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Abstract: Various gene network models with distinct physical nature have been widely
used in biological studies. For temporal transcriptomic studies, the current dynamic models
either ignore the temporal variation in the network structure or fail to scale up to a large
number of genes due to severe computational bottlenecks and sample size limitation. On
the other hand, correlation-based gene networks are more computationally more affordable,
but have not been properly extended to gene expression time-course data.
We propose Temporal Gene Coexpression Network (TGCN) for the transcriptomic time-
course data. The mathematical nature of TGCN is the joint modeling of multiple covariance
matrices across time points using a “low-rank plus sparse” framework, in which the network
similarity across time points is explicitly modeled in the low-rank component. Using both
simulations and a real data application, we showed that TGCN improved the covariance
estimation loss and identified more robust and interpretable gene modules.

1 Introduction

High throughput manner and low cost of sequencing technologies enabled the biologists
generating an enormous wealth of data for discovering and quantifying the relationship
among large amounts and various types of molecular elements, such as gene expressions,
proteins, metabolites and epigenetic marks. These elements and their relationship or in-
teractions could be modeled as nodes and edges in a network model. Specifically, the gene
co-expression network (GCN) models have been used for the exploration, interpretation
and visualization of the relationship among genes in a wide range of biological applications,
including disease-gene association (Yang et al., 2014), identification of genes responding
to environment changes, tissue specific gene identification (Tan et al., 2017), and func-
tional gene annotation (Kadarmideen and Watson-Haigh, 2012). GCN outputs can also
be combined with other biological data in various downstream analysis, such as identifying
functional eQTLs (Villa-Vialaneix et al., 2013) and studying gene-phenotype association
(Ficklin et al., 2010). Partially for this reason, many GCN databases were developed
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as functional annotation resources (e.g., GeneFriends van Dam et al. 2014, COXPRESdb
Obayashi et al. 2007 and PlaNex Yim et al. 2013).

Many construction tools and analysis tools were developed for GCN, and the physical
nature of the resultant networks are different. WGCNA (Zhang and Horvath, 2005) is
based on the marginal correlation of the gene pairs. GeneTS (Schäfer and Strimmer, 2004)
and BicMix (Gao et al., 2016) built Gaussian Graphical Models (GGM) of genes, which
were based on partial correlations. Under the multivariate Gaussian assumption, GGM
captures the conditional dependence among genes. Mutual information has also been used
in defining gene networks (Daub et al., 2004). Comparing with Pearson’s correlation, it
could also capture the nonlinear association (Song et al., 2012). Different from the un-
directed networks produced by the above methods, Bayesian Network (BN) based methods
infer directed networks from gene expression data (Friedman et al., 2000; Ni et al., 2015).

Temporal transcriptomic data are extremely useful in developmental biology(Hawrylycz
et al., 2012) and stress biology(Miao et al., 2017), and GCN models have been utilized for
such analysis. For instance, BNs could also be extended as Dynamic Bayesian Network
(DBN) for time course data, which models the directed gene-gene relationship across time
points (Lebre et al., 2010). Besides DBN, another line of dynamic network models are based
on differential equations (Zhang et al., 2018). The major bottlenecks in popularizing these
dynamic network models lie in the nature of the inference goal and the biological nature
of the data. First, these computational algorithms search in high-dimensional parameter
space and require large number of replicates, even for a small network. For example, Zhu
and Wang (2015) reported that it took nine minutes for their proposed method HMDBN
to learn a simulated dynamic network among 10 nodes using 1,019 observations, while
its competitors all took 11 to 58 hours. Even though HMDBN has made tremendous
progress along this direction, it may be still unrealistic to fit large DBN without further
computational improvement, as the parameter space grow exponentially with the number of
nodes. Secondly, for the models applicable to smaller samples (Oates and Mukherjee, 2012;
Zou and Conzen, 2004), the structure of DBN are often assumed to be time-invariant, which
could be unrealistic for the biological systems studies in developmental biology (Hawrylycz
et al., 2012) and agronomy (Xu et al., 2012).

