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Abstract 26 

 27 

Systems biology approaches are used as strategy to uncover tissue-specific perturbations and 28 

regulatory genes related to complex phenotypes. We applied this approach to study feed 29 

efficiency (FE) in beef cattle, an important trait both economically and environmentally. 30 

Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and 31 

pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (100bp, 32 

pared-end). From the 17,354 expressed genes, 1,317 were prioritized by five selection 33 

categories (differentially expressed, harbouring SNPs associated with FE, tissue-specific, 34 

secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB 35 

were identified and validated by motif discovery as key regulators of hepatic inflammatory 36 

response and muscle tissue development, respectively, two biological processes demonstrated 37 

to be associated to FE. Moreover, we indicated potential biomarkers of FE which are related 38 

to hormonal control of metabolism and sexual maturity. By using robust methodologies and 39 

validation strategies, we confirmed main biological processes related to FE in Bos indicus 40 

and indicated candidate genes as regulators or biomarkers of superior animals. 41 

 42 
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Introduction 46 

 Since the domestication of the first species, animal selection aims to meet human 47 

needs and their changes over time. The current main selection goals in livestock production 48 

are increase of productivity, reduction of the environmental impact and reduction of 49 

competition for grains with human nutrition (Hayes et al, 2013). Thus, feed efficiency (FE) 50 

has become a relevant trait of study, as animals considered of high feed efficiency are those 51 

presenting reduced feed intake and lower production of methane and manure without 52 

compromising animal’s weight gain (Gerber et al, 2013). However, the incorporation of FE 53 

as selection criteria in animal breeding programs is costly and time consuming. Daily feed 54 

intake and weight gain for a large number of animals need to be recorded for at least 70 days 55 

to obtain accurate estimates of FE (Archer et al, 1997).  56 

In the past years, several studies have been carried out with the aim to identify 57 

molecular markers associated with FE to enable the faster and cost-effectively identification 58 

of superior animals (de Oliveira et al, 2014; Rolf et al, 2011; Santana et al, 2014; Seabury et 59 

al, 2017). However, for each population, different biological processes seem to be identified 60 

(de Oliveira et al, 2014; Rolf et al, 2011; Santana et al, 2014; Seabury et al, 2017). Probably, 61 

that is because FE is a multifactorial trait and many different biological mechanisms seems to 62 

be involved in its regulation (Herd et al, 2004; Herd & Arthur, 2009). It has been indicated 63 

that high FE animals present increased mitochondrial function (Lancaster et al, 2014; Connor 64 

et al, 2010), less oxygen consumption (Gonano et al, 2014) and delayed puberty (Randel & 65 

Welsh, 2013; Shaffer et al, 2011; Fontoura et al, 2016). On the other hand, low FE animals 66 

have increased physical activity, ingestion frequency and stress (Francisco et al, 2015; Cafe 67 

et al, 2011; Kelly et al, 2010; Chen et al, 2014), increased leptin and cholesterol levels 68 

(Alexandre et al, 2015; Foote et al, 2016; Nkrumah et al, 2007; Mota et al, 2017), higher 69 

subcutaneous and visceral fat (Santana et al, 2012; Gomes et al, 2012; Mader et al, 2009), 70 
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higher energy wastage as heat (Montanholi et al, 2010, 2009; Archer et al, 1999) and more 71 

hepatic lesions associated with inflammatory response (Alexandre et al, 2015; Paradis et al, 72 

2015). 73 

In the context of such a complex trait, we perform a multiple-tissue transcriptomic 74 

analyses of high and low FE Nellore cattle across tissues related to endocrine control of 75 

hanger/satiety, hydric and energy homeostasis, stress and immune response, physical and 76 

sexual activity, as is the case of hypothalamus-pituitary-adrenal axis and organs as liver and 77 

skeletal muscle. Based on gene co-expression across tissues and conditions we derived a 78 

regulatory network revealing NR2F6 and TGFB signalling as key regulators of hepatic 79 

inflammatory response and muscle tissue development, respectively. Next, we apply 80 

advanced motif discovery methods which i) validate that co-expressed genes are enriched for 81 

NR2F6 and TGFB signalling effector molecule SMAD3 binding sites in their 10KB upstream 82 

regions and ii) predict direct transcription factor (TF) – Target gene (TG) interactions at the 83 

sequence level. These binding interactions were experimentally validated with public TF 84 

ChIP-seq from ENCODE. Regulatory activity in the tissues of interest was also confirmed by 85 

performing an enrichment analysis on open chromatin tracks and histone chromatin marks 86 

across cell types and tissues in the human and cow genome. Moreover, we propose a 87 

hormonal control of differences in metabolism and sexual maturity between high and low FE 88 

animals, indicating potential biomarkers for further validation such as adrenomedullin, FSH, 89 

oxytocin, somatostatin and TSH. 90 

 91 

Results 92 

Multi-tissue transcriptomic data reveal differences between high and low feed efficient 93 

animals 94 
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 Feed efficiency is a complex trait characterized by multiple distinct biological 95 

processes including metabolism, ingestion, digestion, physical activity and thermoregulation 96 

(Herd et al, 2004; Herd & Arthur, 2009). To study FE at transcriptional level we performed 97 

RNAseq of five tissues (i.e. adrenal gland, hypothalamus, liver, muscle and pituitary) from 98 

nine male bovines of high feed efficiency (HFE, characterized by low residual feed intake 99 

(RFI) (Koch et al, 1963)) and nine of low FE (LFE, characterized by high RFI). In total, we 100 

analysed 18 samples of liver, hypothalamus and pituitary; 17 of muscle and 15 of adrenal 101 

gland, yielding 13 million reads per sample on average (S1 Supporting Information). Gene 102 

expression was estimated for 24,616 genes present in the reference genome (UMD 3.1) and 103 

after quality control (refer to methods), 17,354 genes were identified as being expressed in at 104 

least one of the five tissues analysed.  105 

Differential expression (DE) analysis between high and low FE animals resulted in 106 

471 DE genes across tissues (P<0.001, S2 Supporting Information), namely, 111 in adrenal 107 

gland, 125 in hypothalamus, 91 in liver, 104 in muscle and 98 in pituitary (S3A-E Supporting 108 

Information). Although no significant functional enrichment was found for the 281 genes up-109 

regulated in high feed efficiency, the 248 genes down-regulated presented a significant 110 

enrichment of GO terms such as response to hormone (Padj=5.43 x 10-6), regulation of 111 

hormone levels (Padj=3.48 x 10-6), cell communication (Padj=3.18 x 10-4), regulation of 112 

signaling receptor activity (Padj=3.20 x 10-4), hormone metabolic process (Padj=5.86 x 10-4), 113 

response to corticosteroid (Padj=6.28 x 10-4), regulation of secretion (Padj=7.2 x 10-4), 114 

response to lipopolysaccharide (Padj=7.9 x 10-4) and regulation of cell proliferation 115 

(Padj=1.86 x 10-3). Refer to S4 Supporting Information to see all enriched terms. 116 

 117 

Overlap between gene selection criteria prioritizes genes associated with feed efficiency 118 
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The genetic architecture behind complex traits involves a large variety of genes with 119 

coordinated expression pattern, which can be represented by gene regulatory networks as a 120 

blueprint to study their relationships and to identify central regulatory genes (Swami, 2009). 121 

Therefore, it is important to select relevant genes and gene families according to the 122 

phenotype of interest to be used for network analysis. We defined five categories of genes 123 

(see methods for further information) for inclusion in co-expression analysis: 1 - 124 

differentially expressed (DE), 2 - genes harbouring SNPs previously associated with FE 125 

