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Abstract: Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which 52 

may progress to neurological impairment. Chikungunya fever (CF) is a consolidated public health problem, 53 

in tropical and subtropical regions of the world, where control of CHIKV vector, mosquitos of the Aedes 54 

genus, failed. Since there is no vaccine or specific treatment against CHIKV, infected patients receive only 55 

palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals 56 

against CHIKV. Recently, the structure and activity of CHIKV RNA polymerase was partially resolved, 57 

revealing similar aspects with the enzyme counterparner on other positive sense RNA viruses, such as 58 

members of the Flaviviridae family. We then evaluated if sofosbuvir, clinically approved against hepatitis C 59 

virus RNA polymerase, which also aims to dengue, Zika and yellow fever viruses replication, would inhibit 60 

CHIKV replication. Indeed, sofosbuvir was 5-times more selective in inhibiting CHIKV production in 61 

human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced 62 

pluripotent stem cell (iPS)-derived astrocytes was less sensitive to sofosbuvir’s, compared to hepatoma cells 63 

– this drug still impaired virus production and cell death in a MOI-dependent manner. Sofosbuvir also 64 

exhibited antiviral activity in vivo, by preventing CHIKV-induced paw oedeme in adult mice, at 20 65 

mg/kg/day, and mortality on neonate mice model, at 40 and 80 mg/kg/day. Our data demonstrates that a 66 

prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. Since this is a clinically approved drug, it 67 

could pave the way to become a therapeutic option against CF. 68 

Keywords: chikungunya, chikungunya virus, arthralgia, antiviral, sofosbuvir, drug 69 
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1. Introduction  79 

 Chikungunya virus (CHIKV) is a member of the Togaviridae family, genus alphavirus, which 80 

causes febrile debilitating illness associated with arthralgia and skin rash (1). Although prolonged and 81 

debilitating joint pain and oedema differentiate CHIKV infection among contemporary arboviruses, like 82 

dengue (DENV) and Zika (ZIKV) viruses, most often these agents display similar clinical signs and 83 

symptoms during the early phase of infection (1). Severe outcomes of CHIKV infection, leading to acute 84 

and convalescent neurological impairment, have also been described (2, 3).  85 

 Chikungunya fever (CF) is a consolidated public health problem with substantial impact in tropical 86 

and subtropical regions of the world, where Aedes spp mosquitoes are prevalent and control measures failed 87 

(1). In last 5 years, the Americas, African and Eurasian regions have been severely impacted by CHIKV (4). 88 

For instance, in Brazil, since 2014, the Asian and East-Central-South-African (ECSA) genotypes of CHIKV 89 

co-circulate (5-7), highlighting a substantial viral activity in a country historically hyperendemic for DENV. 90 

Since no specific treatment or vaccine against CHIKV exist, repurposing of clinically approved drugs, 91 

preferentially aiming a viral target, is a necessary response against CF.  92 

 CHIKV has a positive-sense single-stranded 11.8 kilobase RNA genome, which encodes four non-93 

structural (nsP1-4) and five structural proteins (C, E1, E2, E3 and 6K) (8). Among these proteins, nsP4 94 

encodes for the viral RNA-dependent RNA polymerase (RDRP).Recently, nsP4 structure was partially 95 

resolved (9). As other RNA polymerases from positive sense RNA viruses, CHIKV nsP4 possesses well-96 

conserved motifs, such as D-x(4,5)-D and GDD, spatially juxtaposed, wherein Asp binds Mg2+ and Asn 97 

selects ribonucleotide triphosphates over dNTPs, determining RNA synthesis (10). Moreover, since the 98 

RDRP activity is absent on host cells, it constitutes a suitable target for antiviral intervention.  99 

We, and others, have demonstrated that sofosbuvir, a clinically approved against hepatitis C virus 100 

(HCV) (11-13), also inhibits the replication of flaviviruses, like ZIKV, DENV and yellow fever virus (YFV) 101 

(14-19). Sofosbuvir is a safe and a well-tolerated drug, from 400 to 1200 mg daily in 24 weeks regimen. 102 

Sofosbuvir is a uridine monophosphate prodrug that requires the removal of the phosphate protections to 103 

enter a pathway that yields sofosbuvir triphosphate, the pharmacological active compound as antiviral (11). 104 

