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To simultaneously analyze multiple samples of various conditions with scRNA-

seq, we developed a universal sample barcoding method through transient transfection 

of SBOs. A 48-plex drug treatment experiment of pooled samples analyzed by a single 

run of Drop-Seq revealed a unique transcriptome response for each drug and target-

specific gene expression signatures at the single-cell level. Our cost-effective method is 

widely applicable for single-cell profiling of multiple experimental conditions. 

 

Unlike conventional bulk measurements, single-cell RNA-sequencing (scRNA-seq) 

helps analyze transcriptomes of individual cells1-3, and has shed light on variations in cell 

populations, such as tumor heterogeneity. Platforms such as Drop-Seq4, inDrop5, and 10X 

Genomics Chromium6 provide high-throughput single-cell information over thousands of 

cells. Although it is necessary to carry out scRNA-seq on samples of various conditions or of 

many patients, the previous scRNA-seq method about multiple samples is still challenging 

because of a labor-intensive process and high sample-preparation costs. To overcome these 

limitations, we designed a multiplexed scRNA-seq method that involved transient 

transfection of short barcoding oligos (SBOs) to label samples from various experimental 

conditions. 

SBO, a single-stranded oligodeoxynucleotides, consists of a sample barcode and a 

poly-A sequence (Supplementary Fig. 1a). Transient transfection of SBO allows a sample to 

be labeled with a unique barcode. The barcoded samples of various conditions are pooled and 

simultaneously processed for scRNA-seq (Fig. 1a). The poly-A sequence in the SBOs ensures 

that the mRNAs and SBOs are captured and reverse-transcribed together during the scRNA-

seq process (Supplementary Fig. 1b). Computational analysis of digital count matrices of 
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SBOs allows us to demultiplex and determine sample origins. This universal barcoding method, 

based on simple transfection enabled sample multiplexing, identified multiplets and negatives, 

and reduced the preparation cost per sample. 

To demonstrate our method’s ability and accuracy of multiplexing samples, we 

performed a 6-plex human/mouse species-mixing experiment. Two samples each of HEK293T 

cells and NIH3T3 cells carried a single unique SBO and one sample of each cell line carried a 

combination of the two SBOs (Supplementary Fig. 2). We pooled all the samples together in 

equal proportions and performed a single run of Drop-Seq. Cells were deliberately overloaded 

during Drop-Seq to increase the chance of multiplets. We obtained 2,759 cell barcodes, in 

which at least 500 transcripts were detected and the cells were successfully assigned to their 

sample origins. Multiplets and negative cells were detected based on the SBO count matrix 

(see Online Methods). Cells that were classified as singlets almost exclusively express their 

sample barcodes, while multiplets and negatives express multiple or no sample barcode, 

respectively (Fig. 1b). Scatter plots of SBO counts that originated from two different samples 

showed an exclusive relationship, whereas SBO counts from the same sample showed a strong 

correlation in their expressions (Fig. 1c, Supplementary Fig. 3). Species classification using 

SBOs was consistent with the transcriptome-based species-mixing plot results (Fig. 1d, 

Supplementary Fig. 4). We also observed a clear difference in the distribution of RNA 

transcripts between singlets, multiplets, and negatives as expected, indicating the unambiguous 

detection of multiplets and negatives (Fig. 1e). These results suggested that our method enabled 

sample multiplexing in single-cell experiments with high accuracy and specificity, and 

elimination of multiplets and negatives. 
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 During drug discovery, gene expression profiling can be applied to annotate function 

of small molecules7 and to elucidate the mechanisms underlying a biological pathway8, 9. While 

systematic approaches to profile gene expression of a large number of small molecules using 

microarray technology has been made10, 11, they are limited to bulk measurements. To capture 

diverse responses of highly heterogeneous samples such as tumors, single-cell gene expression 

profiling is indispensable, although current technologies are not suitable for multiple screening. 