(harbouring SNP), 3 - tissue specific (TS), 4 - genes coding proteins secreted in plasma by 126 

any of the five tissues analysed (secreted) and 5 - key regulators.  127 

As reported before, we have identified 471 DE genes between high and low FE 128 

animals (Figure 1A, S5A Supporting Information). In addition, 267 genes were selected for 129 

harbouring SNPs previously associated with FE, as not only differences in expression levels 130 

can influence the phenotype but also polymorphism in the DNA sequence that can alter the 131 

translated protein behaviour (S5B Supporting Information). Moreover, 396 were selected for 132 

being tissue specific (refer to methods for definition); 22 in adrenal gland, 32 in 133 

hypothalamus, 215 in liver, 218 in muscle and 9 in pituitary (S5C Supporting Information). A 134 

total of 244 genes coding proteins secreted in plasma were selected because of their potential 135 

as biomarkers of FE (S5D Supporting Information). From those, 135 had liver as the tissue of 136 

maximum expression and were functionally enriched for GO terms such as complement 137 

activation (Padj=1.82 x 10-19), regulation of acute inflammatory response (Padj=1.89 x 10-14), 138 

innate immune response (Padj=9.71 x 10-12), negative regulation of endopeptidase activity 139 

(Padj=2.35 x 10-10), platelet degranulation (Padj=1.08 x 10-10), regulation of coagulation 140 

(Padj=3.39 x 10-9), triglyceride homeostasis (Padj=1.23 x 10-6), cholesterol efflux 141 

(Padj=1.03E-5) (S6 Supporting Information). Finally, from 1570 potential regulators in public 142 

available TFdb, 78 were identified as key regulators of the genes selected by all the other 143 
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categories, i.e. 78 genes presented a coordinated expression level with many of the genes in 144 

the network reflecting a tight control of expression pattern across tissues (S5E Supporting 145 

Information).   146 

Considering all the inclusion criteria, 1,317 genes were selected to be included in co-147 

expression network analysis (Figure 1B, S7 Supporting Information), some of them selected 148 

by more than one category (Figure 1C). Regarding DE genes, six of them were also reported 149 

before as harbouring SNPs associated with the phenotype (LUZP2, MAOB, SFRS5, 150 

SLC24A2, SOCS3 and WIF1) and 13 of them were key regulators (HOPX, PITX1, CRYM, 151 

PLCD1, ND6, cytb, ND1, MT-ND4L, ND5, ATP8, ND4, ENSBTAG00000046711 and 152 

ENSBTAG00000048135). Many of the genes that are both DE and regulators are involved in 153 

respiratory chain (ND6, cytb, ND1, MT-ND4L, ND5, ATP8 and ND4) and were all up-154 

regulated in high FE group.   155 

Considering both DE and secreted genes, 18 were identified (NOV, SPP1, CTGF, 156 

OXT, PTX3, VGF, CCL21, COL1A2, PGF, SOD3, SERPINE1, PRL, PON1, SST, JCHAIN, 157 

PCOLCE, IGFBP6 and SCG2). In addition, four genes were DE, secreted and tissue specific, 158 

two from liver (CXCL3 and IGFBP1) and two from pituitary (NPY and CYP17A1). Genes 159 

RARRES2 and PENK (proenkephalin) were DE, secreted and had been previously reported as 160 

harbouring SNP associated with FE [30, AnimalQTLdb]. Other DE genes worthy to 161 

highlight, due to their well-known role in metabolic processes, are AMH (anti-mullerian 162 

hormone), TSHB (thyroid stimulating hormone beta), FGF21 (Fibroblast growth factor 21) 163 

and FST (follistatin), up-regulated in high FE group, and PMCH (pro-melanin concentrating 164 

hormone), ADM (adrenomedullin) and FSHB (follicle stimulating hormone beta), up-165 

regulated in low FE group. 166 

 167 

 168 
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 169 

Figure 1. Genes selected for co-expression network construction. A) Heatmap of 170 
normalized mean expression (NME) of 471 differentially expressed (DE) genes between high 171 
(HFE) and low (LFE) feed efficient animals in adrenal gland (ADR), hypothalamus (HYP), 172 
liver (LIV), muscle (MUS) and pituitary (PIT). Genes (rows) and samples (columns) are 173 
organized by hierarchical clustering based on Euclidean distances. B) NME heatmap of all 174 
1,317 genes selected for network construction. Genes (columns) and samples (rows) are 175 
organized by hierarchical clustering based on Euclidean distances. C) Venn diagram of 1,317 176 
genes selected for network construction. The inclusion criteria for selecting genes were 177 
divided in five categories: differentially expressed genes (DE), tissue specific genes (TS), 178 
genes harbouring SNPs reported by literature as being associated with feed efficiency in beef 179 
cattle (SNP), genes encoding proteins secreted by at least one of the tissues in plasma (SEC) 180 
and key regulators (REG). Numbers between brackets indicate the total number of genes in 181 
each category. 182 
 183 

Co-expression network reveals regulatory genes and biological processes related to feed 184 

efficiency 185 

The co-expression network (Figure 2) was composed by 1,317 genes and 91,932 186 

connections, with a mean of 70 connections per gene. Most of the connections (51%) 187 

involved a DE gene and 23% of those were between two DE genes. Tissue specific (TS) gene 188 
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were involved in 49% of the connections with 119 connections per gene in average, which 189 

was higher than the overall network mean and reflects the close relationship between genes 190 

involved in tissue specific functions. Key regulators was the least represented category in the 191 

network (only 78 genes) but accounted for 11% of the connections in the network with the 192 

highest value of mean connections per gene, 131 connections, which is in accordance with 193 

their regulatory role. Regarding the connections within tissues, when we ranked all the genes 194 

in the network by the number of connections and looked at the top 50 genes, 29 were from 195 

liver, 15 were from muscle and 3, 2 and 1 were from pituitary, adrenal gland and 196 

hypothalamus, respectively. This result indicates a very well-coordinated expression pattern 197 

in liver and muscle that could be a reflex of the number of TS genes in those tissues and the 198 

presence of central regulatory genes coordinating the expression of many other genes. 199 

In the network (Figure 2), genes grouped together by tissue which was mostly driven 200 

by TS genes. As mentioned before, most of the secreted proteins coding genes were locate in 201 

the liver. Most of the key regulators were located peripherally in relation to the clusters which 202 

could be reflecting their regulatory nature independent of tissue specificity. Despite that, 203 

some regulators draw attention because of their high number of connections. 204 

The top five most connected regulators were EPC1, NR2F6, MED21, 205 

ENSBTAG00000031687 and CTBP1, varying from 317 to 284 connections. They were all 206 

first neighbours of each other and were connected mainly to genes with higher expression in 207 

liver and essentially enriched for acute inflammatory response (Padj=4.5 x 10-13, S8 208 

Supporting Information). The next most connected regulator is TGFB1 with 217 connections. 209 

It is mainly connected to genes from muscle that are primarily enriched for muscle organ 210 

development (Padj=6.87 x 10-5) and striated muscle contraction (Padj=1.39 x 10-5, S9 211 

Supporting Information). Besides indicating main regulator genes, network approach can be 212 

useful to access the role of specific genes. For instance, gene FGF21, a hormone up regulated 213 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/360396doi: bioRxiv preprint 

https://doi.org/10.1101/360396
http://creativecommons.org/licenses/by-nc-nd/4.0/


in liver of high FE animals, is directly connected to genes enriched for plasma lipoprotein 214 

particle remodelling, regulation of lipoprotein oxidation and cholesterol efflux (Padj=5.64E-215 

3, S10 Supporting Information). Indeed, according to the literature, this gene is associated to 216 

decrease in body weight, blood triglycerides and LDL-cholesterol (Cheung & Deng, 2014). 217 

