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Abstract

Motivation: Relief is a family of machine learning algorithms that uses nearest-neighbors to select features
whose association with an outcome may be due to epistasis or statistical interactions with other features in
high-dimensional data. Relief-based estimators are non-parametric in the statistical sense that they do not
have a parameterized model with an underlying probability distribution for the estimator, making it difficult
to determine the statistical significance of Relief-based attribute estimates. Thus, a statistical inferential
formalism is needed to avoid imposing arbitrary thresholds to select the most important features.
Methods: We reconceptualize the Relief-based feature selection algorithm to create a new family
of STatistical Inference Relief (STIR) estimators that retains the ability to identify interactions while
incorporating sample variance of the nearest neighbor distances into the attribute importance estimation.
This variance permits the calculation of statistical significance of features and adjustment for multiple
testing of Relief-based scores. Specifically, we develop a pseudo t-test version of Relief-based algorithms
for case-control data.
Results: We demonstrate the statistical power and control of type I error of the STIR family of feature
selection methods on a panel of simulated data that exhibits properties reflected in real gene expression
data, including main effects and network interaction effects. We compare the performance of STIR when the
adaptive radius method is used as the nearest neighbor constructor with STIR when the fixed-k nearest
neighbor constructor is used. We apply STIR to real RNA-Seq data from a study of major depressive
disorder and discuss its straightforward extension to genome-wide association studies.
Availability: Code available at http://insilico.utulsa.edu/software/STIR.
Contact: brett.mckinney@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Epistasis is a well known concept in genetics that can be statistically
modeled as a deviation from the additive effect of DNA variants on a
phenotype or trait. A similar effect can be observed at the gene expression
level, where the phenotypic effect of one gene is modified depending on
the expression of another gene (Park and Lehner (2013)). A manifestation
of this “expression-epistasis” effect is differential co-expression (Lareau
et al. (2015)). The embedding of these interactions in a regulatory network
may lead to, not only pairwise interactions, but also higher-order epistasis
network effects. Thus, feature selection methods are needed for high-
dimensional data – such as genome-wide association and gene expression
studies – that are able to identify relevant features when their effect on a
phenotype may be obscured by a complex interaction architecture.

Relief-based feature selection methods are known for their ability
to identify interactions with computational efficiency based on nearest
neighbor calculations in the high-dimensional feature space (Urbanowicz
et al. (2017c); Kononenko et al. (1997); McKinney et al. (2009); Kira
and Rendell (1992)). The early Relief-based algorithms used arbitrary
parameter choices for the number of nearest neighbors and heuristic Relief-
score thresholds for selecting the most important features. Recent work has
been done to address the selection of the number of nearest neighbors, such
as the constant neighborhood radius in spatially uniform ReliefF (SURF)
(Greene et al. (2009)), adaptive radii in multiSURF (Urbanowicz et al.
(2017a)) and feature-specific optimal k in ReliefSeq (McKinney et al.
(2013)). However, until the current study, the threshold for selecting the
top variables has remained arbitrary because Relief scores have not had a
null distribution.

Methods like ANOVA and the generalized linear model have
parametric probability distribution assumptions that easily and efficiently
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permit the calculation of p-values. However, these methods are not able
to detect interactions unless each interaction term is explicitly included
in the model. Explicit interaction modeling becomes computationally
intractable for high-dimensional data and/or higher-order interactions due
to the combinatorial explosion of hypothesis tests. Relief-based methods
circumvent the combinatorial explosion in the following way. When
updating the importance of a single attribute, the Relief-based algorithm
uses values of that attribute from each instance’s nearest neighbors, where
the nearest neighbors are determined in the space of all attributes. In other
words, when estimating the importance of a feature, the nearest neighbors
are modeling a hyper-dimensional decision boundary in the full feature
space.

Relief-based methods are, thus, an excellent tool for detecting
interactions, but, as noted, there remains the challenge of determining
statistical thresholds or statistical significance. With the aim of addressing
this challenge, we recently developed a mixture model and a permutation
approach to estimate statistical thresholds for ReliefF and network
centrality scores (Lareau et al. (2015)). However, permutation testing
can be computationally prohibitive. To address this issue, in the current
study we introduce a new family of Relief-based algorithms that allows
for statistical inference and false discovery rate adjustment.

