMID proved useful for estimating precision, the sample distribution of AA% and TM-score did 

not cover areas where one was high and the other low (Fig 8A). While high AA% should be captured by 

annotation methods based on sequence identity, high TM-score with low AA% is only amenable to 

annotation through structural similarity. However, the relationship between TM-score and precision of 

functional annotations in such cases is unclear. For these cases with high TM-score, we transferred 

“CATH structural annotations” from similar PDB entries based on a precision:TM-score relation 

determined previously25. We also implemented special inclusion criteria for protein classes that typically 

lack sequence similarity despite sharing structure and function.  

 

CATH is a hierarchic classification system of protein domain structures, in which “topology” is the third 

level of the hierarchy, more specific than “architecture” and more general than “superfamily”39. 

Structural fold annotations can be functionally informative in some cases. 

 

For Ligand-binding site (LBS) and CATH predictions, we applied benchmarks previously 

established25,40. 

 

The relationship between precision and TM-score has been rigorously benchmarked in prior work by 

Zheng and colleagues25. This precision:TM-score relation for matching CATH topologies between two 

proteins follows an extreme value distribution25, which confers high discriminatory power to a binary 

inclusion threshold. We set the minimum TM-score for inclusion as that which corresponded to 50% 

precision, after correcting TM-score for the expected modeling error (encoded by the C-score, 

Supplementary Note). CATH annotations were retrieved using the REST API of PDB. All analyses were 

implemented in R41. 

Hierarchical annotation 

To determine final GUF product annotations we prioritized more reliable methods of inference before 

deferring to less reliable methods. We first included mannotations (highest priority) and high-confidence 

EC-based annotations from structural similarity. EC-based annotations were considered with 

mannotations so that secondary functions of moonlighting proteins wouldn’t be precluded from 

annotation. We incorporated annotations in a gene-wise manner, hierarchically between annotation 

frameworks (mannotation and EC > GO) and iteratively (iterating over progressively looser thresholds 

within GO matches) within each GUF. EC annotations were included when projected precision exceeded 

50% (Fig 8A). 

 

Rather than directly mapping PDB template name to product annotations, we derived product names 

using EC number and GO terms. This enabled transfer of shared aspects of similar proteins without 

implying identical function. For example, a GUF may be similar enough to confidently transfer 

“methyltransferase” annotation to our GUF, but not “6-methyladenine DNA methyltransferase”, the 

product of the PDB template. Using the name of exact PDB match would imply greater specificity than 

the degree of structural similarity warrants, which is often misleading.  

Enzyme commission numbers. 

EC number annotations were transferred to the degree of specificity dictated by the threshold they met 

(Fig 9). If no EC-bearing PDB:GUF matches passed threshold, the GUF progressed to the GO protocol, 
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during which EC numbers were inferred for some products (see next subsubsection). Conflicting EC 

numbers were pruned to a common digit if possible, and collapsed into unique ECs at the degree of 

specificity dictated by their similarity if not (Supplemental Note). Final EC numbers informed product 

field annotations. In cases where product field had a prior entry, if the EC annotation of greater 

confidence was less specific, then product annotation was modified to reflect this EC curation instead of 

a more specific, less confident EC annotation. Threshold boundaries were set at 75% and 50% precision 

for the 4th and 3rd digits of specificity in EC numbers (Fig 9).  

 

  

Fig 9. Enzyme Commission (EC) number inclusion protocol. 

The flow of processes and decisions each GUF was subjected to for determining EC based annotations from 

structural homologs. Most processes and decisions were implemented in a fully automated manner, but some 

corner cases had to be resolved manually. These cases were handled algorithmically, or by previously established 

procedures where possible. For example, when EC numbers had to be assigned manually, the procedures put forth 

by IUBMB were consulted and followed directly29.  

 

Gene Ontology Terms. 

GUFs unannotated by the EC inclusion protocol were screened for PDB matches at progressively lower 

TMID thresholds for GO term transfer (Fig 10). With this approach, GUF receive only the best available 

annotations, since GUF already annotated (from sources of higher expected precision) exit the iteration 

before progressing to weaker thresholds. Unlike using a single threshold, this approach mitigates 

overannotation with assignments of lower confidence, without lowering the number of annotated genes. 