 218 

 219 

Figure 2. Gene co-expression network constructed using PCIT algorithm on 1,317 220 
selected genes (see methods). Nodes with diamond shape correspond to secreted proteins 221 
coding genes and triangles correspond to key regulators; all the other genes are represented 222 
by ellipses. Nodes with black borders are differentially expressed between high and low feed 223 
efficiency. Colours are relative to the tissue of maximum expression: blue represent liver, red 224 
represent muscle, yellow represent pituitary, green represent hypothalamus and orange 225 
represent adrenal gland. The size of the nodules is relative to the normalized mean expression 226 
values in all samples. Only correlations above 0.9 and bellow -0.9 and its respective genes are 227 
shown in this figure. 228 
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Motif discovery confirms NR2F6 as a key regulator of liver transcriptional changes 229 

between high and low feed efficiency 230 

By means of the power-law theory, co-expression networks present many nodules 231 

with few connections and few central nodules with many connections (de la Fuente, 2010), 232 

being the last ones indicated as central regulatory genes responsible for the transcriptional 233 

changes between the divergent phenotypes analysed. In our study, the most connected 234 

regulators were indicated, together with their target genes, i.e. their first neighbours in the 235 

network. Those genes are a mixture of direct and indirect regulator targets. In order to 236 

validate the regulatory role of the most connected regulators in the network and identify their 237 

core direct targets we performed motif discovery in their co-expressed target genes. It is 238 

noteworthy motif discovery should confirm the presence of DNA motifs of a TF in the 239 

regulatory regions of co-expressed genes. From the top five most connected regulators from 240 

our previous co-expression analysis, only NR2F6 has the ability to bind DNA. In contrast, the 241 

other four regulators act mainly as cofactors (corepressor, i.e. CTBP1; coactivator, i.e. 242 

MED21; or histones modifier, i.e. EPC1), that is co-binding through protein-protein 243 

interactions. 244 

The analysis of 313 co-expressed genes with NR2F6 yield the Nuclear Factor motif 245 

HNF4-NR2F2 (transfac_pro-M01031) as the second motif most enriched out of 9732 PWMs 246 

with a Normalized Enrichment Score (NES) of 7.99 (Figure 3B). In addition, a total of 19 247 

motifs associated with HNF4-NR2F2 were enriched in the dataset, associating HNF4-NR2F2 248 

to 168 direct target genes (Figure 3C).  Due to motif redundancy or highly similarity between 249 

a plethora of TFs, these motifs can be associated with multiple TFs from HNF4 (direct) to 250 

several nuclear factors such as NR2F6 (motif similarity score FDR 1.414E-5). However, our 251 

co-expression analysis strongly indicates NR2F6 is the key TF, since it was the TF with the 252 
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highest number of nodes in the co-expression network (Figure 3C) and neither HNF4 nor 253 

NR2F2 were prioritized by any selection category to be included in the network. 254 

Each of the NR2F6 inferred direct target genes contain one or more predicted 255 

enhancers, i.e. regions with high-scoring motif binding sites for NR2F6 or TFs with highly 256 

similar motifs. To validate the binding of these genomic regions by NR2F6 or TFs with 257 

highly similar motifs to NR2F6 we performed a region enrichment analysis of our predicted 258 

NR2F6 binding sequences against public TF ChiP-seq bound regions in human cell lines 259 

from ENCODE the ENCODE consortium (1394 TF binding site tracks). This analysis, 260 

confirms the experimental binding of TFs with similar binding as NR2F6 in HepG2 cells, 261 

HNF4A (NES=8.57), HNF4G (NES=7.83), RXRA (NES=6.85), and NR2F2 (NES=4.45) as 262 

the most enriched tracks (S11 Supporting Information). Recent NR2F6 ChIP-seq data in 263 

HepG also confirms an enrichment for NR2F6 (Figure 3D), indicating predicted NR2F6 264 

binding regions are experimentally bound by NR2F6 in hepatocyte cell lines (Figure 3D). 265 

Next, to validate that the NR2F6 binding in those regions is functional in liver we 266 

performed an enrichment analysis for open-chromatin (tracks=655) and histone modifications 267 

(tracks =2450) related to active regulatory elements (S12 Supporting Information). This 268 

analysis yielded FAIRE-seq on HepG2 cell lines and H3K9ac and H3K4me3 in adult liver 269 

(E066 Roadmap Epigenomics Track) as the most enriched tracks respectively, strongly 270 

indicating not only predicted target enhancers are bound by NR2F6 in Hepatocyte cell lines 271 

but these regulatory regions are functionally active in hepatocytes and human liver (Figure 272 

3D). 273 

 274 
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 275 

 276 
Figure 3. Mapping of NR2F6 direct targets. A) Heatmap of the 313 genes coexpressed 277 
with NR2F6 across all samples (derived from the co-expression analysis), B) i-cisTarget 278 
motif discovery results on the genes shown in (A), C) Predicted NR2F6 targetome. A red 279 
node indicates genes known to be targeted my NR2F6 in human Hepatocytes. D) Example of 280 
predicted NR2F6 target regions for SERPINA1 gene. The predicted enhancer overlaps the 281 
exact position for NR2F6 and NR2F2 binding in HepG sites from ENCODE dataset as well 282 
as histone chromatin marks related with active regulatory regions, namely H3K27ac, and 283 
promoters, H3K4me3 in human primary tissue from RoadMap Epigenetics E) The enhancer 284 
prediction in cow coordinates (bosTau6) overlaps a region marked with H3K4me3 in cow 285 
liver (Villar et al, 2015). 286 
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Regarding the cow genome, a recent open-chromatin study (Villar et al, 2015) has 287 

delineated the map active promoters and enhancers by H3K4me3 and H3K27ac ChIP-seq in 288 

cow liver resulting in 13796 promoter and 45786 enhancers (S13 Supporting Information). 289 

We performed an enrichment analysis of predicted NR2F6 enhancers converted to cow 290 

coordinates (n=779) resulting in 446 regions being identified as functional regulatory regions 291 

in cow liver. This number is significantly higher compared to only 43 regions are expected to 292 

overlap by random (1000 permutation tests) (Figure 3E).  293 

Finally, in addition to NR2F6 motif, HNF1A motif was found as a potential co-294 

regulator in liver, in particular swissregulon-HNF1A.p2 with a NES =10.17 and in total 20 295 

enriched motifs and 170 direct targets were associated to HNF1A (Figure 3B).  HNF1 is a 296 

master regulator of liver gene expression (Tronche & Yaniv, 1992), thus making its finding 297 

justified. 298 

 299 

Motif discovery validates TGF-beta signalling through Smad3/MyoD1 binding as 300 

drivers of transcriptional differences in muscle of divergent feed efficient cattle 301 

The analysis of the 217 genes co-expressed with TGFB1 (Figure 4A) showed most 302 

target genes motifs were enriched for master regulators of muscle differentiation, namely, 303 

MEF2 (NES=10.42) a MADS box Transcription factor with 148 target genes, and MYOD1 304 

(NES=8.12), a bHLH transcription factor (CANNTG) with 135 direct target genes (Figure 305 

4B, S14 Supporting Information). To evaluate the precision of our predicted MYOD1 (bHLH) 306 

target genes we assessed how many of these TF-TG relationships had been previously 307 

experimentally reported. Based on MYOD1 ChIP-seq binding in mouse myotubules, 86 genes 308 

had already been associated with MYOD1 resulting in 63% success rate (hypergeometric test 309 

1.72E-22). SMAD3, the effector molecule of TGFB1 signalling is known to recruit MYOD1 to 310 

drive transcriptional changes during muscle differentiation (Mullen et al, 2011). Thus, we 311 
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evaluated whether predicted MYOD1 target genes were enriched for known SMAD3 target 312 

genes resulting in 21 out of 135 MYOD1 predicted target genes presented SMAD3 ChIP-seq 313 

binding in myotubes. Thus indicating there is a statistically significant association between 314 