We envisioned that our method could be used when interested in screening multiple gene 

expression profiles in single-cells subjected to drug perturbations. We performed a 5-plex time-

course scRNA-seq in the K562 cell line, which is derived from chronic myeloid leukemia and 

expresses the Bcr-Abl fusion gene12. We investigated the single-cell transcriptional response of 

K562 cells to imatinib, a BCR-ABL targeting drug13, over treatment time (see Online 

Methods). Pseudotime analysis of single-cells in multiplexed samples collected from five time 

points showed a branched gene expression trajectory and a sequential progression in trajectory 

over drug treatment time (Fig. 2a). The branched trajectory showed that two transition states 

existed as a result of imatinib treatment. Samples exhibited asynchronous patterns in 

pseudotime, although the average increased with drug treatment time (Supplementary Fig. 5c, 

d). Differential expression analysis over pseudotime identified several gene cohorts that change 

during the transition (Fig. 2b, Supplementary Fig. 5a, b). Notably, erythroid-related genes 

such as HBZ and ALAS2 had increased in expression levels over pseudotime (Fig. 2b). This 

was consistent with previous studies that have shown increased expression of HBZ in imatinib-

treated cells14, 15. Differentially expressed genes (DEGs) between the two transition states were 

also identified (Supplementary Fig. 5e). 
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Next, we asked whether our approach could be used for simultaneous single-cell 

transcriptome profiling for multiple drugs in K562 cells. We selected 45 drugs, of which a 

majority was kinase inhibitors, including several BCR-ABL targeting drugs. Three dimethyl 

sulphoxide (DMSO) samples were used as controls (Supplementary Table 1). A 48-plex 

single-cell experiment was performed by barcoding and pooling all samples after drug 

treatments. A total of 3,091 cells were obtained and demultiplexed after eliminating multiplets 

and negatives. The averaged expression profiles of each drug were visualized as a heatmap 

(Fig. 2c). Each drug exhibited its own expression pattern of responsive genes. Interestingly, 

unsupervised hierarchical clustering of the averaged expression data for each drug revealed 

that the response-inducing drugs clustered together by their protein targets, whereas drugs that 

induced no response showed similar expression patterns with DMSO controls (Fig. 2c, 

Supplementary Fig. 6). Also, we can evaluate cell toxicity by examining the cell counts of 

each drug. Drugs that targeted BCR-ABL or ABL showed the strongest response and toxicity, 

and drugs that targeted MEK or mTOR showed relatively mild response. Differential 

expression analysis based on the single-cell gene expression data identified DEGs for each 

drug (Fig. 2d, Supplementary Fig. 7, and Supplementary Table 3). We note that highly 

expressed erythroid-related genes such as HBZ, HBA, and HBG were up-regulated, and genes 

such as DDX21, NCL, ENO1, and NPM1 were down-regulated in the sample treated with 

imatinib (Fig. 2d). Similar DEGs were identified for other drugs targeting BCR-ABL. Drugs 

such as vinorelbine and neratinib showed unique gene expression signatures and DEGs. 

Analysis of drugs grouped by their protein targets showed different relationships between 

DEGs of each protein target (Fig. 2e, Supplementary Table 4). In addition, comparative 

analysis of two groups revealed different expression profiles (Fig. 2f, Supplementary Fig. 8). 
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In order to comprehensively analyze the drug screening data at a single-cell resolution, 

we performed unsupervised clustering analysis on all the single-cell datasets. We observed six 

clusters (Fig. 2g), which were not clearly separated possibly due to a highly complex 

transcriptional space. Nevertheless, for each drug, the relative abundance of cells assigned to 

each cluster was various (Fig. 2c, Supplementary Fig. 9c). Most of the cells affected by BCR-

ABL and MEK inhibitors were concentrated in cluster 4, whereas cells affected by mTOR 

inhibitors were mainly concentrated in cluster 3. Especially, most of cells in cluster 5 belong 

to neratinib treated sample. Several markers associated with each cluster were verified by 

differential expression analysis (Supplementary Fig. 10). Analysis of cell cycle states revealed 

no association between cell cycle states and specific clusters (Supplementary Fig. 9a). The 

fraction of highly proliferative state (G2 phase) was decreased in samples treated with BCR-

ABL targeting drugs possibly due to drug-induced cell cycle arrest16 (Supplementary Fig. 9b). 