Although hepatic cells have the most effective system to remove sofosbuvir’s phosphate protections, 105 
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functional assays reveals that other cells, relevant for arboviruses infection, may also activate sofosbuvir 106 

(11, 16, 20). As expected for a nucleotide analogue, sofosbuvir inhibit the RNA polymerase from different 107 

members of the Flaviviridae family, HCV, ZIKV, DENV, YFV (14-19). The conservation of RDRP domain 108 

of CHIKV nsP4, when compared to other viral RNA polymerases, led us to hypothesized that CHIKV could 109 

also be susceptible to sofosbuvir. Indeed, we originally demonstrated, by cellular assays and animal models, 110 

that CHIKV is susceptible to sofosbuvir.  111 

 112 

2. Results  113 

2.1. CHIKV RNA polymerase, nsP4, as the predictive target for sofosbuvir.  114 

We considering the homology among viral RDRP to evaluate whether sofosbuvir docks on CHIKV 115 

RNA polymerase. For comparisons, the binding mode of sofosbuvir-triphosphate (SFV) and the natural 116 

substrate, UTP, were analyzed on the nsP4 model. Three docking simulations for each ligand (totalizing 30 117 

poses per ligand) were carried out. The poses with the lowest energy was selected for analysis (Table 1 and 118 

Figure 1). SFV and UTP have similar modes of interaction, but different energy values, respectively, -78.41 119 

and -108.78 arbitrary units (a.u.) (with respect to MolDock scores) (Table 1). Moreover, SFV interacted via 120 

H-bonds with Asn348, Ile369, Gly370, Asp371, and Cys411 (H-bond energy = -6.97 a.u.), whereas UTP 121 

formed H-bonds with Asn348, Ile369, and Gly370 (bond energy = -3.11 a.u.) (Table 1 and Figure 1). Both 122 

SFV and UTP also formed electrostatic attractive interactions with the two Mg2+ ions and repulsive 123 

interactions with Asp371. Consequently, SFV and UTP displayed electrostatic interaction energies of -124 

117.12 a.u. and -112.84 a.u., respectively (Table 1 and Figure 1). SFV and UTP use similar amino acid 125 

residues for steric interactions Phe280, Asn344, Asn348, Ala367, Phe368, Ile369, Asp371, Asp372, Asn373, 126 

Ile374, and Cys411, resulting in energies equal to  -24.50 a.u and 48.76 a.u, respectively. Nevertheless, 127 

minor differences with respect to steric interaction were observed: SFV docks onto Thr345 and Phe410, 128 

whereas UTP interacts with Leu250 and Phe251. 129 

 130 

 131 
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Table 1: Summary of the interactions of SFV and UTP to nsP4 model of CIKV. 132 

# 

nsP4 model of CHIKV 

H-

bond 

energy  

Residues    

(H-bond) 

Electrostatic 

Interaction 

energy  

 Residues and 

Co-Factor 

(Electrostatic) 

Steric 

interaction 

energy by 

PLPb  

Residues 

and Co-

Factor 

(Steric) 

MolDock 

score  

SFV -6.97a 

Asn348, 

Ile369, 

Gly370, 

Asp371, 

Cys411 

-117.24 Asp371, Mg2+  -24.50 

Phe280, 

Asn344, 

Thr345,  

Asn348, 

Ala367, 

Phe368, 

Ile369, 

Gly370, 

Asp371, 

Asp372, 

Asn373, 

Ile374, 

Phe410, 

Cys411 

-78.41 

UTP -3.11 

Asn348, 

Ile369, 

Gly370 

-112.84 Asp371, Mg2+ -48.76 

Leu250, 

Phe251, 

Phe280, 

Asn344, 

Thr345,  

Asn348, 

Ala367, 

Ile369, 

Gly370, 

Asp371, 

Asp372, 

Asn373, 

Ile374, 

Cys411 

-108.78 

a Arbitrary units; bPiecewise linear potential(21). 133 
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 134 

Figure 1. Sofosbuvir triphosphate and nsP4 interactions. (A) Structural representation of the nsP4 model of CHIKV and its 135 

interaction with SFV and UTP. Hydrogen bonds and electrostatic interactions between (B; C) SVF and (D; F) UTP, and nsP4 136 

model of CHIKV. The interactions are represented by blue (H-bonds), green (attractive electrostatic interactions), and red 137 