MYOD1 target genes and SMAD3 target genes in myotubes (hypergeometric test 1.98 E-6) 315 

(Figure 4 C) (Mullen et al, 2011) In contrast, no significant association was found between 316 

predicted MYOD1 target genes in this study and SMAD3 target genes in other cell lines, such 317 

as pro-B and ES cell (hypergeometric test 0.056 and 0.076, respectively) (Mullen et al, 318 

2011). That is in agreement that the effect of TGFB signalling driven by SMAD3 DNA 319 

binding is tissue-specific (Liu et al, 2001). Our analysis predicted 621 potential MYOD1 320 

binding sites, of which 114 (18%) and 153 (24.5%) present a MYOD1 ChIP-seq signal in 321 

mouse C2C12 myotubes cells (Mullen et al, 2011) and in primary myotubes (Cao et al, 322 

2009), respectively.  323 

Finally, we evaluate whether predicted MYOD1 binding regions were regulatory 324 

regions active in muscle cells across different species, namely human (S15 Supporting 325 

Information), mouse (S16 and S17 Supporting Information) and cow (S18 Supporting 326 

Information). To tackle this issue we performed an enrichment analysis across 2113 open-327 

chromatin ENCODE tracks. This analysis resulted in a clear enrichment of our predicted 328 

MYOD1 binding regions with H3K27ac (NES=15.98) and H3K9ac (NES=8.78) regions in 329 

skeletal muscle (Figure 4D). Both chromatin marks are associated with active transcription, 330 

H3K27ac related to active enhancers and H3K9ac related to active gene transcription (Shin et 331 

al, 2012) thus, validating most of our enhancer predictions in human are active in skeletal 332 

muscle. Once in cow, we assess the overlap of predicted MYOD1 enhancers and promoter 333 

regions in cow muscle experimentally detected with H3K4me3 (Cao et al, 2009). This 334 

resulted in 282 regions out of 671 (42 %) overlap when only 11 regions are expected to 335 

overlap by random 1000 permutation test) (Figure 4E). 336 
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 337 

Figure 4. Mapping the downstream network of TGFB signaling through 338 
SMAD3/MyoD1 DNA binding. A) Heatmap of the 217 genes coexpressed with TGFB1 339 
(derived from the co-expression analysis). B) i-cisTarget motif discovery results on the genes 340 
shown in (A), C) Predicted MyoD targetome. A red node indicate genes know to be targeted 341 
my MyoD1 in murine myotubes (Mullen et al, 2011). Blue nodes indicate genes to be 342 
targeted by SMAD3, the effector DNA binding molecular of TGFB signalling, in murine 343 
myotubes (Mullen et al, 2011). D) Example of predicted MyoD1 target regions for Acta1 344 
gene. The predicted enhancer overlaps the exact position for SMAD3 and MyoD1 ChIP-seq 345 
binding in murine myotubes (Mullen et al, 2011). E) The enhancer prediction in cow 346 
coordinates (bosTau6) overlaps a promoter region marked with H3K4me3 in muscle tissue in 347 
cow (Cao et al, 2009). 348 
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Finally, we evaluate whether predicted MYOD1 binding regions were regulatory 349 

regions active in muscle cells across different species, namely human (S15 Supporting 350 

Information), mouse (S16 and S17 Supporting Information) and cow (S18 Supporting 351 

Information). To tackle this issue we performed an enrichment analysis across 2113 open-352 

chromatin ENCODE tracks. This analysis resulted in a clear enrichment of our predicted 353 

MYOD1 binding regions with H3K27ac (NES=15.98) and H3K9ac (NES=8.78) regions in 354 

skeletal muscle (Figure 4D). Both chromatin marks are associated with active transcription, 355 

H3K27ac related to active enhancers and H3K9ac related to active gene transcription (Shin et 356 

al, 2012) thus, validating most of our enhancer predictions in human are active in skeletal 357 

muscle. Once in cow, we assess the overlap of predicted MYOD1 enhancers and promoter 358 

regions in cow muscle experimentally detected with H3K4me3 (Cao et al, 2009). This 359 

resulted in 282 regions out of 671 (42 %) overlap when only 11 regions are expected to 360 

overlap by random 1000 permutation test) (Figure 4E). 361 

 362 

Differential co-expression 363 

Although the general co-expression network give us important insights about 364 

regulatory genes and their behaviour, by creating specific networks for high and low FE and 365 

comparing the connectivity of the genes in each one, we can identify genes that change their 366 

behaviour depending on the situation, moving from highly connected to lowly connected and 367 

vice-versa. We were able to identify 87 differentially connected genes between high and low 368 

FE (P<0.05); 63 mainly expressed in liver, 19 in muscle and 3, 1 and 1 in hypothalamus, 369 

adrenal gland and pituitary, respectively (S19 Supporting Information). Those genes were 370 

enriched for terms such as regulation of blood coagulation (Padj=3.14 x 10-10), fibrinolysis 371 

(Padj=7.71 x10-7), platelet degranulation (Padj=7.49 x10-6), regulation of peptidase activity 372 

(Padj=6.16 x 10-4), antimicrobial humoral response (Padj=2.49 x10-3), acute inflammatory 373 
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response (Padj=2.18 x10-4) and induction of bacterial agglutination (Padj=3.58 x 10-2) (S20 374 

Supporting Information). It is important to highlight 20 of the differentially connected genes 375 

were also differentially expressed (Table 1) and three of them, i.e. SST, JCHAIN and 376 

IGFBP1, were secreted in plasma as well, which make them very promising potential 377 

biomarkers.  378 

 379 

Table 1. Differentially connected and differentially expressed genes between high and 380 
low feed efficiency. 381 
Gene name Number of connections 

Category* Tissue of maximum 
expression 

Tissue of differential 
expression  Low feed efficiency High feed effciency 

SST 0 45 DE, SEC Hypothalamus Hypothalamus 
SNORA73 41 108 DE Liver Liver 
ENSBTAG00000047700 56 111 DE Liver Liver 
ENSBTAG00000047121 62 111 DE Liver Liver 
ENSBTAG00000047816 53 96 DE Liver Liver 
ENSBTAG00000039928 50 89 DE Liver Liver 
ANXA13 115 63 DE Liver Liver 
FST 113 56 DE Liver Liver 
PBLD 115 55 DE Liver Liver 
ENSBTAG00000021368 95 0 DE Liver Liver 
JCHAIN 52 113 DE, SEC Liver Liver 
IGFBP1 55 0 DE, TS, SEC Liver Liver 
SBK2 0 70 DE Muscle Muscle 
ACTC1 54 0 DE Muscle Muscle 
MYH1 0 47 DE, TS Muscle Muscle 
HR 119 50 DE Pituitary Muscle 
TAGLN 83 31 DE Adrenal Muscle, Pituitary 
SFRP2 41 91 DE Hypothalamus Pituitary 
FN1 119 69 DE Liver Pituitary 
CAV1 98 50 DE Muscle Pituitary 

*Differentially expresses genes between high and low feed efficiency (DE), tissue specific genes (TS) and genes 382 
encoding proteins secreted in plasma (SEC). 383 
 384 

Comparing the two networks there was no large difference regarding the number of 385 

genes and connections. While high FE network contained 1,074 genes in total and 28,018 386 

connections, low FE network was composed by 1,098 genes and 30,705 connections. For all 387 

tissues, low FE networks showed more connections but the difference is slight, being the 388 

bigger difference of 44 versus 40 connections per gene in liver. 389 

 390 

Discussion 391 

 Feed efficiency is a complex trait, regulated by several biological processes. Thus, the 392 

indication of genomic regions associated with this phenotype, as well as regulators genes and 393 
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biomarkers to select superior animals and to direct management decisions is still a great 394 

challenge. In this work, multi-tissue transcriptomic data of high and low feed efficient 395 