High-depth sequencing with more single-cells may detect more heterogeneous and distinct 

cellular responses for each drug. 

To validate the universal applicability of our methods, we performed a 48-plex drug 

screening experiment on the A375 cell line (BRAF V600E-positive17) with an identical drug 

set. Similar to K562 cells, response-inducing drugs were clustered together in a target-specific 

manner in A375 cells (Supplementary Fig. 11, 12, and Supplementary Table 5). Our results 

showed that multiplexed scRNA-seq could be used to screen single-cell transcriptional 

responses to drugs in a high-throughput manner and drug targets could be estimated by their 

transcriptional patterns. 

We have developed a novel method for multiplexed scRNA-seq via transient 

transfection, which offers several advantages over currently available methods. Cost is 
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substantially saved when performing scRNA-seq for multiple conditions. Batch effect, a major 

challenge in scRNA-seq18, can be significantly reduced by pooling and running all samples 

together, enabling more precise analysis between single-cell samples. Our method could 

eliminate multiplets and negatives, potentially able to increase throughput of scRNA-seq by 

using high concentration cells as an input. Removal of multiplets and negatives is also 

advantageous for single-cell analysis. Although a few methods for multiplexed scRNA-seq has 

been developed recently19, 20, which use natural genetic barcodes and antibody tagging, they 

have limited applications for genetically diverse samples19 and require valuable reagents and 

surface markers, respectively20. Our approach using SBO transfection (1) is very simple and 

readily applicable in individual labs, (2) has potential to be applied to nucleus samples, and (3) 

offers a high capacity for multiplexing by using different combinations of SBOs. We expect 

that our multiplexing strategy plays a central role in the widespread adoption of scRNA-seq 

including drug screening. 
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Materials and methods 

Cell lines and cell culture 

All cell lines were obtained from Korean Cell Line Bank (KCLB) and maintained at 

37°C with 5% CO2. The human embryonic kidney HEK293T, the mouse embryo fibroblast 

NIH3T3, and the human malignant melanoma A375 cell lines were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM; Gibco, USA) supplemented with 10% fetal bovine serum 

(FBS; Gibco, USA) and 1% penicillin/streptomycin (Thermo Fisher Scientific, USA). The 

human chronic myelogenous leukemia K562 cell line was cultured in Roswell Park Memorial 

Institute (RPMI; Gibco, USA) medium supplemented with 10% FBS and 1% 

penicillin/streptomycin. 

  

Barcode design and transfection 

The short barcoding oligo (SBO) contains a unique 8 bp sample barcode, an 

amplification handle, and a poly-A tail. 5’-

TCCAAGGTACAGACCTCTGACGNNNNNNNN(A)30 -3’ is the full SBO sequence. 

‘TCCAAGGTACAGACCTATATCTGACG’ is the amplification handle sequence, 

‘NNNNNNNN’ is the sample barcode sequence, and (A)30 is the poly-A tail sequence. All 

SBOs were prepared by IDT (Integrated DNA Technologies, USA) without any 

modifications. Four hours before Drop-Seq, 28 pmol/mL of SBO was transfected per well 

using Lipofectamine™ 3000 (Life Technologies, USA) according to the manufacturer’s 

protocol.  

 

Drop-seq: NGS preparation of mRNA and SBOs 
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For each experiment, samples of various conditions were pooled together. The 

pooled cells were passed through a 40-micron filter and diluted at a final combined 

concentration of 100~400 cells/μL according to Drop-Seq protocol instructions1. Droplets 

were generated and processed as previously described. Droplets were collected and the 

recovered beads were processed for immediate reverse transcription, followed by 

Exonuclease I treatment. The resulting cDNA was divided into appropriate number of tubes, 

amplified using KAPA HiFi HotStart PCR Kit (Kapa Biosystems, Inc., Switzerland). cDNA 

amplification was performed in 50ul PCR reaction which included 4 μL of 10 μM SMART 

PCR primer, 25 μL KAPA HiFi DNA polymerase, and up to 21 μL of nuclease-free water. 