(repulsive electrostatic interactions) interrupted lines. The nitrogen atoms are shown in blue, oxygen in red, fluor in pink, and the 138 

carbon chain in gray. 139 

 140 
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2.2. CHIKV is susceptible to sofosbuvir in vitro 141 

To evaluate if sofosbuvir is indeed endowed with anti-CHIKV activity, phenotypic antiviral assays 142 

were performed in human cells previously associated to peripheral virus replication and invasion of the 143 

nervous system (22), respectively, hepatoma (Huh-7) and astrocytes derived from induced pluripotent stem 144 

(iPS) cells. Supernatants from these infected cultures were harvested and tittered in Vero cells. We observed 145 

a dose-dependent inhibition of CHIKV production in hepatoma cells (Figure 2 and Table 2), which is known 146 

to possess the machinery to convert the sofosbuvir prodrug to the pharmacologically active metabolite (12). 147 

Sofosbuvir was two-fold more potent and 25 % less cytotoxic than ribavirin (Table 2). Consequently, 148 

selectivity index (SI) for sofosbuvir was almost five-fold better than for ribavirin, a pan-antiviral drug. 149 

Moreover, astrocytes succumb to CHIKV infection in a multiplicity of infection (MOI)-dependent manner, 150 

and sofosbuvir partially prevented cell mortality (Figure 3A). Accordingly, sofosbuvir decreased CHIKV 151 

replication on astrocytes by 50 % at MOI of 1 (Figure 3B).          152 

    153 

 154 
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 Figure 2 - Pharmacology 173 

of Sofosbuvir against CHIKV. Huh-7 were infected with CHIKV at MOI of 0.1 and exposed to various concentrations of 174 

sofosbuvir or ribavirin for 24 h. Supernatant was harvested and tittered in Vero cells by TCID50/mL. The data represent means ± 175 

SEM of three independent experiments.  176 

 177 

Table 2 – Pharmacological parameters associated to drug inhibition of CHIKV replication  178 

 179 

Drug EC50 (µM) CC50 (µM) SI* 

Sofosbuvir 0.8  ± 0.08 402 ± 32 502 

Ribavirin 1.9 ± 0.3 298 ± 22 157 

*SI – Selectivity Index (CC50/EC50) 180 

 181 
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 185 

 186 

 187 

 188 

 189 

Figure 3 – Sofosbuvir inhibits CHIKV replication in human iPS cell-derived astrocytes. Astrocytes were infected at the 190 

indicated MOIs and treated with sofosbuvir at 10 µM. After 5 days, cells were labeled for activated caspase-3/7 and propidium 191 

iodide (A) and virus in the supernatant tittered in Vero cells (B). The data represent means ± SEM of three independent 192 

experiments performed with five technical replicates. *P < 0.05 for the comparison between the infected untreated (gray bars) and 193 

treated (black bars) groups. 194 
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 205 

 206 

 207 

Sofosbuvir protected CHIKV-infected mice, using models of arthralgia and severe infection.  208 

To analyze whether in vitro results translate into a systemic protection, we treated CHIKV-infected 209 

mouse with sofosbuvir. Initially, treatment was performed in the arthralgia mouse model, in which 210 

sofosbuvir was given orally (20 mg/kg/day) one-hour prior to the injection of 2x104 TCID50 into the right 211 

rind paw. We observed that early after infection paw oedema did not ameliorate with sofosbuvir, suggesting 212 

that this drug had now effect on the swelling associated with the insult caused by the injection (Figure 4A-213 

C). Importantly, in the untreated and infected mice, paw oedema was more intense in the following days, 214 

whereas the treated animals displayed no differences to mock-infected mice (Figure 4D-F and Figure 5). 215 

 216 
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 235 

Figure 4. Sofosbuvir ameliorates CHIKV-induced paw oedema. Male Swiss Webster mice (20-25 g) received RPMI medium 236 

(Control) or 104 TCID50 of CHIKV into 50 l per paw in the ventral side of the right hind foot. Oral treatment with sofosbuvir 237 

(sofos) (20 mg/kg/day) started one hour prior to infection. Panels A to F indicates the days after infection, from  the first to the 238 

sixth, when paw volume was measured in the hydropletismometer. Paw oedema is interpreted by the increase in paw volume over 239 

control in the *p<0.05 Tukey's multiple comparisons test (n=8/group). 240 

 241 

 242 

 243 

 244 

 245 

 246 

Figure 5. Representative CHIKV-associated paw oedema and sofosbuvir’s antiviral effect on the 6th day after infection. (A) 247 