The new STatistical Inference of Relief (STIR) formalism represents
a new type of Relief-based score that follows a pseudo t-distribution.
Presaging STIR, we recently demonstrated that scores from the standard
Relief algorithm are equivalent to a difference of mean attribute value
differences between nearest hit and miss groups (McKinney et al. (2013)).
This equivalence suggests a reformulation of Relief scores that accounts
for the variance within and between groups. STIR in the current study
is able to detect attributes whose association with the phenotype may be
due to higher-order interactions while simultaneously assigning statistical
significance to the attribute scores. The STIR formalism applies to the
broad family of Relief-based algorithms, including Relief with fixed k
and multiSURF.

The paper is organized as follows. In the Methods section, we develop
the new formalism of STIR that enables the calculation of the STIR
pseudo t-statistics (STIR scores) and statistical significance of these scores.
We discuss our simulation strategy involving main effects and realistic
network interaction effects of varying strengths, sample sizes, and number
of attributes. In the Results section, we apply the STIR method to the
panel of simulated data to assess power and false discovery rates. We use
STIR to obtain FDR-adjusted statistical significance levels and compare
with permutation testing. We compare STIR using k neighbors (constant
for each instance) with multiSURF (variable for each instance) as the
Relief-based nearest-neighbor algorithms. We apply STIR to a real RNA-
Seq dataset from a study of major depressive disorder, and we note that
STIR also applies to GWAS data. In the Conclusion section, we discuss
challenges and opportunities for further development of the new STIR
family of feature selection algorithms.

2 Materials and Methods
In this section, we develop the mathematical formalism for computing
the statistical significance of Relief-based scores for feature selection for
binary-class (case-control) data. We generalize the STIR formalism to
all current nearest-neighbor methods, discuss the relationship between
multiSURF and fixed-k methods, and demonstrate how the reformulation
of Relief-based algorithms can be used to improve the performance of the
algorithms.

2.1 Reformulation of Relief-based estimators

2.1.1 Diff function and nearest neighbors
Before importance scores can be computed for each attribute, Relief-based
algorithms identify the nearest neighbors in the space all attributes. The
distance between instances Ri and Rj is calculated in the space of all
attributes a ∈ A, typically using a Manhattan (p = 1) metric but may
also use a Euclidean (p = 2) metric:

Dij =

∑
a∈A
|diff(a, (Ri, Rj))|p

1/p

, (1)

where the standard “diff” function between two instances Ri and Rj for
a real valued attribute a is:

diff(a, (Ri, Rj)) =
|value(a,Ri)− value(a,Rj)|

max(a)−min(a)
. (2)

This diff is appropriate for gene expression and other real-valued
predictors. For genome-wide association study (GWAS) data, where
attributes are categorical, one simply modifies the diff, but the rest of the
algorithm is otherwise unchanged. The diff function is part of the metric
used by Relief methods to compute the distance matrix for finding nearest
hit and miss neighbors, but the diff is also essential for computing the
Relief importance scores, as will be seen in Sec. 2.1.3.

2.1.2 Hit and miss nearest-neighbor ordered pairs
For general Relief-based algorithms, one may represent the set of ordered
pairs (Ri,Mji (Ri)), or simply (Ri,Mji ), of m instances Ri (i =

1, . . . ,m) with their nearest kMi
misses, Mji , as nested sets:

M = {{(Ri,Mji )}
kMi
ji=1}

m
i=1 (3)

where the index ji for the inner set ranges from 1 to kMi
, which is the

number of nearest miss neighbors for subjectRi. The outer set ranges over
allm instances. Similarly for hits, the set of ordered pairs (Ri, Hji (Ri))

of m instances Ri (i = 1, . . . ,m) with their kHi
nearest hits, Hji , may

be written as

H = {{(Ri, Hji )}
kHi
ji=1}

m
i=1. (4)

Note that in both miss and hit sets, the inner index ji depends on the
outer index i. This is important for multiSURF, where each instance Ri

will, in general, have a different number of misses and hits (kMi
and kHi

)
and these values may differ between instances. Thus, for multiSURF, the
setsM andH can be thought of as irregular or ragged matrices of ordered
pairs. For ReliefF algorithms, where the number of neighbors is constant
across subjects, the hit and miss matrices are proper (non-ragged) matrices
of ordered pairs.