Then, PCR reaction was performed using the following protocol: 3 min at 95°C; 4 cycles of 

(20 s at 98°C, 45 s at 65°C, 3 min s at 72°C); 9 cycles of (20 s at 98°C, 20 s at 67°C, 3 min s 

at 72°C); 5 min at 72°C. The PCR products were purified twice using 0.6X AMPure 

(Beckman coulter, USA) beads according to manufacturer’s instructions. To get reverse 

transcribed SBO that are much shorter than cDNA, the first supernatant from AMPure 

purification step was further purified adding 1.4X homemade AMPure beads (using Sera-

Mag SpeedBeads (Thermo Scientific, USA), hereafter, Serapure beads21). The cDNA 

products were fragmented and further amplified using the Nextera XT DNA library 

preparation kit (Illumina, USA).  

The SBO library preparation was performed using a two-step PCR protocol. One 

nanogram of the SBO cDNA product was loaded into 20 μL of the first adaptor PCR 

reaction, which included 1 μL of 10 μM forward and reverse primers, 10 μL KAPA HiFi 

DNA polymerase, and up to 8 μL of nuclease-free water. PCR reaction was performed using 

the following protocol: 3 min at 95°C; 8 cycles of (20 s at 95°C, 20 s at 64°C, 20 s at 72°C); 
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5 min at 72°C using the following primers: SMART+AC; P7-SBO hybrid. After 1.8X 

Serapure bead purification, 8 μL of the first PCR product was loaded into 20 μL of the 

second index PCR reaction, which included 1 μL of 10 μM forward and reverse primers, and 

10 μL KAPA HiFi DNA polymerase. PCR reaction was performed using the following 

protocol: 3 min at 95°C; 6 cycles of (20 s at 95°C, 20 s at 60°C, 20 s at 72°C); 5 min at 72°C 

using the following primers: New-P5-SMART PCR hybrid; Nextera index Oligo. The second 

PCR product was purified using 1.2X Serapure beads. All primers were prepared by IDT. 

Sequencing was performed on the Illumina NextSeq 500 using NextSeq 500/550 High Output 

v2 kit (75 cycles) (Illumina, USA). The sequences of primers were provided in 

Supplementary Table 2. 

 

6-plex human/mouse species-mixing experiment 

HEK293T and NIH3T3 cells were prepared one day before Drop-Seq and plated on 

6-well plates (TPP, Switzerland) at approximately 70% confluency. Transfection of 28 

pmol/mL of SBO was performed 4 hours before Drop-Seq, as described above. All cell 

samples were trypsinized using Trypsin-EDTA (0.25%) and phenol red (Gibco, USA), 

pooled together, and washed four times with phosphate-buffered saline (PBS; Gibco, USA). 

The cells were then resuspended in 0.01% BSA + PBS, passed through a 40-micron filter, 

counted using LUNA™ Automated Cell Counter (Logos Biosystems, Korea), and diluted at a 

final combined concentration of 400 cells/μL. The diluted sample library was run once in 

Drop-Seq and sample preparation and sequencing were performed as above. From one Drop-

Seq run, about 77,000 beads were obtained and divided into 24 PCR reactions for cDNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2018. ; https://doi.org/10.1101/359851doi: bioRxiv preprint 

https://doi.org/10.1101/359851
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

amplification. Sample preparation was completed using two reactions of the Nextera XT 

DNA library preparation kit (Illumina, USA). 

 

5-plex time-course experiment of drug treatment  

K562 cells were plated on 6-well plates at approximately 30% confluency. 1 μM 

imatinib was treated to K562 for five time points (0, 6, 12, 24, and 48 hours after treatment). 