Control, (B) CHIKV and (C) CHIKV + sofosbuvir. Arrows indicate the infected paw.  248 
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 252 

Subsequently, we studied sofosbuvir’s ability to enhance the survival of CHIKV-infected neonatal 253 

mice. Three days-old Swiss mice were infected with CHIKV (2x105 TCID50) intraperitoneally. Treatment 254 

was carried out daily, initially with 20 mg/kg, also by intraperitoneal injection, beginning at one day prior to 255 

infection (pre-treatment) or on second day after infection (late-treatment). Although pre-treatment doubled 256 

the mean time of survival (T50) when compared to mock-infected animals, all infected mice deceased after 6 257 

days of infection (Figure 6A). Late-treatment had marginal contribution to enhance the T50 of mice survival 258 

(Figure 6A). Of note, post-natal development of the infected mice varied only marginally among the groups 259 

(Figure 6B). Under the same experimental conditions of infection, we next performed pre-treatments with 260 

different doses of sofosbuvir . Doses of 40 and 80 mg/kg/day doubled and tripled the percentage of animal 261 

survival (Figure 6C). At 80 mg/kg/day animals post-natal development were significantly superior to the 262 

infected controls (Figure 6D). 263 
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 289 

 290 

Figure 6. Sofosbuvir, at concentrations of 40 and 80 mg/kg/day, increases survival and inhibits weight loss of CHIKV-291 

infected mice. Three-day-old Swiss mice were infected with CHIKV (2x105 TCID50) and treated with sofosbuvir (SF) either 1 292 

day before (pre-treatment) or 2 days after infection (late-treatment). Survival (A and C) and weight variation (B and D) were 293 

assessed during the course of treatment. Panels A and B represent experiments of both pre- and late-treatment with sofosbuvir at 294 

20 mg/kg/day. Panels C and D represent pre-treatment with indicated concentrations of sofosbuvir.   Survival was statistically 295 

assessed by Log-rank (Mentel-Cox) test. Differences in weight are displayed as the means ± SEM, and two-way ANOVA for each 296 

day was used to assess the significance. Independent experiments were performed with at least 10 mice/group (n = 30). * P < 0.01. 297 
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 309 

 310 

 311 

Since some infected and untreated animals survived from experiments described in Figures 6, we 312 

evaluated if they had neuromotor sequelae and compared to treated survivors. Animals were held in a supine 313 

position with all four paws facing up, and then released. The time to flip over onto its stomach with all four 314 

paws touching the surface was measured, as proxy of neuromotor function. CHIKV-infected mice took a 315 

median time of 10-20 second to get to the upright position, whereas mock-infected animals did it 316 

immediately (Figure 7). Importantly, CHIKV-infected and sofosbuvir pre-treated animals did not present 317 

neuromotor sequela, meaning that these animals are healthier than infected controls (Figure 7). Of note, 318 

although the late-treatment diminished the median time associated with neuromotor sequela, some animals 319 

displayed a behaviour similar to CHIKV-infected animals, making these groups statistically 320 

indistinguishable. Altogether, our data suggests that sofosbuvir also inhibits CHIKV replication in vivo, 321 

ameliorating animals’ arthralgia, enhancing survival and preserving neuromotor function. 322 

 323 
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 337 
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 343 

 344 

 345 

 346 

 347 

 348 

Figure 7. Sofosbuvir prevents neuromotor impairment in CHIKV-infected mice. Three-day-old Swiss mice were infected 349 

with CHIKV (2 x 105 TCID50) and treated with sofosbuvir (SF) beginning 1 day before infection (pre-treatment) or on the 2nd day 350 

after infection (late-treatment). (A) Treatment was performed with 20 mg/kg/day. (B) Pre-treatment was performed with indicated 351 

concentrations. At the sixth day after infection, animals were turned backwards and allowed up to 60 s to return to the upright 352 

position. The results are presented as the means ± SEM. This was a routine measure and at least 10 animals per group were 353 

analysed. Student’s t test was used to compare untreated CHIKV-infected mice with other groups individually. * P < 0.01 mock- 354 

vs CHIKV-infected animals. # P < 0.01 untreated vs treated animals. 355 
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3. Discussion  366 