Due to the limitations and challenges in dynamic network modeling, biologists usually
adopt one static GCNs to aggregate all data together or construct several static GCNs
to analyze transcriptomic data at different time points (Ballouz et al., 2015; Miao et al.,
2017). Such strategies either mixes various sources of heterogeneity or could not describe
the dynamics of the biological systems, but both make the interpretation of the resulting
network difficult and inaccuracy. Alternatively, one may build one GCN using the data at
each time point, and compared them using differential network analysis (Azevedo et al.,
2017). This approach also has many drawbacks. First, the replicates at each time point
may not be large enough to build a reliable and robust GCN. Second, ignoring the similarity
of the gene expression at different time points within the same time-course often results in
false positives in differential network analysis across time points. In this manuscript, we
presented a network model - the Temporal Gene Coexpression Network (TGCN), a new
“low-rank plus sparse” framework (Fan et al., 2013; Luo, 2011) for building time-point
specific GCNs from time-course gene expression data. In both simulation studies and the
real data application, we showed that the resulting GCN’s were more robust and accurate
than the separate modeling at each time point, and thus led to more accurate downstream
analysis.
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2 Methods

2.1 Model setup and notations

In a typical transcriptomic time course study, suppose we collect nt samples, and observe
the p × nt data matrix Xt = (xt1, . . . , xt,nt

) for t ∈ {t1, . . . , tT }, where p is the number of
genes, nt is the number of samples and T is the total number of time points. Reconstructing
the GCN at each time point can be achieved by estimating Σt, the covariance matrix of the
columns of Xt. Since this is our focus, we assume the rows of Xt have zero mean.

One naive estimate of Σt is simply the raw sample variance-covariance matrix Σ̂t. This
approach may lead to extremely noisy estimates of GCN, because the sample size at each
time point is usually very small. It also ignores the natural partial ordering of the samples
(by time), and the similarity in the covariance structure among them. Such similarity comes
from various sources. For example, the genes in the same pathway tend to be coexpressed,
and the membership of the genes to the pathways are fixed. The temporal change in GCN,
however, could be caused by the fact that these pathways share genes, and their activity
intensity also vary through time.

The above biological observation motivates us modeling GCN with time-invariant latent
factors, and their time-varying loadings, an approach connected with the low-rank approxi-
mation of high-dimensional covariance matrix (Fan et al., 2008). In the literature of matrix
recovery, it has been noted that the low-rank approximation may be too restrictive and not
robust, and a natural extension is the “low-rank plus sparse” framework (Fan et al., 2013;
Luo, 2011). Towards this end, we also included a time specific sparse component to reserve
the significant links that cannot be captured by the factor model.

To summarize, we propose the following “low-rank plus sparse” estimator for Σt

Σ̂t = UDtU
T + R̂t (1)

Here U is a p × K matrix whose columns are the time-invariant latent factors learned
from the transcriptomic data itself, the K ×K diagonal matrix Dt are their time-varying
loadings, and R̂t denotes the estimated sparse component of the time-specific links at time
point t.

Throughout this paper, we will use A(i, j) to denote the element of A in its ith row and
jth column, and (b)+ to denote the positive part of b, i.e. it is 0 if b is negative.

2.2 TGCN: Temporal Gene Coexpression Network analysis

We propose Temporal Gene Coexpression Network (TGCN, Algorithm 1) framework based
on the low-rank plus sparse model Equation (1).

Algorithm 1 TGCN: Temporal Gene Coexpression Network analysis

Input: Time-course gene expression data matrices (RNA-Seq data or micro-array data)
Xt1 ,Xt2 , . . . ,XtT ;

Output: Estimated time-specific coexpression networks Σ̂t for t ∈ {t1, . . . , tT }
1: Extract the time-invariant latent factors U by applying SVD to the pooled normalized

data matrix.
2: Estimate the time-specific weights Dt via spline.
3: Estimate the time-specific sparse component R̂t by adaptive thresholding.
4: Re-construct the covariance matrix at time t according to Equation (1) and calculate

the correlation matrix.
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When performing SVD on pooled data for extracting U in the first step, normalization is
critical. If not done properly, the leading principle directions could be heavily influenced by
the time points with larger sample sizes or larger variability. Data normalization typically
involves centering and scaling. Our goal in this step is to find the principle directions that
are representative at all time points. Thus we scaled Xt with the leading singular value
of Xt and then multiply the square root of number of genes

√
p. This approach assigned

equal weights to the principle directions of the data at each time point. Write the pooled
normalized data as