Nellore bulls were analysed through robust co-expression network methodologies in order to 396 

uncover some of the biology that governs this traits and put forward candidate genes to be 397 

focus of further research. In this sense, the validation of target genes of main transcription 398 

factors (key regulators) in the network by motif search proves the efficacy of the 399 

methodology for network construction and prioritizes some transcription factors as central 400 

regulators (Aerts et al, 2010; Naval-Sańchez et al, 2013; Potier et al, 2014). Moreover, the 401 

addition of a category of genes coding proteins secreted in plasma in the co-expression 402 

analysis highlight genes with potential to be explored as biomarkers of feed efficiency. We 403 

were able to identify genes related to main biological process associated with feed efficiency 404 

and indicate key regulators, as can be seen on the following lines. 405 

 Firstly, it is worthy to mention the 98 animals used to select the high and low FE 406 

groups in this study have been previously analysed regarding several phenotypic and 407 

molecular measures (Alexandre et al, 2015; Mota et al, 2017; Novais et al, 2018). It was 408 

observed high and low FE groups had similar body weight gain, carcass yield and loin eye 409 

area but low FE animals had higher feed intake, greater fat deposition, higher serum 410 

cholesterol levels, as well as hepatic inflammatory response, indicated by transcriptome 411 

analysis of liver biopsy and proved by the higher number of periportal mononuclear infiltrate 412 

(histopathology) and increased serum gamma-glutamyl-transferase (GGT, a biomarker of 413 

liver injury) in this group (Alexandre et al, 2015). In the present study, the simultaneous 414 

analysis of five distinct tissues revealed a prominence of the hepatic tissue. Liver presented 415 

the most connected genes in the network, the higher number of differentially connected genes 416 

and higher number of secreted genes, which although can be explained by its biological 417 

function, are enriched mostly for terms related to lipid homeostasis and inflammatory 418 
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response. Moreover, the top five most connected regulators in the network are co-expressed 419 

mainly with genes highly expressed in liver and also enriched for inflammatory response. 420 

The relationship between FE and genes or pathways related to immune response and 421 

lipid metabolism is becoming more evident, as recent studies also reported it in beef cattle 422 

(Karisa et al, 2014; Weber et al, 2016; Paradis et al, 2015; Zarek et al, 2017; Mukiibi et al, 423 

2018) and pigs (Gondret et al, 2017; Ramayo-Caldas et al, 2018). In our previous work 424 

(Alexandre et al, 2015), we proposed increased liver lesions associated with higher 425 

inflammatory response in liver of low FE animals could be due to increased lipogenesis 426 

and/or higher bacterial infection in the liver. While further evidence is needed to test these 427 

hypotheses, the enrichment of terms such as induction of bacterial agglutination and response 428 

to lipopolysaccharide makes bacterial infection a strong possibility. Indeed, pigs with low FE 429 

were reported to have higher intestinal inflammation, neutrophil infiltration biomarkers and 430 

increased serum endotoxin (lipopolysaccharide and other bacterial products) which could be 431 

related to increased bacterial infection or to decreased capacity to neutralize endotoxins 432 

(Mani et al, 2013). The authors hypothesized differences in bacterial population could 433 

partially explain the increase in circulating endotoxins, which could also be true for cattle 434 

given that differences in intestinal and ruminal bacterial population between high and low FE 435 

animals have already been reported (Myer et al, 2015, 2016). Furthermore, the literature 436 

reports lipopolysaccharides (LPS) may cause up-regulation of adrenomedullin (ADM) 437 

hormone (Shindo et al, 1998), an up-regulated gene in low FE individuals as showed here. It 438 

was also demonstrated in rats that intravenous infusion of LPS caused up-regulation of ADM 439 

in ileum, liver, lung, aorta, skeletal muscle and blood vessels (Shoji et al, 1995) whereas in 440 

our study, ADM presented differential expression in muscle, but not in liver.  441 

Against pathogen invasion, a tightly regulated adaptive immune response must be 442 

triggered in order to allow T lymphocytes to produce cytokines or chemokines and B cells to 443 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/360396doi: bioRxiv preprint 

https://doi.org/10.1101/360396
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

differentiate and produce antibodies (Hermann-Kleiter & Baier, 2014). This regulation is 444 

known to be strongly influenced by the expression level and transcriptional activity of several 445 

nuclear receptors, including the NR2F-family, which consists of three orphan receptors: 446 

NR2F1, NR2F2 and NR2F6 (Hermann-Kleiter & Baier, 2014). Those receptors present 447 

highly conserved DNA and ligand binding domains among each other and across species 448 

(Pereira et al, 2000), and all three are expressed in adaptive and immune cells (Hermann-449 

Kleiter & Baier, 2014). In our study, NR2F6 appeared as the second most connected 450 

regulator gene in the network while the other family members, although present in our 451 

expression data, were not selected by any of our inclusion criteria, thus indicating they might 452 

not be so relevant in our conditions. Indeed, NR2F6 appears to be a critical regulatory factor 453 

in the adaptive immune system by directly repressing the transcription of key cytokine genes 454 

in T effector cells (Hermann-Kleiter et al, 2008; Klepsch et al, 2016). The role of NR2F6 as a 455 

key regulator of inflammatory response in our network was validated at gene level by the 456 

identification of the binding motif HNF4-NR2F2 (transfac_pro-M01031) as one of the most 457 

enriched in NR2F6 target genes, due to the high similarity between NR2F2 and NR2F6 458 

biding sites. Furthermore, using open chromatin data public available, we provided 459 

experimental evidence of the binding of TFs with highly similar binding motifs as NR2F6 in 460 

hepatocyte cells in humans and in cattle, thus, indicating predicted target enhancers are 461 

functional in this tissue. 462 

Another regulator prioritized in our analysis is TGFB1, the sixth most connected gene 463 

in the co-expression network, and a potential driver of transcriptional changes between high 464 

and low FE cattle in muscle. This gene has been previously pointed as a master regulator of 465 

FE in beef cattle, using genomics and metabolomics data (Widmann et al, 2015). Moreover, 466 

our motif discovery analysis showed TGFB1 co-expressed genes are mostly enriched for 467 

binding site of master regulators of muscle differentiation as MEF2 and MYOD. Indeed, 468 
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public available data show many of TGFB1 target genes were associated with MYOD 469 

(Mullen et al, 2011). It is known signalling pathways are an effective mechanism for cells to 470 

respond to environmental cues by regulation gene expression. TGFB1 signalling triggers the 471 

phosphorylation of SMAD2/3 transcription factors, which co-bind with cell-type master 472 

regulators at the nuclear level allowing/triggering/leading to cell-type specific transcriptional 473 

changes (Schmierer & Hill, 2007; Mullen et al, 2011). In skeletal muscle cells, myoblasts and 474 

myotubes, SMAD3 co-binds with MYOD1 (Mullen et al, 2011). The overlap between 475 

MYOD1 and SMAD3 target genes demonstrate the significant association between both genes 476 

in skeletal muscle, in agreement with the tissue-specificity TGFB1 signalling response 477 

(Mullen et al, 2011). The overlap percentage between our predicted binding sites and 478 

MYOD1 Chip-seq data (18 and 24.5%) confirms previous analysis in mice where they 479 

reported only 20% of experimental validated distal enhancers in mouse myotubes with a 480 

bHLH (MyoD1) binding were actually bound by MYOD ChIP-seq data (Blum et al. 2012). 481 