CHIKV is among the reemergent arboviruses in the early 21st century. Although firstly characterized 367 

in the 1950’s  in Tanzania (23), since the 2000’s CHIKV activity increased worldwide and reached the new 368 

world (24). CF is estimated to cause disability-adjusted life years (DALYs) lost around 45.26 per million 369 

people (25). In Brazil, CHIKV was introduced during 2014 (6, 7), when Asian genotype was confirmed in 370 

the North Region of Brazil (Oiapoque, Amapá state) and ECSA genotype was identified in the Northeastern 371 

region of Brazil (Feira de Santana, Bahia state). The ECSA genotype was subsequently detected throughout 372 

Brazil. To the best of our knowledge, Brazil is a rarely case where two genotypes of CHIKV co-circulate. 373 

Since early 2016 (summer in the southern hemisphere), DENV, ZIKV and CHIKV co-circulate in Americas, 374 

and CHIKV became the most prevalent arbovirus in Brazilian overcrowded cities, like Rio de Janeiro (26). 375 

Due to absence of vaccine and specific antiviral treatment, CHIKV prevention depends basically on vector 376 

control, whereas patients with CF receive palliative care with nonsteroidal anti-inflammatory drugs 377 

(NSAIDs) or corticoids depending on phase of the disease (27).  378 

CHIKV possesses a complex and not fully understood pathogenesis, virus replicate in peripheral 379 

organs and may invade the nervous system and synovial fluid (22, 28). Recent efforts to identify substances 380 

against CHIKV were carried out, leading to the discovery of chloroquine (29), berberine, abamectin and 381 

ivermectin (30). Among these substances, ivermectin was shown to inhibit Flaviviruses NS3 helicase 382 

activity (31). By analogy, this drug may also target a CHIKV protein, like nsp2 – which seems to possesses 383 

an helicase activity (32). The other identified compounds, such as the alkaloid berberine, target cellular 384 

rather than viral pathways (33). We, and others, have shown that sofosbuvir is endowed with antiviral 385 

activity against flaviviruses (15-17). The recent advances in the CHIKV nsP4 RDRP core domains structure 386 

and function highlighted to the presence of conserved motifs among RNA polymerases from positive-sense 387 

RNA viruses (9). Indeed, sofosbuvir docked onto CHIKV nsP4 using conserved amino acid residues, also 388 

required for binding of UTP, the natural substrate. Sofosbuvir inhibited CHIKV replication in human 389 

hepatoma cells. These cells were used because they represent one of the most efficient in vitro models to 390 

convert sofosbuvir to the active metabolite and liver is a relevant organ for CHIKV pathogenesis (22, 28). 391 

Growing evidence indicates that CHIKV may impair neurological function, by directly invading the nervous 392 
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system (28, 34, 35). We used a sophisticated human iPS-derived astrocyte culture to show that sofosbuvir 393 

inhibits CHIKV replication and virus-associated cell mortality, although in lesser effective manner when 394 

compared to huh-7 cells. Accordingly, in the neonatal mouse model of CHIKV infection, sofosbuvir 395 

enhanced animal survival at doses higher than required to produce the same effect on ZIKV-infected pups 396 

(16). Consistently, sofosbuvir is safe to be used clinically up to 1200 mg per day (12). With respect to the 397 

time frame of opportunity to treat CHIKV-infected mice, a narrow window was observed – similarly to what 398 

we have noticed towards ZIKV (36). In other acute virus infections, like influenza, mortality is dramatically 399 

reduced when neuraminidase inhibitors are administered early in the time course of infection, such as within 400 

