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Abstract

Summary: Structure probing data has been shown to improve thermodynamics-based RNA
structure prediction. However, this type of data has not been used to improve the prediction of
RNA-RNA interactions. This is even more promising as the type of information (chemical reactivity
as provided by SHAPE) is closely tied to the accessibility of nucleotides, which is an essential part for
scoring RNA-RNA interactions. Here we show how that such experimental data can be incorporated
seamlessly into accessibility-based RNA-RNA interaction prediction approaches, as implemented in
IntaRNA. This is possible via the computation and use of unpaired probabilities that incorporate the
structure probing information. We show that experimental SHAPE data can significantly improve
RNA-RNA interaction prediction. We evaluate our approach by investigating interactions of the
spliceosomal Ul RNA with its target splice sites. When SHAPE data is used, known target sites are
predicted with increased precision and specificity.
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1 Introduction

The function of many if not most non-coding (nc)RNA
molecules is to act as platforms for inter-molecular interaction,
which depends on their structure and sequence. A large num-
ber of ncRNAs regulate their target RNA molecules via base-
pairing. For instance, small (s)RNAs regulate the translation
of their target genes by direct RNA-RNA interactions with the
respective messenger (m)RNAs [2013). To pre-
dict such interactions, knowledge about potential interaction
sites is needed, i.e. regions not involved in intra-molecular
base pairing. State-of-the-art RNA-RNA interaction predic-
tion tools like IntaRNA (Busch et al}[2008; [Mann et al.|[2017}
|Raden et al., 2018a) compute unpaired probabilities to gain
this accessibility information. While correct within their ther-
modynamic models, such probabilities do not incorporate all
cellular constraints and dynamics that define accessible regions
and thus the likelihood for interaction.

The accuracy of RNA structure prediction can be improved
when experimental structure probing data such as SHAPEE
is incorporated (Hajdin et all, 2013} [Siikosd et all [2013} [Lotfi
et al.L 2015). To this end, SHAPE information?|is converted to
pseudo-energy terms (Zarringhalam et al.| 2012 Deigan et al,
|2009; [Washietl et all [2012)) to guide thermodynamic RNA
structure prediction methods (Lorenz et all [2016alb} Mon]
|taseri et al., 2017} [Spasic et al., 2018).

As SHAPE reactivity is related to the accessibility of nu-
cleotides, it is even more promising to use such experimental
data for improving the accuracy of RNA-RNA interaction pre-
diction. For that reason, we introduce a seamless incorporation
of SHAPE data into accessibility-based prediction approaches
such as IntaRNA within this manuscript.

We show that SHAPE-guided accessibility prediction im-
proves RNA-RNA interaction prediction. To this end, we
study the probabilities of Ul interacting with its pre-mRNA
target sites. Ul is involved in pre-mRNA splicing by recog-
nizing the 5’ site of introns via inter-molecular base pairing
(Hertel and Graveley), |2005). Due to the dynamics and con-
straints imposed by the spliceosome, it is generally challenging
to avoid false positive interaction predictions, which are either
wrong predictions of Ul’s recognition site with (random) re-
gions of the mRNA or predicted interactions of other accessible
U1 regions with the mRNA. For that reason, we used Ul as an
example to show that in vivo probing data effectively reduces
false positive predictions in RNA-RNA interaction prediction.

2 Methods

Given two RNA molecules with nucleotide sequences S, S? €
{A,C,G,U}*, we define interaction I between S' and S? as
a set of inter-molecular base pairs (i.e. I = { (3,j) | © €
[1,|8Y] A7 € [1,|S?]]}), that are complementary (i.e. V(i,5) €
I:{S}, SJQ} € {{A,U},{C,G},{G,U}}) and non-crossing (i.e.

1Selective 2/—Hydroxy1 Acylation analyzed by Primer Extension

(SHAPE) (Wilkinson et al.} .

2For simplicity we refer to probing experiments of all reagents
(SHAPE, DMS) as SHAPE.

Y(i,7) # (@',§') € I : 9« < ¢ — j > 7). Furthermore,
any position forms at most one inter-molecular base pair (i.e.
Y(i,5),(#,5") i =1 > j =3'). For any interaction I, the hy-
bridization energy EP¥®(I) can be computed using a standard
Nearest-Neighbor energy model (Turner and Mathews), [2010).

The accessibility-based free energy of an interaction I is de-
fined by

E(I) = EM®(I) + ED'(I) + ED?*(I), (1)

where the ED12(> 0) terms represent the energy (penalty)
needed to make the respective interacting subsequences of
S1:2 unpaired/accessible (Miickstein et al.|2006; |[Raden et al.|
|2018b} [Wright et al., 2018).

To compute ED terms, we need the left-/right-most base
pair of T given by (I',72) = argmin(; jyer(4) and (r1,12) =
arg max; ;)er (%), respectively. Both base pairs define the in-

teracting subsequences, i.e. Slll . and S% . Based on that,
T “..r
the penalty terms are given by

ED*(I) = —RTlog(Pr**(Sj ,»)) with x € {1,2}(2)

where R is the gas constant, T is the temperature, and Pr®°
denotes the unpaired probability of a given subsequence, which
can be efficiently computed (Bernhart et all, [2006; [Muckstein|
et al} [2006).