X̃ =
√
p(λ−1

1
Xt1 , . . . , λ

−1

T XtT )

where λℓ is the leading singular value ofXtℓ . Then we applied SVD to X̃, and used its topK
left singular vectors as the columns of the time-invariant latent factors matrix U . Choosing
the rank for low-rank matrix approximation is a difficult task (Valle et al., 1999), because
fewer PCs will include incomplete information of the process while more PCs will cause
the model over-parameterized and include noise. This problem could be posed as a model
selection problem, and many information criteria have been applied, including Akaike’s
entropy-based Information Criterion (AIC, Akaike 1973, 1998) and Minimum Description
Length (MDL, Rissanen 1978, 1983; Valle et al. 1999. See Supplementary Notes for details).
There is no dominant procedure for this problem, and both AIC and MDL are consistent
under certain regularity conditions. However, Valle et al. (1999) suggested that AIC tended
to overestimate the dimension of the low rank approximation in certain scenarios. This is
consistent with our data analysis, where we found that both of AIC and MDL selected
the correct number of components in simulations (Supplementary Fig. 1), while MDL
selected a more compact model in the real data analysis (Supplementary Fig. 2). Thus we
recommended using MDL at this step.

In the second step, one natural raw estimate of the weights of the latent factors U
at time point t is the diagonal elements of UTXtX

T
t U . Let this length K vector be

d̃t = (d̃t1, . . . , d̃tK)T . For k = 1, . . . ,K, we propose to further smooth this raw estimates
(d̃t1,k, . . . , d̃tT ,k) at its log scale using spline, and report resultant sequence (dt1,k, . . . , dtT ,k)
as the time-varying weights of this factor. Finally, we define

Dt = diag(dt,1, . . . , dt,K)

In the third step, we estimated the time specific sparse component R̂t using the adaptive
thresholding rule (Cai and Liu, 2011) as used in Fan et al. (2013). In detail, let

R̃t =
1

nt − 1
XtX

T
t − UDtU

T

be the original residual matrix after removing the low-rank component from the sample
covariance at t.The elements of the sparse component matrix are then

R̂t(i, j) = R̃t(i, j)(1 − τt,i,j/|R̃t(i, j)|)η+
for 1 ≤ i, j ≤ p and i 6= j, where the adaptive threshold

τt,i,j = c

√

R̃t(i, i)R̃t(j, j)

for some non-negative constant c ∈ [0, 1] and η > 0. In our analysis, we set c = 0.5, and
η = 4 as suggested in Cai and Liu (2011) and Fan et al. (2013).

Finally, the time-specific gene-gene correlation matrices are obtained by normalizing
the covariance matrices obtained from Equation (1).
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2.3 Downstream Analysis of TGCN

The output of TGCN are time-specific gene-gene correlation matrices which could serve as
the input of gene co-expression network analysis procedures such as weighted correlation
network analysis (WGCNA) (Langfelder and Horvath, 2008). WGCNA is a method for
finding clusters/modules of highly correlated genes, and then describing the correlation
patterns among genes across different samples. In this study, we fed our outputs to WGCNA
as adjacency matrices for constructing scale-free gene networks at each time point using
power transformation and for module discovery by hierarchical clustering with adjacency-
based dissimilarity.

In the real data analysis, we further investigated the biological interpretation of the
discovered modules using R/Bioconductor package clusterProfiler (Yu et al., 2012).
clusterProfiler performs hypergeometric test for enrichment analyses of given gene lists.
We only performed the enrichment analysis of KEGG pathways instead of the other gene
oncology terms, as we only focused on the genes that are associated with KEGG pathways.

3 Results

In this section, we investigate the properties of TGCN, and compared it with the gene
coexpression networks constructed separately at each time point. We refer to this method
as the “Naive” estimate as it ignores the association between time points.

3.1 Simulation-based evaluation

3.1.1 Simulation Model

We simulated gene expression data whose covariance matrices Σt were generated based on
Equation (1). Let p be the number of genes, C the number of latent factors. Roughly
speaking, the larger C is, the more complex the covariance matrices are. We simulated the
time-invariant latent factor matrix U in a way that it encoded C potentially overlapping
gene groups, and each factor was associated with a smooth weight curve. The time point
specific sparse components Rt’s were generated such that they also contained the same
grouping structure. The transcriptomic time-course data were then generated fromN(0,Σt)
(See Supplementary Notes for details of the simulation model). Let T the total number of
time points, and R the number of replicates at each time point. In our simulation studies,
we fixed p = 2000, and considered T = 5, 15, C = 5, 15, and R = 5, 15. For each setting,
we repeated the simulations for 40 times.