2.5 days of infection (37). The identification of individuals at higher risk, to receive sofosbuvir 401 

prophylactically, or very early after infection represent one of the challenges to translate our date into public 402 

health intervention. 403 

 Moreover, we observed that, at experimental infection conditions milder than required for animal 404 

mortality, sofosbuvir, at reference dose for pre-clinical studies, 20 mg/kg/day (13), protected arthralgia-405 

related paw oedema. Thus, it is important to further study whether sofosbuvir could act synergistically with 406 

anti-inflammatory drugs to improve the quality of life for patients with CHIKV-associated chronic 407 

arthralgia. Patients with CF very often present arthralgia and impairment of the neuromuscular function, 408 

causing a debilitating condition which contributes to the burden of disease (28). Consistently, using survivor 409 

animals, we observed that sofosbuvir protected CHIKV-infected mice form neuromotor sequalae when 410 

compared to untreated animals. Under this behaviour test, it is likely that both direct neuromotor sequelae 411 

and/or problems on mice articulations may contributed to the high time required for CHIKV-infected 412 

animals to turn from back to upright position. 413 

Altogether, our data reveals that CHIKV is susceptible to sofosbuvir, highlighting that other 414 

genetically distinct and clinically important viruses phylogenetically distributed among members of the 415 

Togaviridae and Flaviviridae families could also be susceptible to this drug. Wider use of sofosbuvir, 416 

beyond HCV, may represent a safer antiviral option than ribavirin. Finally, in the context of this study, our 417 

findings motivate phase II clinical investigations on the new use of sofosbuvir as treatment against CHIKV.  418 

 419 
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 420 

4. Material and Methods 421 

Reagents. The antiviral sofosbuvir (β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine) was donated by the 422 

BMK Consortium: Blanver Farmoquímica Ltda; Microbiológica Química e Farmacêutica Ltda; Karin 423 

Bruning & Cia. Ltda, (Taboão da Serra, São Paulo, Brazil). Ribavirin was received as a donation from the 424 

Instituto de Tecnologia de Farmacos (Farmanguinhos, Fiocruz). All small molecule inhibitors were 425 

dissolved in 100 % dimethylsulfoxide (DMSO) and subsequently diluted at least 104-fold in culture or 426 

reaction medium before each assay. The final DMSO concentrations showed no cytotoxicity. The materials 427 

for cell culture were purchased from Thermo Scientific Life Sciences (Grand Island, NY), unless otherwise 428 

mentioned.  429 

 430 

Cells. African green monkey kidney (Vero) and human hepatoma (Huh-7) cells were cultured in DMEM. 431 

The culture medium of each cell type was supplemented with 10 % fetal bovine serum (FBS; HyClone, 432 

Logan, Utah), 100 U/mL penicillin, and 100 µg/mL streptomycin(38, 39) at 37 °C in 5 % CO2. 433 

 434 

Virus. CHIKV (Asian strain) was donated by Dr. Amilcar Tanuri. CHIKV was propagated in Vero cells at a 435 

multiplicity of infection (MOI) of 0.1. Infection was carried out for 1 h at 37 °C. Next, the residual virus 436 

particles were removed by washing with phosphate-buffered saline (PBS), and the cells were cultured for an 437 

additional 2 to 5 days. After each period, the cells were lysed by freezing and thawing and centrifuged at 438 

1,500 x g at 4 °C for 20 min to remove cellular debris. Virus titters were determined by classical 10-fold 439 

dilution and tissue cytopathic infectious dose 50 (TCID50)/mL calculation. 440 

 441 

Cytotoxicity assay. Monolayers of cells 2 to 5 x 104 cells/well in 96-well plates were treated for 5 days with 442 

various concentrations of sofosbuvir or ribavirin as a control. Then, 5 mg/ml 2,3-bis-(2-methoxy-4-nitro-5-443 

sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) in DMEM was added to the cells in the presence of 444 

0.01 % of N-methyl dibenzopyrazine methyl sulfate (PMS). After incubating for 4 h at 37 °C, the plates 445 
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were read in a spectrophotometer at 492 nm and 620 nm (40). The 50 % cytotoxic concentration (CC50) was 446 

calculated by a non-linear regression analysis of the dose–response curves. 447 

Yield-reduction assay. Monolayers of 5 x 104 Huh-7 cells/well in 96-well plates were infected with CHIKV 448 

at the MOI of 0.1 for 1 h at 37 °C. The cells were washed with PBS to remove residual viruses, and various 449 

concentrations of sofosbuvir, or ribavirin as a positive control, in DMEM with 1 % FBS were added. After 450 

24 h, the cells were lysed, the cellular debris was cleared by centrifugation, and the virus titers in the 451 

supernatant were determined in Vero cells as TCID50/mL. A non-linear regression analysis of the dose-452 

response curves was performed to calculate the concentration at which each drug inhibited the plaque-453 

forming activity of CHIKV by 50 % (EC50).  454 

Generation of human iPSC-derived astrocytes lines. Astrocytes were differentiated from neural stem 455 

cells (NSC), 20 x 10³ cells/well in a 96-well plate, obtained from human iPSC of three control cell lines 456 

from healthy subjects (41). These cell lines were previously used in other studies from our research group 457 