2.1.3 Reformulation of Relief-based estimators as difference of hit and
miss means

Once the hit and miss groups,H (Eq. 4) andM (Eq. 3), are determined by
the distance matrix Dij (Eq. 1), coupled with a neighborhood definition
(e.g., ReliefF fixed number of neighbors k or multiSURF instance-
dependent radius), we can compute average hit and miss diff means and
attribute importance weights. We showed in Ref. (McKinney et al. (2013))
that the ReliefF importance weight for an attribute, a, can be expressed as
a difference of mean diffs between hit and miss groups. Here we extend
this difference to any Relief-based neighborhood scheme.
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Algorithm 1: Original ReliefF algorithm

1 m← number of training instances
2 p← number of attributes
3 k ← number of nearest hits or misses
4 pre-process dataset X
5 pre-compute distance matrix D (Eq. 1)
6 initialize all feature weights W [a] := 0
7

8 for i := 1 to m do
9 for j := 1 to m do

10 identify k nearest hits and k nearest misses
11 end
12

13 for all hits and misses do
14 # attribute weight update
15 for a := 1 to p do

16 W [a] := W [a]− diff(a,Ri,H)
m·k + diff(a,Ri,M)

m·k
17 end

18 end

19 end
20

21 return vector W of feature scores

Algorithm 2: Reformulated ReliefF algorithm

1 m← number of training instances
2 p← number of attributes
3 k ← number of nearest hits or misses
4 pre-process dataset X
5 pre-compute distance matrix D (Eq. 1)
6 initialize all feature weights W [a] := 0
7 pre-compute miss matrix M and hit matrix H (Sec. 2.1)
8

9 for a := 1 to p do
10 # compute diff vectors then sum:
11 Ma = diff(a, (X[M [, 1], a], X[M [, 2], a]))
12 Ha = diff(a, (X[H[, 1], a], X[H[, 2], a]))

13 W [a] := 1
m·k (

∑
Ma −

∑
Ha)

14 end
15

16 return vector W of feature scores

1

Fig. 1. Comparison of the pseudo-code of the original ReliefF algorithm as implemented in ReBATE (Urbanowicz et al. (2017b)) (Algorithm 1, left) versus the reformulated version of
ReliefF (Algorithm 2, right, based on Eq. 7 – line 13). The refomulated version allows for algorithm optimization by precomputing miss and hit matrices (Algorithm 2, line 7 – Sec. 2.1.4)
and using a vectorized diff function (Algorithm 2, lines 11 and 12). The pseudo-code for STIR (Eq. 10) works similarly.

The mean diff for attribute a averaged over of all pairs of nearest-
neighbor misses M (Eq. 3) can be expressed as

Ma =
1

m

m∑
i=1

1

kMi

kMi∑
ji=1

diff(a, (Ri,Mji )), (5)

where Mji is the jth nearest neighbor from different classes of the
ith instance, Ri, and kMi

is the number of nearest miss neighbors
of instance Ri. This scaling by 1/kMi

inside the sum makes the
neighborhood average weighting consistent with multiSURF and with
uniform neighborhood methods like SURF and ReliefF. For nearest
neighbor hits, the mean is

Ha =
1

m

m∑
i=1

1

kHi

kHi∑
ji=1

diff(a, (Ri, Hji )), (6)

where, similarly, kHi
is the number of nearest hit neighbors of instance

Ri. The Relief-based importance score can then be expressed simply as

WR[a,M,H] =Ma −Ha. (7)

The formulation as a difference applies to any Relief-based algorithm.
We will use Eq. (7) as the basis for computing permutation p-values for
comparison purposes. However, as noted, permutation can have prohibitive
computational times, and, thus, in Sec. 2.2, we extend Eq. (7) to develop
a Relief-based pseudo t-test and a more computationally efficient means
of computing statistical significance of attributes.

2.1.4 Optimization with reformulation and ReliefF limits of general
formalism

In our implementation of STIR on R ver. 3.4.4, we reshape all |M | and
|H| ordered miss and hit pairs,M (Eq. 3) andH (Eq. 4), into |M |×2 and
|H|×2matrices to take advantage of R’s fast vectorization capability (Fig.
1). The reformulated algorithm may be optimized by pre-computing the
neighborhood matricesH andM (Algorithm 2, line 7) and vectorizing the

diff function so that we can simply perform vector subtraction (Algorithm
2, lines 10 and 11) and bypass the two nested for loops in the original
algorithm (Algorithm 1, lines 9-11) in the calculation of the weight for
each attribute. The description of the reformulated algorithm is simplified
and allows for vectorization, which has a performance advantage over for
loops in R.

In the case of Relief-based methods with constant k (ReliefF), we have
kMi

= kHi
= k ∀i, and Eqs. (5) and (6) become

Ma =
1

mk

m∑
i=1

k∑
ji=1

diff(a, (Ri,Mji )), (8)

and

Ha =
1

mk

m∑
i=1

k∑
ji=1

diff(a, (Ri, Hji )). (9)

The ReliefF version of the reformualted score WR (Eq. 7) then follows
directly.