3.1.2 TGCN improves the time point specific gene-gene covariance matrices

estimation.

The statistical nature of a gene coexpression network is a covariance matrix. Thus we
first compared TGCN with the naive method in terms of the Frobenius loss in covariance
matrix estimation (Fig. 1). We found that TGCN outperformed the naive methods in
all simulation settings. In particular, the comparative advantage of TCGN is bigger when
the number of replicates per time point decreases (e.g., R = 5) as TCGN enables the time
specific covariance matrix estimates use the information from the other time points through
the low-rank component. The thresholded sparse component of TCGN also effectively
de-noises the estimates by trimming the spurious correlations, which could explain the
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more significant contrast between TCGN and the Naive method when the true covariance
matrices have more complex structure (e.g., C = 15).

3.1.3 TGCN achieves more accurate module discovery.

One of the major goals of gene coexpression analysis is module discovery, whose performance
could be measured by the Adjusted Rand Index (ARI) of the discovered modules and the
true module membership. In our simulation studies, the “groups” defined in the simulation
setting are time-invariant and overlapping, and their group cohesiveness can also vary across
time points. Thus it is not a suitable measure of the time-varying gene module architect.
Instead, we used the WGCNA modules identified from the simulated true time-specific
correlation matrices as the “ground truth”. Fig. 2 compared the modules discovered from
the TGCN and the Naive estimates of the time-specific correlation matrices in terms of their
ARI’s against the “ground truth”, and we found that TGCN led to more accurate modules
estimated in most settings. Similar to our observation in the comparison in covariance
matrix estimation, TGCN became more preferable when the structure of the true covariance
matrices were more complex. But the number of replicates did not appear to have a clear
impact on the difference between the two method, except in the case where T = 15 and
C = 15.

3.2 Analysis of BrainSpan RNA-Seq data

3.2.1 Data description and preprocessing

We analyzed the RNA-Seq data from the BrainSpan Atlas of the Developing Human Brain
dataset (Hawrylycz et al., 2012). It consists of 524 brain samples in total, grouped into 12
developmental stages ranging from eight post-conceptional weeks (pcw) to 40 years of age,
including six prenatal time points and six time points after birth (see also Supplementary
Table 1 for details). The numbers of samples in each stage range from 22 to 93. The
expression values of this dataset were RNA-sequencing reads in the units of Per Kilobase
of transcript per Million (RPKM) for 52376 genes in total. For the procedure of pre-
processing the Brainspan RNA-Seq data, a log transformation (log2(RPKM + 1)) was
applied on the expression values. We filtered out the genes with low variation in expression
and consistently low expressions in the proceeding of development. Specifically, the genes
with third quartile value less than log2(5) and the interquartile range less than log2(1.5)
are filtered out. After the first step filtration, 10199 genes were left. For illustration
purpose and to simplify the biological interpretation, we only used the 3114 genes that are
involved in KEGG pathway database (Kanehisa and Goto, 2000), and consequently focused
on KEGG enrichment analysis for biological interpretation. Since our goal is covariance
matrix estimation, the genes expressions are centered at each time point.

3.2.2 TGCN extracted interpretable latent factors

In the first step of TGCN, time-invariant latent factors were learned from the normalized
gene expression data with the hope that it may represent the gene group structure. We
investigated the biological meanings of the 31 extracted components from the BrainSpan
data in this section.

Recall that each time-invariant factor k is associated with a time-varying weight curve
(dt1,k, . . . , dtT ,k) representing the importance of this factor to the covariance matrices. Thus
the factors with similar weight curves should share similar functions. We then clustered
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Figure 1: Mean Frobenius loss in covariance matrix estimation at each time point with 90%
prediction band in simulations. The y axis represents the values after being normalized by
the Frobenius norm of their corresponding true covariance matrices.
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Figure 2: Adjusted Rand Index between the discovered modules and the “true” simulated
modules at each time point.
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all the normalized weight curves by hierarchical clustering, and found that they fell into
three clusters (Fig. 3A), each of which featured a peak around early infancy, a monotone
decreasing trend, and a peak at early prenatal state, respectively. The latent factors were
then grouped based on the cluster assignment.