(16). Three cell lines from healthy subjects were obtained from a female subject (GM23279A, available at 458 

Coriell Institute - coriell.org) and the other two from male subjects from cells reprogrammed at the D’Or 459 

Institute for Research and Education (CF1 & CF2). NSCs were differentiated into astrocytes as described in 460 

Yan, 2013 (42). Briefly, NSCs were cultured in differentiation media (1% N2 supplement and 1% FBS in 461 

DMEM/F12) for 21 days with media changes every other day and passages every week. After this period, 462 

glial cells were grown for 5 weeks in 10% FBS in DMEM/F12 with media changes twice a week prior to 463 

use. Cells were infected at MOIs of either 1.0 or 10 for 2 h at 37 °C. Next, the cells were washed, and fresh 464 

medium containing sofosbuvir was added. The cells were treated daily with sofosbuvir at the indicated 465 

concentrations. Virus titers were determined from the culture supernatant. Cell death was measured by 466 

adding 2 µM CellEvent caspase-3/7 reagent and the fluorescent dye ethidium homodimer (43), when the 467 

culture supernatants were collected, on the 5th day after infection. Images were acquired with an Operetta 468 

high-content imaging system with a 20x objective and high numerical apertures (NA) (PerkinElmer, USA). 469 

The data were analyzed using the high-content image analysis software Harmony 5.1 (PerkinElmer, USA). 470 

Seven independent fields were evaluated from triplicate wells per experimental condition. 471 
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 472 

3D Modeling of the Chikungunya Virus Nonstructural Protein 4. The amino acid sequence of the 473 

nonstructural protein 4 (NSP4) of chikungunya virus (CHIKV, UniProtKB ID: F2YI10) was obtained from 474 

ExPASy server (44). The region between Met1-Lys516, part of the nsP4 sequence that includes the whole 475 

catalytic core was considered to construct the model using I-TASSER server (45). The I-TASSER 476 

methodology is very accurate for the construction of protein models when the sequence identity between the 477 

target sequence and the template protein drops below 30 %, where lack of a high-quality structure match 478 

may provide substantial alignment errors and, consequently, poor quality models (45, 46). Thus, the final 479 

model was validated using two programs: PROCHECK (47) and VERIFY3D (48). PROCHECK analyzes 480 

the stereochemical quality and VERIFY3D compatibility analysis between the 3D model and its own amino 481 

acid sequence, by assigning a structural class based on its location and environment, and by comparing the 482 

results with those of crystal structures with good resolutions (47, 48). 483 

 484 

Molecular Docking. The structures of SFV and UTP were built in the Spartan’14 software (Wavefunction, 485 

Inc., Irvine, CA). The docking of the two ligands to the nsP4 model was performed using Molegro Virtual 486 

Docker 6.0 (MVD) program (CLC bio, Aarhus, Denmark) (21), which uses a heuristic search algorithm that 487 

combines differential evolution with a cavity prediction algorithm (21). The MolDock scoring function used 488 

is based on a modified piecewise linear potential (PLP) with new hydrogen bonding and electrostatic terms 489 

included. The full description of the algorithm and its reliability compared to other common docking 490 

algorithm have been described (21). The two Mg2+ ions were set as the center of searching space with a 491 

radius value of 10 Å. In addition, the search algorithm MolDock optimizer was used with a minimum of 100 492 

runs and the parameter settings were population size = 500; maximum iteration = 2000; scaling factor = 493 

0.50; offspring scheme = scheme 1; termination scheme = variance-based; crossover rate = 0.90. Due to the 494 

stochastic nature of algorithm search, three independent simulations per ligand were performed to predict 495 

the binding mode. Consequently, the complexes with the lowest interaction energy were evaluated. The 496 

interactions between nsP4 model and each ligand were analyzed using the ligand map algorithm, a standard 497 
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algorithm in MVD program (21). The usual threshold values for hydrogen bonds and steric interactions were 498 

used.  499 

All figures of nsP4 modeling and molecular docking results were edited using Visual Molecular 500 