2.2 Beyond Relief-based estimators: STatistical Inference
for Relief (STIR)

We now introduce a new type of Relief-based score that incorporates the
pooled standard deviations about the mean hit and miss diffs to transform
the Relief-based score (WR) into a pseudo t-statistic. For attribute a, we
construct the following STIR weight (or STIR score) from the Relief
difference of means (WR in Eq. 7) in the numerator and the standard
error in the denominator:

WSTIR[a,M,H] =
Ma −Ha

Sp[M,H]
√

1/|M |+ 1/|H|
, (10)

where |M | =
∑m

i=1 kMi
and |H| =

∑m
i=1 kHi

are the total number of
miss and hit neighbors across all instances. The pooled standard deviation
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is

Sp[M,H] =

√√√√ (|M | − 1)S2
Ma

+ (|H| − 1)S2
Ha

|M |+ |H| − 2
, (11)

and the group variances are

S2
Ma

=
1

m

m∑
i=1

1

kMi

kMi∑
ji=1

(
diff(a, (Ri,Mji ))−Ma

)2
, (12)

and

S2
Ha

=
1

m

m∑
i=1

1

kHi

kHi∑
ji=1

(
diff(a, (Ri, Hji ))−Ha

)2
. (13)

The pooled standard deviation above allows for unequal variances in the hit
and miss nearest neighbor diffs and allows for a different number of diffs
in the hit and miss groups, which is common for multiSURF. For Relief
with fixed neighbors k, the above equations can be simplified by letting
kMi

= kHi
= k and |M | = |H| = mk. The WSTIR score (Eq. 10)

approximately follows a t-distribution from which we compute p-values.
We use df = |M | + |H| − 2 as the degrees of freedom for calculating
the p-value.

We highlight that STIR applies to any Relief-based algorithm. In this
work, we focus on two different approaches for the neighbor finding
algorithm (ReliefF and multiSURF) for use in STIR. ReliefF requires the
user to specify a fixed k while multiSURF uses a neighborhood radius
that varies for each instance (Urbanowicz et al. (2017a)). In multiSURF,
the radius for each instance is the average of all distances of the instance
to all other instances. The multiSURF method counts another instance
as a neighbor if it is within this average radius. The expected value of
all Manhattan (L-1) distances between pairs of m random points in a
p-dimensional unit hypercube is p/3. We show empirically that, given
two simulation scenarios of balanced datasets, an approximation to the
expected number of neighbors within the multiSURF radius is k = m/6.
We show that the performance of STIRk=m/6 closely follows that of
STIR-multiSURF.

2.3 Datasets and performance metrics

2.3.1 Simulation methods
To address power and false positive performance of STIR, we use the
simulation tool from our private Evaporative Cooling (pEC) software (Le
et al. (2017)). This tool was designed to simulate realistic main effects,
correlations, and interactions that one would expect in gene expression or
resting-state fMRI data. In the current study, we first simulate main effect
data with m = 100 subjects (50 cases and 50 controls) and p = 1000

real-valued attributes with 10% functional (true positive association with
outcome). We chose a sample size consistent with real gene expression
data but on the smaller end to demonstrate a more challenging scenario.
Similarly, an effect size bias of b = 0.8 was selected to be sufficiently
challenging with power approximately 40% (Le et al. (2017)). More
details on the theoretical relationship between power and the simulation
parameters is provided in Ref. (Le et al. (2017)).

One of the main advantages of Relief-based methods is the ability to
detect statistical interactions. Thus, our second type of simulation uses
the differential co-expression network-based simulation tool in pEC to
simulate interactions. Full details of the simulation approach can be found
in Refs. (Le et al. (2017); Lareau et al. (2015)). Briefly, we simulatem =

100 samples and p = 1000 attributes with 10% targeted for interaction.
Starting with a dataset of random normal expression levels, we induce a co-
expression network with Erdős-Rényi connectivity by making connected
genes (e.g., gi and gj ) have a linear dependence (gj = gi + sint) with

average correlation noise sint. A lower value of sint yields higher average
co-expression and thus higher average interaction effect size.

