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Abstract:  14 

With more than 3,700 described species, stoneflies (Order Plecoptera) are an important 15 

component of global aquatic biodiversity. The meltwater stonefly Lednia tumana (Family 16 

Nemouridae) is endemic to alpine streams of Glacier National Park and has been petitioned for 17 

listing under the U.S. Endangered Species Act (ESA) due to climate change-induced loss of 18 

alpine glaciers and snowfields. Here, we present de novo assemblies of the nuclear (~520 million 19 

base pairs [bp]) and mitochondrial (13,752 bp) genomes for L. tumana. The L. tumana nuclear 20 

genome is the most complete stonefly genome reported to date, with ~71% of genes present in 21 

complete form and > 4,600 contigs longer than 10 kilobases (kb). The L. tumana mitochondrial 22 

genome is the second for the family Nemouridae and the first from North America. Together, 23 

both genomes represent important foundational resources, setting the stage for future efforts to 24 

understand the evolution of L. tumana, stoneflies, and aquatic insects worldwide. 25 
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Running head: Genomic resources for the stonefly, Lednia tumana 30 

 31 

Introduction:  32 

Stoneflies are a diverse, globally distributed group of hemimetabolous insects that 33 

diverged from their closest relatives (e.g., Orthoptera, Dermaptera, Zoraptera) at least 300 34 

million years ago in the Carboniferous Period (Béthoux, Cui, Kondratieff, Stark and Ren, 2011). 35 

With more than 3,700 described species, stoneflies account for a substantial portion of 36 

freshwater biodiversity (DeWalt, Kondratieff and Sandberg, 2015). The meltwater stonefly, 37 

Lednia tumana (Plecoptera: Nemouridae), resides in alpine streams of Glacier National Park 38 

(GNP), USA, where it is iconic of habitat loss due to climate change in the region (Giersch, 39 

Hotaling, Kovach, Jones and Muhlfeld, 2017). Lednia tumana is one of four extant species in the 40 

genus Lednia which all have alpine, cold-water distributions in western North America 41 

(Baumann and Kondratieff, 2010; Baumann and Call, 2012). The majority of L. tumana’s habitat 42 

is supported by seasonal melting of permanent ice and snow, a habitat type that is under 43 

considerable threat of near-term loss as the global cryosphere recedes (Hotaling, Finn, Giersch, 44 

Weisrock and Jacobsen, 2017; Hotaling et al., in press). The recent evolutionary history of L. 45 

tumana is closely tied to glacier dynamics with present-day genetic clusters arising in parallel 46 

with ice sheet recession at the end of the Pleistocene (~20,000 years ago, Hotaling et al., 2018). 47 

Genetic evidence has also highlighted a possible loss of mitochondrial genetic diversity for the 48 

species on even more recent, decadal timescales (Jordan et al., 2016). With such a narrow habitat 49 

niche in a small, mountainous region of the northern Rocky Mountains, L. tumana has been 50 

recommended for listing under the U.S. Endangered Species Act (US Fish & Wildlife Service, 51 

2016).  52 

In this study, we present an assembly of the nuclear genome for L. tumana, the most 53 

complete nuclear genome for the order Plecoptera reported to date. This resource also represents 54 

one of only three high-coverage genomes for any EPT taxon (Ephemeroptera, Plecoptera, and 55 

Trichoptera), a globally important group of aquatic organisms commonly used for biological 56 

monitoring (e.g., Tronstad, Hotaling and Bish, 2016). We also present a nearly complete 57 
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mitochondrial genome assembly (mitogenome) for L. tumana, the second for the stonefly family 58 

Nemouridae after Nemoura nankinensis (Chen and Du, 2017). 59 

 60 

Materials and Methods: 61 

 Genomic DNA was extracted using a Qiagen DNeasy Blood & Tissue Kit from a single 62 

L. tumana nymph collected in 2013 from Lunch Creek in GNP. Prior to extraction, both the head 63 

and as much of the digestive tract as possible were removed. A whole-genome shotgun 64 

sequencing library targeting a 250 bp fragment size was constructed and sequenced by the 65 

Florida State University Center for Genomics. The library was sequenced twice on 50% of an 66 

Illumina HiSeq2500 flow cell each time with paired-end, 150 bp chemistry, resulting in 67 

242,208,840 total reads. The size of the L. tumana nuclear genome was estimated using a kmer-68 

based approach in sga preQC (Simpson, 2014). Read quality was assessed with fastQC 69 

(Andrews, 2010) and low-quality reads were either trimmed or removed entirely using 70 