Dynamics 1.9.3 (VMD) program (available for download at http://www.ks.uiuc.edu/Research/vmd/vmd-501 

1.9.3/) (49). 502 

 503 

Animals. Swiss albino mice (Mus musculus) (pathogen-free) from the Oswaldo Cruz Foundation breeding 504 

unit (Instituto de Ciência e Tecnologia em Biomodelos (ICTB)/Fiocruz) were used for these studies. The 505 

animals were kept at a constant temperature (25°C) with free access to chow and water in a 12-h light/dark 506 

cycle. The experimental laboratory received pregnant mice (at approximately the 14th gestational day) from 507 

the breeding unit. Pregnant mice were observed daily until delivery to accurately determine the postnatal 508 

day. We established a litter size of 10 animals for all experimental replicates.     509 

 The Animal Welfare Committee of the Oswaldo Cruz Foundation (CEUA/FIOCRUZ) approved and 510 

covered (license numbers L-016/2016 and CEUA L-002/2018) the experiments in this study. The procedures 511 

described in this study were in accordance with the local guidelines and guidelines published in the National 512 

Institutes of Health Guide for the Care and Use of Laboratory Animals. The study is reported in accordance 513 

with the ARRIVE guidelines for reporting experiments involving animals(50). If necessary to alleviate 514 

animal suffering, euthanasia was performed. The criteria were the following: i) differences in weight gain 515 

between infected and control groups >50%, ii) ataxia, iii) loss of gait reflex, iv) absence of righting reflex 516 

within 60 seconds, and v) separation, with no feeding, of moribund offspring by the female adult mouse.  517 

 518 

Experimental infection and treatment.  519 

Neonate model. Three-day-old Swiss mice were infected intraperitoneally with 2 x 102 TCID50 of virus(51, 520 

52), unless otherwise mentioned. Treatments with sofosbuvir were carried out with sofosbuvir at 20 521 

mg/kg/day intraperitoneally. Treatment started one day prior to infection (pretreatment) or two days after 522 

infection (late treatment). In both cases, treatment was conducted for 6 days. For comparisons, mock-523 
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infected and mock-treated groups of animals were used as controls. Animals were monitored daily for 524 

survival, weight gain, and virus-induced short-term sequelae (righting in up to 60 seconds).  525 

Arthralgia model. Arthralgia model was adapted from previous publications (53, 54). Male Swiss Webster 526 

mice (8 weeks-old; 20-25 g) were infected with 104  TCID50 in right hind paw towards the ankle. Sofosbuvir 527 

was given orally (20 mg/kg), beginning one-hour before the first virus injection. Treatment was conducted 528 

for 6 days. Control group was injected with 50 μL of RPMI. Paw oedema was evaluated from the first to the 529 

sixth day after infection by hydropletismometer for small volumes (Ugo Basile, Milan, Italy) and data was 530 

presented as paw volume (mL).  531 

Behavioural tests. To test the righting reflex, animals were tested daily during the course of acute infection. 532 

Animals were held in a supine position with all four paws facing up in the air for 5 seconds. Then, animals 533 

were released, and the time the animal took to flip over onto its stomach with all four paws touching the 534 

surface was measured. A maximum of 60 seconds was given for each trial, and animals were tested twice a 535 

day with a 5-minute minimum interval between trials. For each animal, the lowest time was plotted in the 536 

graph. Animals that failed the test were included in the graph with a time of 60 seconds.  537 

 538 

Statistical analysis. All assays were performed and codified by one professional. Subsequently, a different 539 

professional analyzed the results before the identification of the experimental groups. This approach was 540 

used to keep the pharmacological assays blind. All experiments were carried out at least three independent 541 

times, including technical replicates in each assay. The dose-response curves used to calculate the EC50 and 542 

CC50 values were generated by Excel for Windows. The dose-response curves used to calculate the IC50 543 

values were produced by Prism GraphPad software 5.0. Significance of survival curves was evaluated using 544 

the Log-rank (Mantel-Cox) test. The equations to fit the best curve were generated based on R2 values ≥ 0.9. 545 

ANOVA, followed by Tukey’s post hoc test, tests were also used, with P values <0.05 considered 546 

statistically significant. The statistical analyses specific to each software program used in the bioinformatics 547 

analysis are described above. 548 

 549 
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