The interaction is enforced by randomly targeting 10% of the attributes
and permuting their values within the group of instances designated as
cases. By permuting the values of the gene in cases, no main effect is
created but the co-expression between the gene’s connections is destroyed
in the case group, creating differential co-expression or interaction effects
with that gene’s connections. We chose the 10% of targets randomly, which
means that a few attributes may not have correlation with other attributes
and hence may not actually be functional. On the other hand, other target
attributes may be highly interconnected and, hence, may be involved
in high-order interactions. This complexity makes assessing true/false
positives/negatives challenging; however, our goal is to simulate realistic
data and the 10% of targets is a reasonable surrogate for true associations.
We use a relatively challenging interaction effect size sint = 0.4. See Ref.
(Le et al. (2017)) for further discussion of main effect and interaction effect
sizes.

2.3.2 Real-world dataset
We used an RNA-Seq study of 462 major depressive disorder (MDD)
subjects and 452 healthy controls (HC) (Mostafavi et al. (2014)) to assess
the performance of STIR. This dataset consists of whole blood RNA-
Seq measurements of 15,231 genes in all subjects. Sequencing yielded an
average of 70 million reads per individual, and gene expression levels were
quantified from reads of 21,578 annotated protein-coding genes, followed
by low read-count removal and adjustment for technical and biological
covariate effects (Mostafavi et al. (2014)). To avoid potential gender
confounding in gene discoveries, we selected only female individuals from
the original dataset, resulting in 360 MDD and 282 HC.

2.3.3 Performance metrics
We compare the performance of STIR across Relief-based methods with
permutation test as well as univariate t-test in both main and interaction
effect simulations. We choose a univariate t-test as a comparison method
for main effect simulations because it gauges the effect size and the
t-test is an effective standard approach for analyzing gene expression
without multiple conditions or covariates. Specifically, an attribute is
considered functional if its mean values from two different outcome groups
are significantly different from each other. Moreover, the STIR p-values
are analogous to a t-test. STIR p-values are simply computed from a t-
test distribution from each attribute’s STIR score (Eq. 10). Relief-based
permutation p-values are computed based on the reformulated Relief-based
score (Eq. 7). For permutation, we first compute the observed score for
each attribute. We then permute the class label 10,000 times, recomputing
attribute scores for each permuted dataset. The fraction of permutations
for which the observed score exceeds the permuted score is the attribute’s
p-value.

All resulting p-values (STIR, permutation, and univariate t-test) are
adjusted for multiple testing using the Benjamini-Hochberg procedure
(Benjamini et al. (2001)). Attributes with adjusted p-values less than 0.05
are counted as a positive test (null hypothesis rejected), else the test is
negative. We assess the performance of each method by averaging the
following performance metrics across 100 replicates of each simulation
scenario: True Negative Rate (TNR), Precision, and Recall of the statistical
tests. We remind the reader of the following definitions applied for the
detected attributes

TNR =
# true negatives

# true negatives + false positives
, (14)

Precision =
# true positives

# true positives + false positives
, (15)
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Fig. 2. STIR versus Relief-based permutation and univariate t-test. Comparison of the
performance (True Negative Rate, Precision, and Recall) of STIR (with multiSURF
neighborhood, orange), Relief-based permutation (blue), and univariate t-test (green) to
detect functional attributes. Each simulation is replicated100 times withm = 100 samples
and p = 1000 attributes with 100 functional main effects (A) and interaction network
effects (B). All methods determine positives by 0.05 FDR adjusted p-value threshold.

Recall =
# true positives

# true positives + false negatives
. (16)

3 Results

3.1 Comparison of the performance of STIR with
Relief-based permutation

Our first aim is to determine whether the more computationally efficient
pseudo t-test approach of STIR is a reliable alternative to a model-free
permutation test. We use multiSURF as the neighborhood algorithm
in STIR, but constant k algorithms are expected to perform similarly
(see succeeding subsection). Using an FDR adjusted p-value threshold
α = 0.05, we observe that STIR (orange) and permutation (blue)
indeed perform nearly the same in both main effect and interaction effect
simulations in terms of True Negatives, Precision, and Recall (Fig. 2).
For completeness and to provide an indicator of power, we also compare
STIR with the performance of a univariate t-test (green). For main effect
simulations (Fig. 2A), all methods have a similarly low Recall because the
simulated main effect size and sample size were chosen to be relatively
low and challenging.

As we discuss more in Sec. 3.2 (Fig. 3), for main effects, it is
possible to further increase the Recall of STIR beyond a univariate t-
test if one uses STIR with ReliefF and a larger k (up to the maximum
kmax = b(m − 1)/2c); however, this k would cause a decrease in
performance for interactions relative to STIR with lower values of k. The
multiSURF neighborhood constitutes a compromise between main effect
and interaction effect performance, as we explore more below.

