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ABSTRACT  

A cell’s phenotype is the set of observable characteristics resulting from the interaction of the genotype 

with the surrounding environment, determining cell behaviour. Deciphering genotype-phenotype 

relationships has been crucial to understand normal and disease biology. Analysis of molecular pathways 

has provided an invaluable tool to such understanding; however, it has typically lacked a component 

describing the physical context, which is a key determinant of phenotype.  

In this study, we present a novel modelling framework that enables to study the link between genotype, 

signalling networks and cell behaviour in a 3D physical environment. To achieve this we bring together 

Agent Based Modelling, a powerful computational modelling technique, and gene networks. This 

combination allows biological hypotheses to be tested in a controlled stepwise fashion, and it lends itself 

naturally to model a heterogeneous population of cells acting and evolving in a dynamic microenvironment, 

which is needed to predict the evolution of complex multi-cellular dynamics. Importantly, this  enables 

modelling co-occurring intrinsic perturbations, such as mutations, and extrinsic perturbations, such as 

nutrients availability, and their interactions.  

Using cancer as a model system, we illustrate the how this framework delivers a unique opportunity to 

identify determinants of single-cell behaviour, while uncovering emerging properties of multi-cellular 

growth.  

 

Contact: Francesca M. Buffa, University of Oxford, francesca.buffa@imm.ox.ac.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/360446doi: bioRxiv preprint 

https://doi.org/10.1101/360446


 

 

Introduction  

A comprehensive understanding of living organisms, including their development and the occurrence and 

progression of disease, requires systematic efforts into deciphering the link between the multitude of 

different genotypes and phenotypes, that is the set of observable characteristics resulting from the 

interaction of the genotype with the surrounding environment, determining cell morphology and behaviour.  

 

Efforts to characterise such relationships have proliferated in recent years, thanks in part to the increased 

capability to efficiently collect the necessary data in an ever higher number of organisms and individuals. 

Such efforts have spanned from cataloguing genetic variation in thousands of individuals [see e.g. (1)] and 

searching for genotypes-phenotypes associations, to silencing or inactivating thousands of genes in 

laboratory high-throughput screens to study their function [see e.g. (2)]. However, efficient instruments to 

achieve a comprehensive understanding of the causal nexus between a given genotype and the observed 

phenotype are still lacking, and this is particularly true when such a nexus is complex and multifactorial (3-

5). One promising means to achieve such an understanding has been the characterisation and modelling 

of biological pathways (5).  

 

Several of the key biological pathways regulating cellular function are increasingly understood, along with 

their dysregulation in multiple diseases (6-9). However, much less is known about how these pathways 

interact and determine the behaviour of individual cells and multi-cellular systems. This has fuelled 

methodological development of efficient representations of such interactions in order to facilitate the study 

of the underlying potential mechanisms. A number of different approaches have been proposed, including 

modelling by differential equations, and network modelling methods, such as petri nets and logical 

networks (10-12). Such methods have produced encouraging results (13-16), but it is becoming 

increasingly evident that modelling molecular pathways and signalling, or gene, networks in isolation, 

dissociated from the cellular context, does not reflect the crucial impact of the microenvironment in 

determining the phenotype (17-19). Additionally, as single-cell sequencing and imaging technologies are 

providing new in-depth information about the genotype and phenotype of single, or small groups of, cells 

(20), modelling approaches that enable consideration of cells both as independent entities and as a 

population, are becoming increasingly attractive. 

 

To address the above needs, we have developed a novel computational framework which combines 

Agent-Based Modelling (ABM) and gene network modelling. A detailed description of this method is 

provided in the Methods section. Briefly, microC addresses the fundamental challenge of integrating 

genotype with phenotype data, while accounting for the effect of the physical microenvironment, a key 

determinant of the phenotype. The most innovative aspect of this framework is that it enables to build 

models of the genotype-phenotype relationship in a 3D spatially-aware microenvironment, including 

aspects such as signalling to and from the microenvironment, and signalling between cells. Importantly, the 

collective behaviour and evolution of cellular populations emerges from the properties and behaviour of 

individual cells, which in turn are governed by the underling dynamics of specific signalling networks, and 

the interactions with the surrounding cells and microenvironment. This permits prediction not only of the 
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behaviour of individual cells, and the entire population of cells, but also study of the possible causative 

mechanisms of such behaviour.  