Transfection of 28 pmol/mL of SBO was performed 4 hours before Drop-Seq, as described 

above and the cells of each condition were pooled, washed four times with PBS, and 

resuspended with 0.01% BSA + PBS. After filtering and counting, the pooled cells were 

diluted at a final combined concentration of 100 cells/μL. The diluted sample library was run 

once in Drop-Seq. Sample preparation and sequencing were performed as above. From one 

Drop-Seq run, the pooled beads were divided into 24 PCR reactions for cDNA amplification. 

Sample preparation was completed using two reactions of the Nextera XT DNA library 

preparation kit. 

 

48-plex drug screening experiment in K562 cells 

K562 cells were plated on 24-well plates at approximately 30% confluency and 

treated with 1 mM of each drug. After 44 hours, transfection of 28 pmol/mL of SBO was 

performed. Four hours after the transfection, the cell samples from each drug treatment were 

pooled. The diluted sample library was run three times in Drop-Seq. All subsequent steps 

were the same as described above in the 5-plex time-course experiment. After three Drop-Seq 

runs, the pooled beads were divided into 48 PCR reactions for cDNA amplification. Sample 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2018. ; https://doi.org/10.1101/359851doi: bioRxiv preprint 

https://doi.org/10.1101/359851
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

preparation was completed using three reactions of the Nextera XT DNA library preparation 

kit. 

 

48-plex drug screening experiment in A375 cells 

A375 cells were prepared one day before drug screening and plated on 24-well plates 

at approximately 30% confluency. All subsequent steps were the same as described above in 

the 48-plex drug treatment experiment. After three Drop-Seq runs, the pooled beads were 

divided into 48 PCR reactions for cDNA amplification. Sample preparation was completed 

using three reactions of the Nextera XT DNA library preparation kit. 

 

Single-cell transcriptome data processing 

For each NextSeq sequencing run, raw sequencing data were converted to FASTQ 

files using bcl2fastq2 software (Illumina). Each sequencing sample was demultiplexed using 

Nextera N7xx indices. Tagging, trimming, alignment, and adding annotation tags were 

performed according to the standard Drop-Seq pipeline (http://mccarrollab.com/dropseq). 

Briefly, reads were first tagged according to the 12-bp cell barcode sequence and the 8-bp 

unique molecular identifier (UMI) in “read 1”. Then, reads in “read 2” were aligned with the 

hg19 or hg19-mm10 concatenated reference depending on the experiments and collapsed 

onto 12-bp cell barcodes that corresponded to individual beads. Hamming distance of 1 was 

used to collapse UMI within each transcript. Digital expression matrix was obtained by 

collapsing filtered and mapped reads for each gene by UMI sequence within each cell 

barcode. 
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Sample barcode (SBOs) processing 

 FASTQ files of SBOs were generated as described above. Raw sequencing reads 

were trimmed to remove PCR handles. Cell barcodes and UMIs were extracted from read 1 

and sample barcodes were extracted from read 2. Reads were assigned to 8-mer of sample 

barcode reference (Supplementary Table 2) with a single-base error tolerance (Hamming 

distance = 1) and Cell barcodes x sample barcodes count matrix (Hereinafter referred to as 

SBO matrix) was generated with consideration to UMI de-duplication. All the processes were 

made by our homemade python scripts. 

 

Merging Sample barcode and transcriptome data 

 Independently obtained cell barcodes from the two matrices (SBO matrix, 

transcriptome matrix) were compared and merged based on the cell barcodes from the 

transcriptome matrix. When merging, hamming distance of 1 was allowed. Finally, the 

columns of the SBO and the transcriptome matrix consisted of the same cell barcodes. 

 

Demultiplexing and classification of samples using SBO matrix 

SBO matrix was normalized using a modified version of centered log ratio (CLR) 

transformation22: 

′ = ln( + 1) − 1  ln( + 1)
  

′ denotes the normalized count for a specific SBO in cell ,  denotes the raw count, and  
is the total cell number. In CLR transformation, the raw counts of SBO are divided by the 

geometric mean of individual SBO across cells and are log-transformed. We added the raw 
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counts of SBO to 1 to avoid infinite values. We hypothesized that we can discriminate 

positive signals from negative (background) signals by fitting the distribution of negative 

signals of each SBO and thresholding the normalized counts to a specific value of each SBO. 