Fig. 3. The effect of k on the performance of STIR to detect functional attributes with
main effects (A) and interaction effects (B). Comparison of the performance (True Negative
Rate, Precision, and Recall) of STIR-ReliefF for multiple values of nearest neighbors k

(k = 5, 16, 33, 49, gray scale) and STIR-multiSURF (adaptive radius, orange). Each
simulation is replicated 100 times with m = 100 samples and p = 1000 attributes
with 100 functional. All methods determine positives using a 0.05 FDR adjusted p-value
threshold.

For interaction simulations (Fig. 2B), the t-test still has a similarly
high True Negative Rate to STIR. However, this high rate is because no
t-tests are true positive: there are no main effects and the t-test has zero
Precision and Recall. STIR on the other hand still has high Precision and
Recall (Fig. 2B) because Relief-based methods are sensitive to interactions
among attributes (provided the number of neighbors is not too large).

3.2 The effect of k in detecting functional attributes

Our next aim is to gain insight into the performance of STIR with a ReliefF
neighborhood (fixed k neighbors) and how its performance relates to STIR
with a multiSURF neighborhood (adaptive radius). In the main effect
simulations (Fig. 3A), as k increases, STIR gains more power to detect the
functional attributes (increasing Recall) and with an expected increase in
false positive attributes (decreasing Precision). The increasing Recall with
k is expected for main effects because ReliefF becomes more myopic (more
like a univariate t-test) as k increases (Robnik-Šikonja and Kononenko
(2003); McKinney et al. (2013)). The increase in Recall is limited in part
by the maximum number of neighbors beingkmax = b(m−1)/2c = 49.

In contrast, for interaction simulations (Fig. 3B), the relationship
between k and Recall is no longer monotonic. Rather, the Recall reaches
a maximum at approximately k = m/6 and this performance is similar to
using the adaptive radius in multiSURF. As k increases beyond k = m/6

to the maximum kmax , ReliefF becomes more myopic and has nearly
zero Precision and Recall. This result corroborates the findings in Ref.
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Urbanowicz et al. (2017a) that multiSURF is sensitive to two or three-
way interactions. However, we also note that the STIR-ReliefF with
k = bm/6c = 16 results are similar to STIR-multiSURF for main effect
and interaction effect simulations (because the average k in multiSURF
is close to m/6). These versions of STIR will yield similar results for
balanced data that are optimal for detecting interactions while being
reasonably powerful for main effects. STIRk=m/6 has a computational
speed advantage over STIR-multiSURF, but STIR-multiSURF may have
an advantage when there is class imbalance (Urbanowicz et al. (2017a)). If
one wanted to optimize the sensitivity of STIR for main effects and neglect
interactions, one would use STIRk=kmax . Furthermore, in all simulation
scenarios, the correlation values of STIR scores (pseudo t-statistic) and the
original Relief-based scores (diff function) are above 0.98 (see Supplement
Fig. 1 for more detail).

3.3 Real-world data

We apply STIR-multiSURF to the RNA-Seq study of major depressive
disorder (MDD) in Ref. Mostafavi et al. (2014). Using an FDR threshold
of 0.05, STIR detected 22 statistically significant associations out of 15,231
genes (Table 1). Meanwhile, with the same FDR threshold of 0.05, a Welch
two-sample t-test did not identify any significant associations between gene
expression levels and MDD (the original study with additional samples
increased the FDR to 0.25 to detect associations).

Reproducing associations from the original study is not feasible
because we focused on female subjects to avoid confounding (using
360 MDD and 282 controls) and Relief-based methods are currently not
adept at correcting for covariates. However, we note that the top STIR
association, Mitochondrial Pyruvate Carrier I (MPC1), also known as
Brain Protein 44-Like (BRP44L), forms a heterocomplex with MPC2
to mediate uptake of pyruvate into mitochondria (Herzig et al. (2012)).
This interaction is noteworthy because MPC2 contains a variant that is
associated with Schizophrenia in GWAS of East Asians (Xiao and Li
(2016)). While an association with Schizophrenia seems indirect to MDD,
symptom complexes such as anhedonia and psychosis can be shared across
psychiatric disorders (Lee et al. (2013)).