 

In this paper, we introduce the microC framework and we illustrate the range of potential applications 

that it enables. Specifically, we perform perturbation experiments of increasing complexity, in which we 

monitor over time the three-dimensional growth and evolution of populations of pre-malignant and cancer 

cells. We illustrate how microC can be used to gradually increase the genetic and microenvironmental 

heterogeneity to monitor clonal competition, signalling to and from the microenvironment, and cell-cell 

interactions.   

Methods: the microC framework 

Rationale for the framework 

Previous studies have modelled cells as computational agents and started to consider replacing ABM 

conditional statements, that drive cellular behaviour, with gene networks, that can represent more 

realistically the dynamical features of the intra-cellular system. In particular, small scale predefined logical 

networks have been used to model the cell-cycle arrest in a model of avascular spheroid growth (21), and 

to study cell differentiation in a hyper-sensitivity reaction model (22). However, these networks were 

considered as static entities, providing simple rules and not fully embedded in the ABM simulation. In 

another example, cells have been equipped with relatively more complex decision making models, 

represented as differential equation (23), but this approach was also not fully embedded in the ABM 

modelling, and is further limited by the requirement of prior knowledge for the many kinetic parameters to 

represent pathways accurately.  

microC fully exploits ABM technology. Specifically, the cellular behaviour is determined by a gene network, 

encapsulated within the cell, and by the interactions of the gene network with the surrounding 

microenvironment  (Figure 1). Both the cells and the inner networks are simulated using ABM. As a result, 

cellular behaviour may be studied both at the single-cell level, decoding the link between a cell genotype 

and its phenotypic realization in a given contextual environment, but also at the more global level, allowing 

the search for emerging properties of the multi-cellular system. 
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Figure 1. Conceptual representation of microC environment and simulation components.  

The microC framework enables multiscale simulations linking genotype to phenotype, via gene networks, 

by fully exploiting agent-based modelling. The technical details on the framework and its implementation 

are provided in the Methods. Here, we illustrate a study where four setups of increasing complexity are 

considered, evaluating the impact of new elements in a controlled fashion.  

A. We simulate the effect of introducing gene network perturbations (activating, +, or inactivating, -, 

mutations) in single clones  

B. We grow mono-clonal or multi-clonal populations of cells in a 3D environment (spheres visually 

represent single cells) 

C. We study competition between different clones grown together (colours represent different mutation 

profiles; the growth curve demonstrates exponential growth of aggressive clones; 2D simulation show 

growth patterns under competition) 

D. We enable interaction with the surrounding microenvironment, e.g. oxygen concentration variation that 

results to necrotic cells  

E. We enable signalling between cells (represented here as tiny black spheres produced by activated cells; 

junctions represent receptors). 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/360446doi: bioRxiv preprint 

https://doi.org/10.1101/360446


 

 

Key elements of the framework 

Cells as computational agents 

Cells are represented in microC as computational agents with a physical dimension. Cells may interact with 

the microenvironment by consuming oxygen, and with other cells, via diffusible substances, such as 

cytokines, chemokines, growth factors, and hormones, whose production is defined by the network 

dynamics. This can be customised by the user. Furthermore, cells are also meta-agents, namely each cell 

is itself populated by a community of computational agents, the genes and molecules, which act and 

interact as a network inside the cell agent. 

Cell mutation profiles 

The clonal types in a simulation are defined by the user via mutation profiles. A mutation profile defines a 

(sub)population of cells where specific gene mutations are present. This mutations are introduced as 

constraints on the gene status, such as a constantly active/inactive status (activating/inactivating 

mutations) or a change in function (e.g. amplified or conditional behaviour). There is no limitation with 

respect to the number of mutation profiles or the number of mutated genes for each profile. In the extreme 

case, each cell can have a distinct mutation profile, which regulates the mutation level in each gene of the 

encapsulated network. 