For each of these factor groups, we investigated the KEGG enrichment of the top 25%
most relevant genes (See Supplementary Methods for details), and found that the enriched
pathways were generally consistent with the overall pattern of the weight curves in each
cluster. Cluster 1 featured a peak around early infancy (Fig. 3B), and the pathways
enriched were generally relevant to brain development of infants. For example, Synaptic
vesicle cycle pathway regulates the dendritic and synaptic density, which has been shown
to reach peak in infancy and early childhood and decline from 2 to 16 yrs (Dehm et al.,
1972). PPR pathway is associated with white-matter development and modulates brain
development in preterm infants (Krishnan et al., 2017; Gilmore et al., 2018). Cluster 2
had monotone decreasing weight curves (Fig. 3C), and was enriched with the pathways
becoming inactive during aging, such as Neuroactive ligand-receptor interaction (Dönertaş
et al., 2017). Cluster 3 contained a peak at the early prenatal state (Fig. 3D), and par-
tially resembled the pathways relevant to the embryonic brain development such as Cell
adhesion molecules (CAMs), Gap junction, and Mucin type O-glycan biosynthesis (Tran
and Ten Hagen, 2013).

3.2.3 Module discovery and annotation

Module identification and comparison are the most widely used downstream analysis of
GCN, as they reveal the potential co-regulation relationship among genes. In this section,
we explored the biological interpretation of the modules discovered from the time-specific
coexpression networks constructed by TGCN.

We first investigated the module conservation across time points. A new adjacency
matrix was built whose edge weights were the proportion of total time points that this pair
of genes were in the same module. We called a gene-gene interaction to be time-invariant
if they were always in the same module. There were 1156 genes involved in such time-
invariant connections, which led to a reduced adjacency matrix. Clustering based on its
associated TOM distance matrix yielded 14 modules. KEGG enrichment of these modules
showed that regulation of actin cytoskeleton, Protein processing in endoplasmic reticulum
(ER), Ras signaling pathway, MAPK signaling pathway, and Rap1 signaling pathway were
enriched (FDR = 0.1 for each module). The regulation of the actin cytoskeleton pathway
is critical for the development of neural system, especially for neuronal migration (Solecki
et al., 2009). Endoplasmic reticulum is related to various acute disorders and degenerative
diseases of the brain (Paschen, 2003). The Ras and MAPK signaling pathways regulate
many cell functions such as cell proliferation, survival and apoptosis. Rap1 pathway is
important for Neuronal Progenitor Cell Differentiation (Rueda et al., 2002). Overall, these
pathways encode fundamental cell functions that are expected to have strong effects at all
time points, which could explain why these genes were always connected.

Differential network analysis is a popular downstream analysis after gene network con-
struction. Thus we designed a conservative differential analysis of the pathways enriched in
modules discovered at different time points (Supplementary Notes). In our study, we com-
pared the TGCN outputs of the second (10-12 weeks prenatal) and the 11th (adolescence)
time points based on this method as a showcase. It was striking to see that Huntington’s
disease was enriched in two modules for the adolescence stage. Symptoms of Huntington’s
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Figure 3: Hierarchical clustering of the normalized weight curves of the 31 TCGN factors.
(A) Dendrogram of the hierarchical clustering. (B)-(D) The weight curves in the three
clusters, each featured (B) a peak around early infancy, (C) a monotone decreasing trend,
and (D) a peak at early prenatal state, respectively.
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Figure 4: Adjusted Rand Index for (A) half-sampling the real data and (B) the real data
driven simulation with 10% added noise.

disease usually begin between 30 and 50 years of age (Walker, 2007). Our results suggested
that its molecular signature could be found in transcriptomic data at an even earlier age.
On the other hand, the pathway enriched at the 10-12 weeks prenatal stage was Adherens
junction, which was “important for maintaining tissue architecture and cell polarity and
can limit cell movement and proliferation” (Kanehisa and Goto, 2000).