Thus, suggesting additional transcription-factors and/or histone modification have a key role 482 

in MYOD1 binding. The SMAD3/MYOD1 co-bound regions for known target genes are also 483 

captured, such as the promoter regions of ACTA1 and ANKRD1, both genes involved in 484 

skeletal muscle differentiation (Figure 4C). We also demonstrated predicted MYOD1 binding 485 

regions are enriched for muscle regulatory regions across species (human, mouse and cow). 486 

 Altogether, we showed co-expressed genes with TGFB1 are enriched for 487 

SMAD3/MYOD1 binding sites, which we validate at the gene and enhancer level by proving 488 

not only MYOD1 and SMAD3 binding, but also their accessibility, in human, mouse and cow. 489 

In pigs, it has been indicated increased feed efficiency is associated with stimulation of 490 

muscle growth through TGF-β signalling pathway (Jing et al, 2015). Finally, although not 491 

directly co-expressed with TGFB1, oxytocin (OXT) was DE in muscle and despite the lack of 492 

knowledge  on its role in this tissue, previous work in cattle have shown a massive increase of 493 
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OXT expression in muscle of bovines chronically exposed to anabolic steroids (Jager et al, 494 

2011). It is not known yet if oxytocin alone have an anabolic activity, but in a context where 495 

muscle growth seems to be associated with high FE animals, this is a hormone that worth 496 

further investigation. 497 

  From the 13 regulator genes that are DE between groups, six are involved in 498 

respiratory chain and are up-regulated in high FE group. Genes ND1, ND4, ND4L, ND5, ND6 499 

and ND2, which is DE but not identified as key regulator, are core subunits of the 500 

mitochondrial membrane respiratory chain Complex I (CI) which functions in the transfer of 501 

electrons from NADH to the respiratory chain, while ATP8 is part of Complex V and 502 

produces ATP from ADP in the presence of the proton gradient across the membrane. 503 

Interestingly, greater quantity of mitochondrial CI protein were associated with high FE cattle 504 

by Ramos and Kerley (2013) whereas Davis et al. (2016) found higher CI-CII and CI-CIII 505 

concentration ratios for the same group. Other studies demonstrated high FE animals 506 

consume less oxygen (Chaves et al, 2015) and present lower plasma CO2 concentrations, 507 

which suggests a decreased oxidation process (Gonano et al, 2014). In general, the literature 508 

suggests mitochondrial ADP has greater control of oxidative phosphorylation in high FE 509 

individuals (Lancaster et al, 2014) and their increased mitochondrial function may contribute 510 

to feed efficiency (Connor et al, 2010). In pigs, differences in mitochondrial function were 511 

reported when analysing muscle (Vincent et al, 2015), blood (Liu et al, 2016) and adipose 512 

tissue transcriptomes (Louveau et al, 2016). Differences in metabolic rate associated with FE 513 

has long been discussed (Herd & Arthur, 2009) and here is corroborated by the up-regulation 514 

of TSHB in high FE animals, which stimulates production of T3 and T4 in thyroid thus 515 

increasing metabolism. It is inhibited by SST, a down-regulated hormone in this group which 516 

was also found to be differentially connected between high and low FE. 517 
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  Looking at the DE genes, many hormones can be identified. Hormones are signalling 518 

proteins that are transported by the circulatory system to target distant organs in order to 519 

regulate physiology. Regarding the relationship between FE and other production traits of 520 

economic importance,  FSHB, responsible for spermatozoa production by activating Sertoli 521 

cells in the testicles (Walker & Cheng, 2005), is up-regulated in low FE group and is 522 

inhibited by follistatin (FST), a gene found to be down-regulated in the same group. 523 

Moreover, in rats, it was already demonstrated FSH secretion is stimulated by somatostatin 524 

expression, which is up-regulated in low FE animals (Kitaoka et al, 1989). In this scenario, 525 

one could argue that selection for high FE delay reproduction traits, something that could be 526 

related to the lower fat deposition in this group, as previously observed (Alexandre et al, 527 

2015; Santana et al, 2012; Gomes et al, 2012). Indeed, differences in body composition and 528 

in intermediary metabolism can impact on reproductive traits (Shaffer et al, 2011) and it has 529 

been observed before that feed efficient bulls present features of delayed sexual maturity, i.e. 530 

decreased progressive motility of the sperm and higher abundance of tail abnormalities 531 

(Montanholi et al, 2016; Fontoura et al, 2016). Moreover, high FE heifers presented less fat 532 

deposition and later sexual maturity which results in calving later in the calving season than 533 

their low FE counterparts (Randel & Welsh, 2013; Shaffer et al, 2011). It is important to 534 

point that low FE animals also present down-regulation of AMH and the fall of this hormone 535 

in serum was pointed as an excellent marker of Sertoli cells pubertal development (Rey et al, 536 

1993). 537 

 Concerning the differences in lipid metabolism in divergent FE phenotypes, FGF21, a 538 

hormone up-regulated in liver of high FE animals, is associated in humans to decrease in 539 

body weight, blood triglycerides and LDL-cholesterol, with improvement in insulin 540 

sensitivity (Cheung & Deng, 2014). It is an hepatokine released to the bloodstream and an 541 

important regulator of lipid and glucose metabolism (Giralt et al, 2015). When we select its 542 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/360396doi: bioRxiv preprint 

https://doi.org/10.1101/360396
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

first neighbours in the network and perform an enrichment analysis we indeed found terms 543 

related to plasma lipoprotein particle remodelling, regulation of lipoprotein oxidation and 544 

cholesterol efflux mostly due to FGF21 co-expression with the apolipoproteins APOA4, 545 

APOC3 and APOM. In the same context, pro-melanin-concentrating hormone (PMCH) 546 

encodes three neuropeptides: neuropeptide-glycine-glutamic acid, neuropeptide-glutamic 547 

acid-isoleucine and melanin-concentrating hormone (MCH) being the last one the most 548 

extensively studied (Helgeson & Schmutz, 2008). MCH up-regulation has been related to 549 

obesity and insulin resistance, as well as increased appetite and reduced metabolism in 550 

murine models (Ludwig et al, 2001; Ito et al, 2003). PMCH gene is up-regulated in low FE 551 

animals and harbour SNPs found to be associated with higher carcass fat levels and marbling 552 

score (Walter et al, 2014; Helgeson & Schmutz, 2008). 553 

 In this work, we were able to identify several biological processes known to be related 554 

to feed efficiency, which together with the validation of the main transcription factors of the 555 

network, demonstrate the quality of the data and the robustness of the analyses, giving us the 556 

confidence to indicate candidate genes to be regulators or biomarkers of superior animals for 557 

this trait. The transcription factors NR2F6 and TGFB1 play central roles in liver and muscle, 558 

respectively, by regulating genes related to inflammatory response and muscle development 559 

and growth, two main biological mechanisms associated to feed efficiency. Likewise, 560 

hormones and other proteins secreted in plasma as oxytocin, adrenomedulin, TSH, 561 

somatostatin, follistatin and AMH are interesting molecules to be explored as potential 562 

biomarkers of feed efficiency.  563 

 564 

Material and methods 565 

Phenotypic data and biological sample collection 566 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/360396doi: bioRxiv preprint 

https://doi.org/10.1101/360396
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 All animal protocols were approved by the Institutional Animal Care and Use 567 

Committee of Faculty of Food Engineering and Animal Sciences, University of São Paulo 568 

(FZEA-USP – protocol number 14.1.636.74.1). All procedures to collect phenotypes and 569 

biological samples were carried out at FZEA-USP, Pirassununga, State of São Paulo, Brazil. 570 