As discussed above, SHAPE reactivity data can be incor-
porated into thermodynamic prediction tools via pseudo en-
ergy terms (Lotfi et al, 2015} [Deigan et al.,|[2009) as incorpo-
rated into the Vienna RNA package (VRNA) (Lorenz et al.)
. The latter enables SHAPE-guided computation of un-
paired probabilities, i.e. the Pr®s terms from Eq. ‘While
SHAPE-guided energy evaluations can not be compared to un-
constrained energy values (due to the pseudo-energy terms),
unpaired probabilities are compatible, since they are reflect-
ing the accessible structure space rather than individual struc-
tures. Thus, SHAPE-constrained Pr&f;,py values can be di-
rectly used within the ED computation (Eq. , which provides
a constrained accessibility-based interaction energy (Eq.
without further methodical changes. This approach is imple-
mented in the recent version of IntaRNA e.g. available via
Bioconda (Griining et al.| 2018]).

To assess the effect of SHAPE data, we define the spot proba-
bility PrSP°t of an interaction site of interest. A spot is defined
by a pair of indices k,1 for S, S2, resp., and PrsP°t(k,1) as
the partition function quotient

Prvot(k,l) = > exp(—E(I')/RT)/ > exp(—E(I)/RT),

I'eT* IeT
(3)

where Z denotes the set of all possible interactions and Z* C 7
the subset of interactions that cover the spot, i.e. position k,
are within the respective interacting subsequence; Slll o and

Sl22_m2 (see above).
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Figure 1: RNA-RNA interaction prediction between spliceo-
somal RNA Ul with ACT1 mRNA of Arabidopsis thaliana.
IntARNA interactions predicted between Ul (y-axis) and the
region around the second intron splice site of ACT1 mRNA
using (a) unconstrained (STD) and (b) SHAPE-constrained
accessibility estimates for Ul. (c¢) Spot probabilities of Ul
recognition site (spot index = 8) interacting with the three 5’
splice sites of ACT1 mRNA (spot = 1st intron index), with
(orange) and without (blue) SHAPE constraints. (d) Rela-
tive splice-site interaction probability (log scale) of all studied
mRNAs and spots.

3 Results

SHAPE data for Ul was obtained from in vivo DMS-seq RNA
structure probing of Arabidopsis thaliana .
The pre-mRNA sequences for 5 genes including ACT1, which
have been previously validated to perform Ul-dependent splic-
ing (Yeh et al.l , were extracted for the analyses. Fig-
ures [lh,b) exemplify the effect of SHAPE-constrained predic-
tions using IntaRNA 2.2.0, VRNA v2.4.7 and pseudo ener-
gies following |Zarringhalam et al| (2012). Without SHAPE
constraints, the splice site is predicted to interact with vari-

3Note, interactions I € Z* covering a spot at k,! do not necessarily
contain the base pair (k, 1), i.e. k, | or both can be unpaired.

ous regions of Ul with high probability (i.e. low energy). In
contrast, when using SHAPE-corrected accessibility terms, the
splice site is predicted to be the dominant target of Ul’s recog-
nition site. This interaction, for instance, is shifted upwards
from rank 9 (standard prediction) to 3 (SHAPE-constrained)
among all predicted interactions of Ul with the ACT1 mRNA.
Figure 1 provides the interaction probabilities of Ul’s recog-
nition site with all three 5 splice sites of ACT1. All splice
sites are predicted with increased probability when SHAPE
data was used. As shown in Fig. ,b), this effect results from
a decreased number of wrong low energy interactions, i.e. false
positive predictions. Over all mRNAs, the probabilities of cor-
rect splice site recognition were increased on average by a fac-
tor of 3.08 (Figure ) The supplementary material provides
further details on data extraction, analysis procedure and the
evaluation of all studied mRNAs.

4 Conclusion

Most of the non-coding RNAs perform their function via
molecular interactions for which experimental data is still
sparse. Prediction of RNA-RNA interaction has proven to
be quite useful for detecting targets of sRNA especially in
prokaryotes (Backofen and Hess| 2010). However, the false
positive rate is still quite high, making RNA-RNA interaction
prediction alone too error-prone for eukaryotes.

The only possibility to reduce errors is to combine interac-
tion prediction with other type of data. Here, in vivo structure
probing data seems especially suited as it represents a multi-
tude of factors that guide RNA structure formation; like the
binding of other molecules or kinetic effects. We have shown
that SHAPE data indeed improves RNA-RNA interaction pre-
diction accuracy. To this end, we have successfully extended
IntaRNA to incorporate SHAPE data in its accessibility com-
putation and to compute spot probabilities of interaction sites.
The predicted interaction probabilities of splicesomal Ul RNA
with its known target splice sites were significantly improved.
This results from a decreased number of false positive (wrong
low energy) predictions.

Recently, structure probing has been complemented by
next-generation sequencing to quickly obtain single or
transcriptome-wide probing data (Kutchko and Laederachl
|2017; |Choudhary et al) [2017). This produces large data sets
that demand for fast methods incorporating the probing data,
which is met by our introduced extension of IntaRNA.
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