Albeit beyond the scope of the current study, STIR feature selection
could be embedded in a nested cross-validation approach or private
evaporative cooling to learn a classifier for MDD. Characterization of
interactions could also be performed to create an expression-epistasis
network from the STIR MDD genes (McKinney et al. (2009); Lareau et al.
(2015)) and help identify underlying mechanisms of MDD susceptibility.
Using the STIR genes in Table 1, we predicted a functional interaction
network (Supplement Fig. 2) with the Integrative Multi-species Prediction
Tool (Wong et al. (2015)). Functional interactions were predicted between
STIR MDD genes MED29 and MED19 in a cluster of other MED genes.
STIR gene B4GALT7 was also predicted to be in this MED cluster, and
the STIR gene NIPSNAP3A connects clusters of other STIR genes.

4 Discussion
To our knowledge, STIR is the first method to use a theoretical distribution
to calculate the statistical significance of Relief attribute scores without the
computational expense of permutation. Previously, it was difficult to assess
the false discovery rate of Relief-based attribute lists because arbitrary
thresholds were used. STIR is able to report statistical significance of
Relief-based scores by a pseudo t-test that accounts for variance in the
mean difference of miss and hit nearest neighbor diffs. We assessed STIR’s
power and ability to control false positives using realistic simulations with
main effects and network interactions. We applied STIR to real data to
demonstrate the identification of biologically relevant genes.

Table 1. Top major depressive disorder (MDD)-associated genes from RNA-Seq
analysis with STIR-multiSURF at 0.05 FDR.

Rank Gene Description STIR p-adj

1 MPC1 Mitochondrial Pyruvate Carrier 1 8.69E-16
2 DSTYK Dual Serine/Threonine And Tyrosine

Protein Kinase
8.56E-06

3 MIR324 MicroRNA 324 1.95E-05
4 HECW2 HECT, C2 And WW Domain Containing

E3 Ubiquitin Protein Ligase 2
0.0001

5 FBXL2 F-Box And Leucine Rich Repeat Protein
2

0.0017

6 MDS2 Myelodysplastic Syndrome 2
Translocation Associated

0.0027

7 RBPMS RNA Binding Protein, MRNA
Processing Factor

0.0054

8 PHKB Phosphorylase Kinase Regulatory
Subunit Beta

0.0075

9 NHLH1 Nescient Helix-Loop-Helix 1 0.0100
10 MED29 Mediator Complex Subunit 29 0.0115
11 DMWD DM1 Locus, WD Repeat Containing 0.0124
12 PIBF1 Progesterone Immunomodulatory

Binding Factor 1
0.0133

13 NSMF NMDA Receptor Synaptonuclear
Signaling And Neuronal Migration
Factor

0.0149

14 APOBEC3C Apolipoprotein B MRNA Editing
Enzyme Catalytic Subunit 3C

0.0160

15 NIPSNAP3A Nipsnap Homolog 3A 0.0198
16 MED19 Mediator Complex Subunit 19 0.0222
17 OSBP2 Oxysterol Binding Protein 2 0.0228
18 PRG2 Proteoglycan 2, Pro Eosinophil Major

Basic Protein
0.0231

19 ADAMDEC1 ADAM Like Decysin 1 0.0246
20 ROR2 Receptor Tyrosine Kinase Like Orphan

Receptor 2
0.0283

21 B4GALT7 Beta-1,4-Galactosyltransferase 7 0.0326
22 GDPD3 Glycerophosphodiester

Phosphodiesterase Domain Containing 3
0.0492

We show that the statistical performance using STIR p-values is the
same as using permutation p-values. This validates the STIR pseudo t-test
and means one can use it instead of costly permutation testing. We chose
the number of permutation to be 10,000 to minimize the computational
expense while obtaining accurate permutation p-values. Specifically, if
only 1,000 permutations were performed, the p-values would be bounded
below by 0.001, which would lead to an inflation of insignificant tests after
FDR correction (padj > 0.05) in simulated datasets with 1,000 attributes.
Nevertheless, 10,000 permutations requires considerable computation
time, especially in large datasets such as the analyzed gene expression data.
Hence, by showing very similar performance to permutation, STIR shows
an efficient implementation to compute the p-value for each attribute while
producing scores that are highly correlated with the standard Relief-based
scores.