Subcellular gene networks 

Networks are encapsulated within cell agents, and drive their decisions. Although any type of 

network model may be used, our current implementation exploits logical Boolean networks. The latter have 

been shown to preserve key dynamical characteristics of the network (24) and they can be designed 

quickly, without the need for accurate estimates for a large number of parameters. Briefly, the nodes of 

such logical networks can have only two states (active or inactive). Nodes may be connected with other 

nodes via links. All nodes are assigned logical rules that determine the current and future state of the node. 

We use asynchronous network update, first described by Thomas (25), and widely adopted since in 

Boolean gene networks. We distinguish between four types of nodes: genes, receptors (input), output 

nodes, and fate-decision nodes. Genes have both incoming and outgoing links, receptors have only 

outgoing links, and output and fate-decision nodes have only incoming links. Cell-fate decision nodes have 

a crucial role in the   simulations as they trigger the actions which determine cell behaviour. 

Cell status and cell-fate decision rules 

An activated cell-fate decision node is associated with a specific action, our current implementation 

includes the following actions: 

 Apoptosis. The cell dies and is removed from the simulation after a specified time.  

 Necrosis. The cells dies; it remains in the simulation and occupies space, but it does not otherwise 

actively participate. 
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 Growth Arrest. The subcellular network simulation for a cell in growth arrest is “paused” for a given 

period of time. Furthermore, the cell interacts with the microenvironment at a reduced rate, for 

example the consumption rate drops to half of the normal rate. 

 Proliferation. A copy of the cell is introduced into a neighbouring slot; if all neighbouring slots are 

occupied, the cell enters the growth arrest state. (This may be modified in future versions of 

microC in order to allow for different degrees of cellular constraints: from loosely bound cell 

masses to tightly bound spheroids.) 

 No decision. The cell takes no action; the simulation continues until a decision is made. 

Cell-fate decision nodes are considered to be terminal, namely once they are triggered the network 

simulation of the gene network stops. An exception to this rule is growth arrest, in which case the network 

simulation is resumed at a later time point.  

microC spatially-aware environment and diffusion rules 

One of the most novel aspects of microC is that cell-microenvironment and cell-cell interactions are 

modelled, via exchange of diffusible substances between cells or between a cell and its microenvironment. 

Concentrations of the diffusible substances are transferred through step functions and may activate 

receptor nodes of the network. Those receptors may in turn trigger an autocrine or paracrine interaction, 

influencing cells towards specific cell-fate decisions, or the production of certain substances defined by 

output nodes. 

 

Cell-microenvironment interactions are associated with a list of environmental resources (for example 

oxygen and growth factors), whereas cell-cell interactions may be the result of user-defined substances, 

such as cytokines, chemokines, growth factors, and hormones. Diffusible substances are simulated in 

microC by the diffusion – reaction equation:  

 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢∇

2𝑢 + 𝑆𝑢     (Equation 1) 

 

where, u is the concentration of the diffusible substance, Du is the diffusion coefficient of substance u, and 

Su are sources or sinks of the diffusible substance. The equation is solved numerically using an explicit 

FTCS (Forward Time Central Space) scheme, with Dirichlet boundary conditions, on a 2D or 3D 

rectangular lattice. The grid cell size may be adjusted to include 1 (1x1x1) or 27 (3x3x3) cells using the 

“grid sparsity” parameter.  

Cells are modelled as sinks that consume oxygen at a rate proportional to the local oxygen 

concentration. In particular, oxygen consumption is modelled through the equation: 

 

𝑆𝑂2 = 𝑅0.
𝐶−𝐶𝑁,𝑓

𝐶𝑂2,𝑜𝑝𝑡−𝐶𝑁,𝑓
      (Equation 2) 

 

where R0 is the initial consumption rate, C is the concentration of oxygen in the specific grid cell, CN,f is a 

threshold value that determines the lowest possible oxygen concentration (currently fixed at 80% of the 
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oxygen activation threshold), and finally CO2,opt is an optimal oxygen concentration, currently set to 

0.28mM. The latter two parameters have predetermined values in microC, whereas the initial consumption 

rate (R0) and the oxygen activation threshold may be set by the user. The latter is a precondition that 

triggers the necrotic cell-fate decisions. We set the necrosis threshold at 0.02mM (21). Cells in growth 

arrest, consume oxygen at half the initial rate, whereas necrotic cells do not consume oxygen.  Parameters 

such as the diffusion coefficient and the initial/boundary conditions of oxygen concentration can be 

adjusted as required by the specific application. 