Following the normalization, for each SBO, we excluded the cells with the highest expression 

of the SBO among all SBOs. We fitted a negative binomial distribution to the remaining cells 

to obtain a distribution of negative signals. Next, we calculated a quantile with 0.99 

probability to get the threshold value of each SBO. Cells that have higher SBO counts than 

the threshold value were considered as positives for that SBO. Cells were demultiplexed and 

classified into singlets, multiplets, and negatives based on the above results. 

 

6-plex human-mouse species mixing experiment analysis 

Transcriptome and SBO data processing were performed as described above. We 

obtained 2,759 of cell barcodes after filtering out cells with less than 500 transcripts. After 

the SBO matrix normalization and classification, we classified singlets as positive for one of 

SBOs, multiplets as positive for more than one SBOs, and negatives as positive for none of 

SBOs. For species-mixing plots in Figure 1d and Supplementary Figure 4, only singlets and 

doublets of the two specified SBOs were used.  

 

Pseudotime analysis 

 For pseudotime analysis of 5-plex time-course experiment, we applied the R package 

‘Monocle 2’23. After removing multiplets and negatives, samples were demultiplexed, quality 

controlled, and analyzed. A single cell trajectory was constructed by Discriminative 

Dimensionality Reduction with Trees24 (DDRTree) algorithm using genes differentially 
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expressed at different time points. Cells were ordered across the trajectory by setting the state 

containing 0 hour sample as a time zero and pseudotime was calculated. In order to identify 

differentially expressed genes (DEG) over pseudotime, a likelihood ratio test in the negative 

binomial model was performed and genes with a q-value less than 0.01 were selected as 

DEG. When drawing the heatmap, genes were clustered by their pseudotime expression 

patterns. Differential expression analysis between two transition states in branch 1 was 

performed using BEAM function in Monocle package. 

 

48-plex drug screening data analysis 

Following the alignment of sequencing reads, downstream analysis of the 48-plex 

drug screening experiment was performed using the R package ‘Seurat’25. After 

demultiplexing and removing multiplets and negatives, cells were quality-controlled based on 

the mitochondrial reads fraction, number of UMI, and number of genes. We identified 3091 

cells in which at least 500 transcripts and 300 genes were detected. RNA expression matrix 

was log-normalized and processed for the further analysis. To cluster the single cells, we ran 

principal component analysis (PCA) using the expression matrix of variable genes, then 

performed t-distributed Stochastic Neighbor Embedding (t-SNE) using the first 6 PCA 

components. We identified six clusters using FindClusters function in Seurat with 

resolution=0.6. We assigned cell cycle phase scores using cell cycle markers26 and classified 

each cell to G2M, S, or G1 phase. To draw a hierarchical clustered heatmap, we first 

identified DEGs for each drug with adjusted p-value<0.05 by Wilcoxon rank-sum test and 

obtained 469 responsive genes by merging the DEGs altogether. Expression levels of each 

drug for the responsive genes were normalized, averaged, and scaled and were used for 
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drawing the heatmap. To construct the dendrogram at the heatmap, hierarchical clustering 

was performed based on correlations among the expression levels across drugs. Normalized 

and scaled gene expression data were used in the heatmap. To identify DEGs in Figure 2d 

and Supplementary Figure 7, we performed likelihood ratio test between single cells in each 

drug and single cells in DMSO controls. DEGs with adjusted p-value<0.05 and |log 2 (fold 

change)|>0.25 were listed in Supplementary Table 3. To analyze samples by their protein 

targets, fourteen drugs were classified into three groups (BCR-ABL inhibitors, MEK 

inhibitors, mTOR inhibitors). Differential expression analysis between cells in each groups 

and cells in DMSO controls was performed as described above and DEGs were listed in 