TrimGalore (Krueger, 2015) with the flags: --stringency 3 --quality 20 --length 40. We 71 

assembled the nuclear genome using SPAdes v3.11.1 with default settings (Bankevich et al., 72 

2012) and generated summary statistics with the Assemblathon2 perl script 73 

(assemblathon_stats.pl, Bradnam et al., 2013). The completeness of our nuclear assembly was 74 

assessed by calculating the number of conserved single copy orthologs (BUSCOs) in the 75 

assemblies using BUSCO v3 and the 1,658 “insecta_ob9” set of reference genes (Simão, 76 

Waterhouse, Ioannidis, Kriventseva and Zdobnov, 2015). These BUSCO analyses provided a 77 

proxy for how complete genic regions are in both our own and the two existing stonefly 78 

genomes. To compare the completeness of the L. tumana genome in the context of other 79 

stoneflies, we downloaded the two other publicly available stonefly genomes for Isoperla 80 

grammatica (Family Perlodidae) and Amphinemura sulcicollis (Family Nemouridae) which are 81 

deposited under GenBank BioProject PRJNA315680 (Macdonald et al., 2016; Macdonald et al., 82 

2017) and ran the same Assemblathon2 and BUSCO analyses. 83 

We assembled the L. tumana mitogenome with NOVOPlasty v2.6.7 (Dierckxsens, 84 

Mardulyn and Smits, 2016) using an 872 bp segment of the L. tumana cytb gene (GenBank 85 

KX212756.1) as the “seed” sequence. After assembly, the mitogenome was annotated through a 86 
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combination of the MITOS web server with default settings (Bernt et al., 2013) and comparison 87 

to the Nemoura nankinensis mitogenome (Plecoptera: Nemouridae; Chen and Du, 2017).  88 

 89 

Results and Discussion: 90 

The size of the L. tumana nuclear genome was estimated to be 536.7 megabases (Mb) 91 

from raw sequence data. Our final L. tumana genome assembly was 520.2 Mb with 50% of the 92 

assembly in contigs ≥ 4.69 kilobases (kb; Figure 1a, Table 1). The assembled genome size is in 93 

line with the only other publicly available stonefly genomes, I. grammatica (509.5 Mb) and A. 94 

sulcicollis (271.9 Mb). The L. tumana genome assembly also includes ~3,800 more contigs > 10 95 

kb than the A. sulcicollis genome and ~4,600 more than the I. grammatica assembly (Figure 1a, 96 

Table 1). All associated data for the resources detailed in this study, including both raw reads and 97 

assemblies, are available as part of GenBank BioProject PRJNA472568 (mitogenome: 98 

MH374046, nuclear genome: SAMN09295077, raw reads: SRP148706).  99 

The meltwater stonefly’s nuclear genome is similarly A/T-rich (58.4%) to the other 100 

stoneflies (58.2-59.9%; Table 1), ants (55-67%; Gadau et al., 2012), Drosophila melanogaster 101 

(58%), Anopheles gambiae (56%), and the honeybee, Apis mellifera (67%, The Honeybee 102 

Genome Sequencing Consortium, 2006). However, the L. tumana genome is far more complete 103 

in terms of genic regions than both existing stonefly assemblies with 92.8% of BUSCO reference 104 

genes either complete (70.6%) or fragmented (22.2%) versus 80.8% for A. sulcicollis (50.5% 105 

complete, 31.3% fragmented) and just 50.1% for I. grammatica (13.3% complete, 36.8% 106 

fragmented; Figure 1b, Table 1).  107 

The L. tumana mitogenome is nearly complete, covering 13,752 bp, including all 13 108 

protein-coding genes, 21 tRNA genes, the 12S rRNA gene, and is only missing the 16S rRNA 109 

gene and control region (Figure 2). The organization of the L. tumana mitogenome is similar to 110 

that of N. nankinensis, the only other mitogenome available for the family Nemouridae. In N. 111 

nankinensis, the regions missing from the L. tumana mitogenome assembly are ~3 kb, indicating 112 

that the complete L. tumana mitogenome is likely around 16.7 kb, which is similar to 113 

mitogenome sizes reported for other stoneflies (Chen and Du, 2017). Our inability to resolve the 114 

control region is unsurprising as the N. nankinensis control region contains a large, ~1 kb repeat 115 
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region which is difficult to resolve without targeted long-range PCR re-sequencing or longer 116 

read high-throughput sequencing. 117 

 118 

Conclusion: 119 

The increasing availability of genome assemblies for a wide array of organisms is rapidly 120 

expanding the scope and comparative power of modern genome biology (Hotaling and Kelley, 121 