Ninety eight Nellore bulls (16 to 20 months old and 376 ± 29 kg BW) were evaluated in a 571 

feeding trial comprised of 21 days of adaptation to feedlot diet and place and a 70-day period 572 

of data collection. Total mixed ration was offered ad libitum and daily dry matter intake 573 

(DMI) was individually measured. Animals were weighted at the beginning, at the end and 574 

every 2 weeks during the experimental period. Feed efficiency was estimated by residual feed 575 

intake (RFI) which is the residual of the linear regression that estimates DMI based on 576 

average daily gain and mid-test metabolic body weight (Koch et al, 1963). Forty animals 577 

selected either as high feed efficiency (HFE) or low feed efficiency (LFE) groups were 578 

slaughtered on two days with a 6-day interval. Adrenal gland, hypothalamus, liver, muscle 579 

and pituitary samples were collected from each animal, rapidly frozen in liquid nitrogen and 580 

stored at -80 °C. Further information about management and phenotypic measures of the 581 

animals used in this study can be found in Alexandre et al.  (2015). 582 

 583 

RNAseq data generation 584 

Samples of nine animals from each feed efficiency group (high and low) were 585 

selected for RNAseq using RFI measure. For hypothalamus and pituitary, the nitrogen frozen 586 

tissue was macerated with crucible and pistil and stored in aliquots at -80 °C. Then, RNA was 587 

extracted using AllPrep DNA/RNA/Protein Mini kit (QIAGEN, Crawley, UK). For liver, 588 

muscle and adrenal gland, a cut was made in the frozen tissue and the RNA was extracted 589 

using RNeasy Mini Kit (QIAGEN, Crawley, UK). RNA quality and quantity were assessed 590 

using automated capillary gel electrophoresis on a Bioanalyzer 2100 with RNA 6000 Nano 591 
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Labchips according to the manufacturer’s instructions (Agilent Technologies Ireland, Dublin, 592 

Ireland). Samples that presented an RNA integrity number (RIN) less than 8.0 were 593 

discarded. 594 

RNA libraries were constructed using the TruSeq™ Stranded mRNA LT Sample Prep 595 

Protocol and sequenced on Illumina HiSeq 2500 equipment in a HiSeq Flow Cell v4 using 596 

HiSeq SBS Kit v4 (2x100pb). Liver, pituitary and hypothalamus were sequenced on the same 597 

run, each one in a different lane. Muscle and adrenal gland were sequenced in a second run, 598 

in different lanes. 599 

 600 

Gene expression estimation 601 

The quality of the sequencing was evaluated using the software FastQC 602 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence alignment against the 603 

bovine reference genome (UMD3.1) was performed using STAR (Dobin et al, 2013), 604 

according to the standard parameters and including the annotation file (Ensembl release 89) 605 

and  secondary alignments, duplicated reads and reads failing vendor quality checks were 606 

removed using Samtools (Li et al, 2009). Then, HTseq (Anders et al, 2014) was used to 607 

generate gene read counts and expression values were estimated by reads per kilobase of gene 608 

per million mapped reads (RPKM). Genes with average value lower than 0.2 FPKM across 609 

all samples and tissues were discarded.  610 

 Gene expression normalization was performed using the following mixed effect 611 

model (Reverter et al, 2005):  612 

����� � � � �� � �� � ���� � ���� � 	���� 

where the log2-transformed FPKM value for i-th library (86 levels), j-th gene (17,354 levels), 613 

k-th tissue (5 levels), l-th RFI phenotype (2 levels), corresponding to Yijkl, was modelled as a 614 

function of the fixed effect of library (Li) and the random effects of gene (Gj), gene by tissue 615 
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(GTjk) and gene by RFI phenotype (GPjl). Random residual (eijkl) was assumed to be 616 

independent and identically distributed. Variance component estimates and solutions to the 617 

model were obtained using VCE6 (Eildert Groeneveld, Milena Kovac and Norbert Mielenz, 618 

ftp://ftp.tzv.fal.de/pub/vce6/doc/vce6-manual-3.1-A4.pdf). Normalized mean expression 619 

(NME) values for each gene were defined as the linear combination of the solutions for 620 

random effects. 621 

The mixed model used to normalize the expression data explained 96% of the 622 

variation in gene expression, of which the largest proportion (0.30) was due to tissue-623 

specificity. Contrariwise, differences between high and low FE represented no variation 624 

(0.27E-11). For that reason, normalized mean expression (NME) were only used to identify 625 

tissue specific genes and the raw FPKM values were used for differential expression and co-626 

expression analysis. 627 

 628 

Gene selection for network construction 629 

 In order to select a set of relevant genes for network analysis, we defined five 630 

categories based on the following inclusion criteria: 631 

1. Differential expression (DE) - The mean expression value of each gene, for 632 

each group (high and low FE) and each tissue was calculated and then the expression of low 633 

FE group was subtracted from the expression in high FE group. Next, genes were ranked 634 

according to their mean expression in all samples for each tissue and divided in five bins. 635 

Genes were considered differentially expressed when the difference between the expression 636 

in high and low FE groups were greater than 3.1 or smaller than -3.1 standard deviation from 637 

the mean in each bin, corresponding to a t-test P<0.001.   638 

2. Harbouring SNPs - Genes harbouring SNPs associated with feed efficiency, 639 

mainly indicated by GWAS, were identified using PubMed database 640 
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(www.ncbi.nlm.nih.gov/pubmed/) and AnimalQTL database (www.animalgenome.org/cgi-641 

bin/QTLdb/index) and only bovine data were considered regardless of breed. 642 

3. Tissue specific (TS) - A gene was considered as tissue specific when the 643 

average NME in that tissue was greater than one standard deviation from the mean of all 644 

genes AND the average NME in all the other four tissues was smaller than zero. 645 

4. Secreted - The human secretome database    646 

(www.proteinatlas.org/humanproteome/secretome) was used to select genes encoding 647 

proteins secreted in plasma by any of the analysed tissues (adrenal gland, hypothalamus, 648 

liver, muscle and pituitary).  649 

5. Key regulators - In order to identify key regulatory genes to be included in the 650 

co-expression network, a list of genes were obtained from the Animal Transcription Factor 651 

Database (http://www.bioguo.org/AnimalTFDB/) and it was compared to a set of potential 652 

target genes in each tissue, composed by the categories: TS, DE, harbouring SNPs and 653 

secreted.  The analysis was based on regulatory impact factor metrics (Reverter et al, 2010), 654 

which comprises a set of two metrics designed to assign scores to regulator genes consistently 655 

differentially co-expressed with target genes and to those with the most altered ability to 656 

predict the abundance of target genes. Those scores deviating ±1.96 standard deviation from 657 

the mean (corresponding to P<0.05) were considered significant. Genes presenting mean 658 

expression value less than the mean of all genes expressed were not considered in this 659 

analysis.  660 

Some of the genes selected by the categories above were represented by more than 661 

one ensemble ID. Those duplications were removed for further analysis, keeping only the 662 

expression value of the most meaningful ensemble ID. Additionally, genes with mean 663 

expression across the samples equal to zero were also removed from further analysis. 664 

 665 
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Co-expression network analysis 666 

For gene network inference, genes selected by the five categories described 667 

previously were used as nodes and significant connections (edges) between them were 668 

identified using partial correlation and information theory (PCIT) algorithm (Reverter & 669 

Chan, 2008), considering all animals and all tissues. PCIT determinates the significance of 670 

the correlation between two nodes after accounting for all the other nodes in the network. The 671 

output of PCIT was visualized on Cytoscape (Shannon et al, 2003).  672 

 673 

Network validation through transcription factor biding motifs analysis 674 

 Using the regulatory impact factor metric (RIF) we prioritize key regulator genes 675 

from gene expression data and predict target genes based on co-expression network (PCIT). 676 