Supplementary Table 4. The analysis of drug screening experiment of A375 was performed 

in the same manner as K562. 
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Figure 1. Scheme and validation of transient barcoding method. 
(a) Scheme of multiplexed scRNA-seq by transient barcoding method using SBOs. (1) Various 
conditions of samples are prepared. (2) Each sample is transfected with SBO containing a unique sample 
barcode. (3) Barcoded cells are pooled altogether and processed for scRNA-seq (e.g. Drop-Seq). (4) 
Cells are lysed within droplets and the released mRNAs and SBOs are captured, reverse-transcribed, 
and sequenced. (5) Cells are demultiplexed and assigned to their origin and processed for further 
analysis. (b) Heatmap of normalized SBO counts for 6-plex human/mouse species-mixing experiment. 
Rows represent cells and columns represent SBOs. Cells are assessed whether they are positive for a 
particular SBO based on the SBO count matrix (see Online Methods). Cells were classified as singlets 
(positive for a unique SBO), multiplets (positive for more than one SBO), or negatives (not positive for 
any SBO) and ordered by their classifications. (c) Scatter plot showing raw counts between two SBOs. 
SBO 1 and 6 were used to barcode different samples (Human 1, Mouse 2) [left]. SBO 3 and 4 were 
used to barcode the same sample (Human 3) [right]. (d) Species-mixing plot of samples associated with 
SBO 1 and 5. Cells were labeled according to their SBO classification. Black dots indicate Human 1 
sample barcoded with SBO 1, red dots indicate Mouse 1 sample barcoded with SBO 5, and grey dots 
indicate doublets that are positive for both SBOs. (e) Distribution of RNA transcript counts in cells 
between singlets (green), multiplets (blue), and negatives (red). Negatives which imply beads exposed 
to ambient RNA, had the lowest number of transcripts. Multiplets had slightly more transcripts than 
singlets, indicating more RNA content within a droplet. 
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Figure 2. Applications of multiplexed single-cell RNA-seq using transient barcoding. 
(a) Monocle pseudotime trajectory of K562 cells treated with imatinib at different time points. Cells 
are labeled by pseudotime (top) and drug treatment time (bottom). (b) Prominent gene expression 
alterations in 5-plex time-course experiments of imatinib treatment. Note that the cells are labeled by 
drug treatment time and are not synchronously distributed over pseudotime. (c) Hierarchical clustered 
heatmap of averaged gene expression profiles for 48-plex drug treatment experiments in K562 cells. 
Each column represents averaged data in a drug and each row represents a gene. Differential expressed 
genes were used in this heatmap. The scale bar of relative expression is on the right side. The ability of 
the drugs to inhibit kinase proteins is shown as binary colors (dark grey indicating positive) at the top. 
The bar plot at the top shows the cell count for each drug and the bar plot at the bottom represents a 
relative fraction of cells in each t-distributed stochastic neighbor embedding (t-SNE) cluster (shown in 
Figure 2g). (d) Volcano plot displaying differential expressed genes of imatinib mesylate compared 
with DMSO controls. Genes that have a p-value smaller than 0.05 and an absolute value of log (fold 
change) larger than 0.25 are considered significant. Up-regulated genes are colored in green, down-
regulated genes are colored in red, and insignificant genes are colored in grey. Ten genes with the lowest 
p-value are labeled. (e) Venn diagram showing the relationship between DEGs of three drug groups. 
Fourteen drugs are classified into three groups according to their protein targets (see Figure 2c, top) and 
differential expression analysis is performed by comparing each group with DMSO controls. Relations 
of both positively (left) and negatively (right) regulated genes in each group are shown. (f) Plot showing 
a correlation between fold changes of expression in cells treated with mTOR inhibitors and BCR-ABL 
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inhibitors compared with DMSO controls. (g) t-SNE plot of a single-cell in the 48-plex K562 samples. 
Plot shows six clusters. 
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