2018). With more than 4,600 contigs longer than 10 kb and ~70% of genes assembled in their 122 

complete form, the L. tumana nuclear genome provides new opportunity for exploring genome 123 

evolution within Plecoptera, a highly diverse, globally distributed insect order, or at higher levels 124 

of taxonomic organization (e.g., across all insects). Specifically, the L. tumana genome could be 125 

mined for genes for phylogenomic studies (e.g., Li et al., 2007, Boroweic et al., 2015) or more 126 

targeted, comparative assessments of specific genes or gene families across many taxa to clarify 127 

evolutionary shifts and/or copy number variation (e.g. Baalsrud et al., 2017).  128 

Moreover, single-copy orthologous genes compared among species can provide a means 129 

for quantifying differences in evolutionary rates across diverse taxa (e.g. Honeybee Genome 130 

Sequencing Consortium, 2006) and/or to identify rapidly evolving genes that underlie 131 

evolutionary transitions of interest. In the case of stoneflies and aquatic biodiversity generally, 132 

little is known of the evolutionary changes underlying the shift to an aquatic larval stage that is 133 

common among many orders (e.g., Plecoptera, Ephemeroptera, Trichoptera). With the addition 134 

of the L. tumana nuclear genome reported here to the recently published caddisfly (Stenopsyche 135 

tienmushanensis, Order Trichoptera, Luo et al., 2018) and mayfly (Ephemera danica, Order 136 

Ephemeroptera, Polechau et al., 2014) genomes, the stage is now set for broad, genome-scale 137 

investigations of how a major life history transition occurred across three globally distributed 138 

insect orders. 139 

Future efforts to refine both assemblies, including the incorporation of longer reads (e.g., 140 

generated using Pacific Biosciences sequencing technology, Utturkar et al., 2014) will yield 141 

greater insight into the genome biology of L. tumana, stoneflies, and aquatic insects broadly. 142 

Still, the resources provided here, and particularly the most complete stonefly nuclear genome 143 
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published thus far, represent an important step towards empowering modern stonefly research, a 144 

globally relevant group of aquatic insects that has been largely overlooked in the genomic age. 145 
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Tables: 247 

Table 1. Assembly statistics for the nuclear genome of Lednia tumana (Plecoptera: Nemouridae) 248 

and two other stonefly species, Amphinemura sulcicollis and Isoperla grammatica (Macdonald et 249 

al., 2016; Macdonald et al., 2017). BUSCOs: Single-copy, orthologous genes known to be highly 250 

conserved among insects. A total of 1,658 BUSCOs were searched. For L. tumana, the assembly 251 

size was 304,502,267 bp when only contigs larger than 500 bp were included. 252 

 L. tumana A. sulcicollis I. grammatica 
Estimated genome size 536,700,000 n/a n/a 
Assembly size 520,200,814 271,924,966 509,522,935 
Coverage ~60x ~1.4x ~0.7x 
Contigs > 1 kb 74,445 51,555 53,204 
Contigs > 10 kb 4,608 849 4 
Contig N50 4.69 kb 0.85 kb 0.46 kb 
% A/T 58.4 58.2 59.9 
% G/C 41.5 42.8 40.1 
% N 0.1 0 0 
Complete BUSCOs  1172 (70.6%) 837 (50.5%) 221 (13.3%) 
Fragmented BUSCOs  368 (22.2%) 519 (31.3%) 610 (36.8%) 
Missing BUSCOs 118 (7.2%) 302 (18.2%) 827 (49.9%) 

  253 
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Figures: 254 

 255 

Figure 1. Comparisons of the gene content and contiguity of the Lednia tumana nuclear genome 256 

to the two other previously published stonefly genomes for Amphinemura sulcicollis and 257 

Isoperla grammatica (Macdonald et al., 2016; Macdonald et al., 2017). (a) The number of 258 

contigs > 1 kb and > 10 kb across the three stonefly genomes. For I. grammatica, the assembly 259 

contains just four contigs > 10 kb. (b) Presence of highly conserved, single-copy orthologous 260 

genes (BUSCOs) across the three stonefly genomes.  261 
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 262 

Figure 2. (a) The mitogenome of Lednia tumana (Plecoptera: Nemouridae). (b) Locations of 263 

tRNAs. (c) Locations of protein coding (PCGs) and rRNA genes. 264 
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