We showed the STIR formalism generalizes to all Relief-based
neighbor finding algorithms, including MultiSURF. We show that STIR-
MultiSURF and STIRk=m/6 perform similarly for main effect and
interaction simulations. This suggests that one may prefer to use constant-k
STIRk=m/6 for the computational speed advantage; however, we have not
tested the statistical performance for imbalanced data. Our results suggest
that power for detecting interactions is maximized near k = m/6 (higher
or lowerk decreases the power). Power for detecting main effects is highest
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with the myopic maximum k = kmax = b(m− 1)/2c. Real biological
data will likely contain a mixture of main effects and epistasis network
effects (Mckinney and Pajewski (2012)). The value k = m/6 is a good
compromise because it maximizes the radius for detecting interactions
while still giving reasonable power for detecting main effects. However,
the STIR formalism may help tune the elements of an attribute-specific
k vector, where each attribute, a, is allowed to use a different ka to
preferentially detect a main effect or interaction effect as informed by
the data (McKinney et al. (2013)). For those using a constant-k (ReliefF)
approach, our results suggest that using k = m/6 may offer a better
default than the pervasive use of k = 10, which was an arbitrary choice
in the early literature.

Our simulation study focuses on obtaining a quality assessment of
statistically significant STIR associations between an attribute and the
outcome while taking into account the complex underlying architecture
of interactions among attributes. Therefore, the simulation is designed
to generate realistic and challenging datasets leading to relatively low
Recall. In datasets with larger sample size (m = 200), we observe
higher Recall values but otherwise similar findings as presented in the
Results section (results for m = 200 not shown). Furthermore, from
a machine learning point of view, if the researcher wishes to include
more attributes in their subsequent analysis, they may increase the FDR
threshold to allow for more false positives and improve the Recall value.
A future study that analyzes this Recall/Precision trade-off would prove
valuable in understanding statistical characteristics of selected features
from Relief-based methods.

The STIR score improves the standard Relief-based scores because,
rather than simply being a difference of means, STIR incorporates
within and between group variances. Moreover, this pseudo t-test score
can be transformed into a p-value. The advancement of STIR over
Relief-based scores is similar to going from a fold change to describe
differential expression to a t-test. The assumptions of a t-test – independent
observations and normality of the population distributions – are not
satisfied for the STIR test in general, which is why we refer to it as a
pseudo t-test. When the average number of neighbors k is sufficiently
large, duplicate pairs will occur in the estimate of the average hit and
miss diffs. The dependence induced by duplicate neighbors may increase
the false positive rate because the variance estimates are narrowed, the
STIR statistics inflated, and the p-values deflated. One could simply
remove duplicates; however, the duplicates are beneficial with respect
to power because they add weight to pairs of instances that are very
similar to each other. The effect of duplicates has a similar effect as
a distance-based weighting scheme such as the exponential decaying
influence of neighboring instances used in some Relief-based algorithms
(Robnik-Šikonja and Kononenko (2003)).

A related approach to reduce the dependence-induced false positive
rate is to perform sub-sampling of the neighbor pairs, which reduces
duplicates but maintains some distance-based weighting. An alternative
approach would be to incorporate variance regularization into the STIR
statistic to inflate the variance to a level consistent with independent
neighbors. Despite the dependence of neighbors, our empirical results
show that, even when unmodified, the STIR pseudo t-test shows
comparable performance with permutation test in both simulation
scenarios with main and interaction effects.

Transformations such as the square root help increase the normality
of the distribution of distances. However, to stay close to the original
Relief score formula, we did not transform the distance values in the
results shown here, but the transformation is provided as an option via the
transform parameter of the STIR function in our software. Preliminary
analysis indicates little difference when transformation is applied (results
not shown).

It has been shown that Relief-based algorithms benefit from the
iterative removal of the worst attributes and then repeating the estimation
of the remaining attributes. Thus, another future direction is to develop a
strategy for STIR that incorporates iterative attribute removal in a way that
minimizes the false positives due to iteration-induced multiple testing.
Effective strategies also must be developed for testing for replication
of significant STIR effects because typical replications do not have
dependence among other features, whereas Relief scores depend on the
context of other variables in the data.

Extensions of STIR will involve multi-class data, quantitative trait
data (regression) and correction for covariates. Just as an ANOVA extends
the t-test to multiple conditions, we anticipate the extension of STIR
to multi-state will involve an ANOVA formalism and F-test. Similarly,
we envision regression-STIR to follow a linear model formalism. The
current implementation of STIR does not deal with missing data. In a
future implementation, we will modify the diff to estimate the probability
that two instances (one or both possibly missing) have different values
conditioned on their class. Application to GWAS data requires no
additional modifications other than specification of a different diff function
for categorical variables. Future studies will apply STIR to GWAS as well
as eQTL and other high dimensional data to identify interaction effects.
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