3.2.4 TGCN yields more robust gene modules in real data analysis

We also evaluated the robustness of the TGCN module output via sub-sampling. Specifi-
cally, we half-sampled the original data at each time points and ran TGCN, which repeated
for 20 times. Fig. 4A compared the TGCN and the Naive method in terms of the ARI
between the gene module output of the half-sampled data with the original data output.
We found that TGCN yielded more consistent ARI across time points, and they were higher
than the results of naive method at the majority of the time points. We remark that the
time difference between the last four times points are much larger than those between the
earlier time points and the time span for each of these groups are also much wider (See
Supplementary Table 1), which could potentially explain the vanishing advantage of TCGN
at these time points as the information of the other time points became less useful. Nev-
ertheless, TGCN provided overall more robust modules. We also ran a real data driven
simulation by adding white noise to the data. The standard deviation of the added white
noise for each gene at each time point is 0.1 times the standard deviation of its expression.
In this analysis, we again found that the ARI of TGCN output is higher than that of the
naive estimate (Fig. 4B).

4 Discussion

Both of gene coexpression network analysis and temporal transcriptomic studies have been
widely used. There has not been any appropriate and computationally feasible time-specific
GCN inference from time-course data. Most of existing studies either model the GCN at
each time point completely separately, or pool the data across time points to build one single
network. In this paper, we proposed Temporal Gene Coexpression Network (TGCN) that
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jointly model the temporal transcriptomic data when the samples at different time points
are from distinct subjects. The outputs of TGCN are time-specific gene-gene correlation
matrices, which allows the users to perform various downstream analysis flexibly using other
computational tools such as WGCNA. Using both simulation and real data examples, we
have shown that TCGN achieves more accurate correlation matrix estimation and more
robust module identification.

The statistical nature of TGCN is a “low-rank plus sparse” estimator of the covariance
matrices, and it could be viewed as an extension of the Principal Orthogonal Complement
Thresholding (POET, Fan et al. 2013) method. While POET focused on one single covari-
ance matrix, TCGN jointly estimates multiple covariance matrices simultaneously under
the structural assumption that their low-rank components share the same eigen vectors.

In this paper, we focused on the correlation based gene network, as it is the most plau-
sible model choice for the small sizes. One issue with TGCN, along with other correlation
based network models, is the interpretability of the network links, as there are many bio-
logical and technical factors that may contribute to the empirical gene-gene correlations.
Besides improving the data pre-processing to reduce the impact of the undesirable factors,
we will also study more comprehensive models for temporal gene network analysis in the fu-
ture. For example, there have been intensive statistical literature in the joint estimation of
multiple gaussian graphical models (GGM) with similar structures (Peterson et al., 2015;
Qiu et al., 2016; Danaher et al., 2014). These methods typically require relatively large
sample sizes. It would be interesting to explore the possibility of extending our idea to
GGM estimation. Another possible direction of future research is improving the biological
intepretability of gene networks via data integration (Chen et al., 2017). We will explore the
incorporation of the epigenetic data, metabolic pathway, gene oncology and protein-protein
interactions in our modeling framework.
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Supplementary Notes

AIC and MDL for selecting K

When the number of principal components taking the value of k = 1, ...m, AIC and MDL
have the form of

AIC(k) = −2n(m− k)logρ(k) + 2k(2m− k),

MDL(k) = −n(m− k)logρ(k) +
k

2
(2m− k)logn,

respectively, where m = n− nt, the function ρ(k) is

ρ(k) =
(lk+1lk+2 · · · lm)

1
m−k

1
m−k (lk+1lk+2 · · · lm)

,

and lk represents the corresponding eigenvalues lk = σ̂2 + d2k. dk is kth singular value, and
the value of σ̂2 is estimated as the mean of diagonal elements of the covariance matrix after
subtracting the low-rank component UDUT .

Simulation model

We simulated gene expression data whose covariance matrices Σt were generated based on
Equation (1).

Let p be the number of genes and C the number of latent factors. We first simulated
the p×C time-invariant latent factor matrix U as the following. As we have discussed, our
model was motivated by the observation that the genes usually belong to certain functional
groups with time-varying effects, and these groups may overlap. Thus we first simulated
a p× C binary group membership matrix S, where S(j, g) = 1{gene j belong to group g}.
For each group, we picked a random integer between [1/C, 2/C] as the group size, and its
members are randomly selected. Note that its rows could contain more than one non-zero

∗These two authors contributed equally to this work.
†To whom correspondence should be addressed.
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elements as the groups could overlap. Then we used the left singular vectors of S + 0.01A
as the latent factors U . Here A is a p × C random matrices whose entries are i.i.d. from
Unif(−1, 1).