In order to assess whether those target genes were enriched for motifs associated to the top 677 

most connected regulators in the network with a DNA biding domain (transcription factors - 678 

TF), we performed motif discovery analysis in the set of co-expressed target genes (first 679 

neighbours of the TF) using i-cistarget method (Herrmann et al, 2012) and i-Regulon, a 680 

Cytoscape plug-in (Janky et al, 2014). These tools use human (hg19) as the reference species, 681 

therefore only genes with human orthology are assessed. Then, to validate the binding of the 682 

identified genomic regions by the TFs, we performed a region enrichment analysis across 683 

experimentally available TF bound regions from ChiP-seq in cell lines from the ENCODE 684 

consortium (1,394 TF binding site tracks). Finally, we converted identified enhancer regions 685 

to cow coordinates and searched for regions of open-chromatin using data from a public 686 

available studies in cow tissues. 687 

  688 
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Differential connectivity 689 

In order to explore differentially connected genes between high and low FE, two 690 

networks were created, one for each condition, using the same methodology described before. 691 

Then, the number of connections of each gene in each condition was computed and scaled so 692 

that connectivity varied from 0 to 1, making possible to compare the same gene in the two 693 

networks. The connectivity in high RFI group was subtracted from the connectivity in low 694 

RFI group and results deviating ±1.96 standard deviation from the mean were considered 695 

significant (P<0.05). 696 

 697 

Functional Enrichment 698 

Functional enrichment analysis was performed on the online platform GOrilla (Gene 699 

Ontology enRIchment anaLysis and visuaLizAtion tool, http://cbl-gorilla.cs.technion.ac.il/), 700 

using all genes that passed FPKM filter as background, hypergeometric test and multiple test 701 

correction (FDR - false discovery rate). The human database was used to take advantage of a 702 

more comprehensive knowledge regarding gene functions. GO terms were considered 703 

significant when Padj<0.05. For genes in co-expression networks, visualized using Cytoscape 704 

(Shannon et al, 2003), the functional enrichment was performed with BiNGO plug-in (Maere 705 

et al, 2005) using the same background genes and statistical test. 706 
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Supporting data 1063 
 1064 
S1 Supporting Information. Information of reads mapping to bovine genome (UMD3.1) 1065 
per sample. 1066 
 1067 
S2 Supporting Information. Scatter plots showing differentially expressed genes 1068 
between high and low feed efficiency (FE) from adrenal gland, hypothalamus, liver, 1069 
muscle and pituitary. Dots represent the mean expression for a gene in high FE subtracted 1070 
from the mean expression of the same gene in low FE (M) by the average expression value in 1071 
both groups (A). Pink dots represent significant genes (P<0.001). 1072 
 1073 
S3 Supporting Information. Differentially expressed genes between high and low feed 1074 
efficiency in adrenal gland (A), hypothalamus (B), liver (C), muscle (D) and pituitary 1075 
(E). 1076 
 1077 
S4 Supporting Information. Functional enrichment of the 248 genes down-regulated in 1078 
high feed efficiency considering the five tissues (adrenal gland, hypothalamus, liver, 1079 
muscle and pituitary). Colour intensity increase with the significance of the term; white 1080 
represents P>10-3 and the darkest orange represents P<10-9.   1081 
 1082 
S5 Supporting Information. Genes selected for network construction for being 1083 
differentially expressed between high and low feed efficiency (A), harbouring SNPs 1084 
previourly associated with feed efficiency (B), tissue specific (C), coding proteins 1085 
secreted in plasma (D) and key regulators (E). 1086 
 1087 
S6 Supporting Information. Functional enrichment for the 135 genes coding proteins 1088 
secreted in plasma which the tissue of maximum expression is liver. Colour intensity 1089 
increase with the significance of the term; white represents P>10-3 and the darkest orange 1090 
represents P<10-9.   1091 
 1092 
S7 Supporting Information. Genes included in co-expression analysis. 1093 
 1094 
S8 Supporting Information. Top five key regulator genes network and enrichment. A) 1095 
Network of genes EPC1, NR2F6, MED21, ENSBTAG00000031687 and CTBP1 and their 1096 
first neighbours. Nodes with diamond shape correspond to secreted proteins coding genes 1097 
and triangles correspond to key regulators; all the other genes are represented by ellipses. 1098 
Nodes with black borders are differentially expressed between high and low feed efficiency. 1099 
Colours are relative to the tissue of maximum expression: blue represent liver, red represent 1100 
muscle, yellow represent pituitary, green represent hypothalamus and orange represent 1101 
adrenal gland. The size of the nodules is relative to the normalized mean expression values in 1102 
all samples. Only correlations above 0.9 and bellow -0.9 and its respective genes are shown 1103 
in this figure. B) Functional enrichment of the 345 genes in the network (A). Colour 1104 
intensity increase with the significance of the term; white represents P>5x10-3.   1105 
 1106 
S9 Supporting Information. TGFB1 network and enrichment. A) Network of TGFB1 1107 
gene and its first neighbours. Nodes with diamond shape correspond to secreted proteins 1108 
coding genes and triangles correspond to key regulators; all the other genes are represented 1109 
by ellipses. Nodes with black borders are differentially expressed between high and low feed 1110 
efficiency. Colours are relative to the tissue of maximum expression: blue represent liver, red 1111 
represent muscle, yellow represent pituitary, green represent hypothalamus and orange 1112 
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represent adrenal gland. The size of the nodules is relative to the normalized mean expression 1113 
values in all samples. Only correlations above 0.9 and bellow -0.9 and its respective genes are 1114 
shown in this figure. B) Functional enrichment of the 157 genes in the network (A). 1115 
Colour intensity increase with the significance of the term; white represents P>5x10-3.   1116 
 1117 
S10 Supporting Information. FGF21 network and enrichment. A) Network of FGF21 1118 
gene and its first neighbours. Nodes with diamond shape correspond to secreted proteins 1119 
coding genes and triangles correspond to key regulators; all the other genes are represented 1120 
by ellipses. Nodes with black borders are differentially expressed between high and low feed 1121 
efficiency. Colours are relative to the tissue of maximum expression: blue represent liver, red 1122 
represent muscle, yellow represent pituitary, green represent hypothalamus and orange 1123 
represent adrenal gland. The size of the nodules is relative to the normalized mean expression 1124 
values in all samples. Only correlations above 0.9 and bellow -0.9 and its respective genes are 1125 
shown in this figure. B) Functional enrichment of the 98 genes in the network (A). Colour 1126 
intensity increase with the significance of the term; white represents P>5x10-3.   1127 
 1128 
S11 Supporting Information. NR2F6 i-cis Target results. 1129 
 1130 
S12 Supporting Information. NR2F6 predicted regions binding hg19. 1131 
 1132 
S13 Supporting Information. NR2F6 predcited regions bindg bosTau. 1133 
 1134 
S14 Supporting Information. TGBF1 i-cis Target results. 1135 
 1136 
S15 Supporting Information. MYOD predicted transcription factors binding sites in 1137 
hg19. 1138 
 1139 
S16 Supporting Information. MYOD predicted transcription factors binding sites in 1140 
mm8. 1141 
 1142 
S17 Supporting Information. MYOD predicted transcription factors binding sites in 1143 
mm9. 1144 
 1145 
S18 Supporting Information. MYOD predicted transcription factors binding sites in 1146 
bosTau6. 1147 
 1148 
S19 Supporting Information. Differentially connected genes between high and low feed 1149 
efficiency. 1150 
 1151 
S20 Supporting Information. Functional enrichment for the 87 differentially co-1152 
expressed genes between high and low feed efficiency. Colour intensity increase with the 1153 
significance of the term; white represents P>10-3 and the darkest orange represents P<10-9.   1154 
 1155 
 1156 
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