Each GO term transferred was labeled with all the PDB templates supporting it. EC numbers were 

inferred programmatically and included where a direct mapping between EC and GO term existed. If the 

GO term implied enzymatic activity, relevant terms were searched in EXPaSY ENZYME and an EC 

number was GUF assigned and used to derive the product name from the ENZYME.dat file obtained 

from the EXPaSY database. When GO terms mapped to multiple EC numbers, the EC numbers were 

merged at the most specific level at which they converged (e.g., 3.2.1.5 and 3.2.2.4 would resolve to 
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3.2.-.-). Such instances of EC assignments from GO terms occurred often because of inconsistent 

annotation across frameworks in PDB entries: many PDB entries were not assigned EC numbers, but 

were assigned GO terms based on enzymatic activity. If GO terms were transferred but none mapped to 

EC numbers, GO terms were examined for terms sufficiently descriptive to constitute a product name 

(e.g., “DNA binding transcription factor activity” is sufficiently descriptive whereas “pathogenesis” is 

not). All GO terms remain in the annotation file (S1 File), but where no GO term warranted product 

annotation, product field was left unchanged, and not included in the final counts (Results). 

  

Fig 10. Gene Ontology (GO) term inclusion protocol. 

The flow of processes and decisions each GUF was subjected to for determining GO based annotations from 

structural homologs. All processes and decisions were implemented in a fully automated manner, up until product 

assignment, those of which did not map to EC number had to be resolved manually.  

 

Name-based product annotation from structurally similar PDB templates. 

Many GUF with quality structure models (C-score > -1.5) had similarity only to PDB templates that 

lacked EC or GO term annotations. These GUF were algorithmically included using the same TMID 

thresholds described for EC and GO inclusion (Figs 4 and 5) but assigned product names manually. The 

top 3 PDB templates of GUF lacking functional annotation (EC, GO, or manual) were examined. Each 

query:template pairwise relation with a TM-score greater than 0.85 and/or TMID meeting the inclusion 

criteria for putative EC 3rd digit (0.374, corresponding to a precision > 0.5) were considered for 

annotation by these criteria: If (i) the portion of the GUF similar to the PDB entry structurally aligned 

with the PDB entry crystal structure along the coordinates annotated with the functional motifs 
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responsible for the function under consideration for transfer and (ii) the PDB template had the function 

verified experimentally in its UniProt entry or in the primary publication that claimed to elucidate its 

function (typically in the same article that determined its structure). When both criteria were met, 

annotation was transferred to the GUF to the degree of specificity warranted by the TMID, and product 

names were assigned as detailed for GO terms (Fig 8). 

Structure-based transport protein annotation. 

Transport proteins require different inclusion criteria than globular proteins. These proteins are 

especially difficult to characterize experimentally, and more conserved in structure than in sequence, 

relative to globular proteins42. To accommodate these unique features, inclusion criteria for transferring 

annotations from PDB templates of transport proteins weighted structural similarity more heavily than 

AA%: These annotations were transferred if greater than 90% of the PDB implicated in transport aligned 

to by the GUF, and structural similarity exceeded the threshold for CATH topology transfer. Transport 

protein annotations were transferred to GUF in a less specific form than that given the PDB templates 

(e.g. “transport protein” instead of “Na+/H+ antiporter”), unless all three highest templates matched a 

more specific description and the TM-score exceeded 0.85, in which case a more specific product name 

was transferred.  

Data acquisition 

We extracted functional annotations, EC numbers, and GO terms for each gene in our set of 1,725 GUF, 

from Entrez34, Mtb Network Portal5, TubercuList38, PATRIC2, KEGG36, UniProt17, and BioCyc35. 

Counts were obtained using custom python html scraper scripts.  

Data Availability 

Our final updated annotation of the 1,725 ambiguously annotated GUF has been provided in 

Supplementary file 1 and will be available on the Laboratory for Pathogenesis of Clinical Drug 

Resistance and Persistence (LPCDRP) website at https://tuberculosis.sdsu.edu/. Continued updates will 

be made available on our soon-to-be public Lab GitLab site: https://gitlab.com/LPCDRP/Mtb-H37Rv-

annotation/ 
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