Next, we simulated the time-varying weights of these latent factors. For t = 1, . . . , T ,
let dg,t be the gth diagonal element of Dt. We defined (log(dg,1), . . . , log(dg,T )) as a random
linear combination of B-spline basis defined on (0, T + 1), whose coefficients were i.i.d.
samples from Unif(−1, 1). Then Lt = UDtU

T is the low-rank component of the simulated
covariance matrix.

The most naive way of simulating the sparse component Rt is simply generating a sparse
random symmetric matrix. But such matrix does not contain any information about the
structure. To generate an informative sparse component, we defined the elements of the
upper triangle of the symmetric matrix Rt as the following.

Rt(i, j) = bt,i,j · et,i,j · sign (Lt(i, j))

where bt,i,j
iid∼ Unif(0.1, 0.3), et,i,j

iid∼ Bernoulli(pt,i,j) where pt,i,j = 0.005 · 1{|Lt(i, j)| ≥
qt} + 0.0005 · 1{|Lt(i, j)| < qt}, and the diagonal elements of Rt were set to 1. Here
bi,j modeled the magnitude of time-point specific sparse component, and the definition of
pt,i,j ensured that Rt and Lt contained non-contradicting information about the underlying
structure. In our simulation study, we set qt as the 0.9 quantile of the absolute values of
the off-diagonal elements of Lt.

Finally, we defined the time-specific covariance matrix Σt = UDtU
T + Rt, and simu-

lated Xt,r from N(0,Σt) for r = 1, . . . , R. In our simulation studies, we fixed p = 2000,
and considered T = 5, 15, C = 5, 15, and R = 5, 15. For each setting, we repeated the
simulations for 40 times.

Identifying the most relevant genes for latent factors

According to Equation (1), for each pair of genes (i, j),

Σ̂t(i, j) =
K∑
k=1

Dt(k, k)U(i, k)U(j, k) + R̂t(i, j)

The contribution of one single factor k to the correlation pattern of gene i to the other
genes could be measured by |U(i, k)|, because factor k becomes irrelevant to the covariances
involving gene i at all time points if |U(i, k)| is close to 0. Following a similar spirit, the
joint relevance of a group of factors k1, . . . , kA to the covariances involving a particular
gene i could be measured by `i =

∑A
a=1 U(i, ka)2. It is essentially the L2 row norm of the

corresponding submatrix of U . For a group of factors, we said a gene i was more relevant
to these factors if `i is large. For our KEGG enrichment analysis, we considered the top
25% genes with the largest `i for each cluster of latent factors.

Conservative differential enrichment analysis

In a pairwise comparison of time points t1 and t2, a pathway is said to be specific to t1 if it
satisfies the following conditions. (1) It is enriched for some modules at t1 but not at t2 nor
for the above time-invariant modules; and (2) at most 25% of the genes that are involved in
this pathway are also in any of the pathways enriched at t2 or in the time-invariant modules.
The second criterion is to avoid the case where two pathways shared a large proportion of
genes, but were enriched at different time points due to their minor differences in gene
composition and the statistical cutoff in enrichment analysis.
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Figure 1: Selecting the number of latent factors using AIC and MDL for the simulation
studies
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Figure 2: Selecting the number of latent factors using AIC and MDL for the real data
analysis

Supplementary Tables

Stage Age Developmental stage Replicates number

1 8-9 pcw Early prenatal 30
2 10-12 pcw Early prenatal 45
3 13-15 pcw Early mid-prenatal 44
4 16-18 pcw Early mid-prenatal 53
5 19-24 pcw Late mid-prenatal 43
6 25-38 pcw Late prenatal 22
7 Birth-5 months Early infancy 33
8 6-18 months Late infancy 26
9 19 months-5 yrs Early childhood 44
10 6-11 yrs Late childhood 41
11 12-19 yrs Adolescence 50
12 20-40 yrs Adulthood 93

Table 1: Description of developmental stages for the Brainspan data (Hawrylycz et al.,
2012)
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