Additionally, we are assuming a conditional consumption and production rate of diffusible substances 

that determine cell-cell interaction. In case, the corresponding receptor or output node is activated, we 

assume a consumption or production of constant rate, that has been defined by the user (see 

Supplementary Protocol). 

Geometric measures 

We have used sphericity to assess the roundness of spheroids: 

𝜓 =
𝜋
1
3(6𝑉)

2
3

𝐴
       (3) 

where ψ is sphericity, V is the volume of the object and A its surface area.  

The radius of a spheroid was determined at each stage of growth as the average distance between the 

coordinates of the initial centre point of the simulation, and the outermost cells of the growing spheroids. 

Cloud Implementation  

The models presented in this study are accessible via a web interface (https://www.microc.org). This 

interface also enables modification of the models and input parameters to conduct experiments other than 

those discussed in this paper. We have prepared a detailed protocol (Supplementary Protocol) that 

explains how to submit experiments and how to interpret the results. Briefly, the interface allows a user to 

upload input parameters to set the model (e.g. mutation profiles for the cell populations, inner-cell gene 

networks, specific values for diffusion, and other kinetic and simulation parameters), it then enables to 

monitor experimental results in time, and to perform statistical inference on the results. Experiments are 

specified via a web interface (see Supplementary Protocol), where the user may set a number of numerical 

parameters via sliders. Specifications of the gene network, mutations, and other parameters can also be 

uploaded from the same page. The gene network can be specified as a GXL, GraphML or GINML file. GXL 

is a widely-used XML-based standard exchange format for sharing data; it is a flexible data model that can 

be used for object-relational data and a wide variety of graphs (26). GraphML is another XML-based, 

widely-used, data sharing format for graphs (27). GINML is an extension of GXL and can be produced for 

example by the logical model editor GINsim (14). The web server converts any of the above formats to the 

GraphML format, and then submits the experiment as a set of jobs to the Advanced Research Computing 

Cloud (University of Oxford). Experiments are then executed exploiting the NetLogo framework (28). Each 

node runs 16 repetitions of the experiment on each of its CPU cores. When all the simulations runs have 

finished, a HTML file containing both the data and JavaScript interactive data visualisations is assembled 

and a link to the page is sent by email to the user. The URL to the results is automatically generated and is 
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private to the user who can choose to share it. Of note, by implementing microC as a cloud service with a 

web interface for both submitting experiments and analysing the results we have automated a great deal of 

technical and tedious work. Files are automatically converted to the necessary formats, pre-defined scripts 

are used to run the experiments on the cloud, and JavaScript on the results page provides interactive 

visualisations of the data, data analysis and animations of the cellular model and the gene networks.  

Results 

In-silico growth of a heterogeneous population of cells communicating within a three-

dimensional microenvironment  

To illustrate microC, we report six different ways in which it can be applied  (Figure 1). In each case, we 

illustrate the modelling; we report the model predictions and their agreement or disagreement with results 

from wet-lab studies; and we conduct a sensitivity analysis assessing the impact of parameter choice on 

those predictions. We chose the example of cancer, a complex disease where methods to study the link 

between genotype and phenotype are particularly and urgently needed (4). For the simulations, we 

focused on small cancer spheroids, and on pathways underlying the main hallmarks of cancer, namely 

sustained proliferative signals, resistance to cell death and evasion of growth suppressors (9).  

As noted above, the proposed framewor enables simulations of individual cells or group of cells, where 

each cell contains an inner gene network that simulates the cascade of signalling events occurring in each 

cell upon stimulation, and determines the cell behaviour (Figure 1). First, we describe how we evaluated 

the ability of microC to import the required gene networks.  We then confirm the faithfulness of our ABM 

encoding of these networks, and show that we can reproduce the expected network behaviour. We then 

scale up the simulation by increasing the genetic and microenvironmental heterogeneity in a stepwise 

manner. Specifically, we consider a population of homogenous pre-cancerous cells growing in a 3D 

environment; then, we gradually introduce mutations in onco- and tumour suppressor genes (Figure 1A) to 

study how they affect the multi-cellular growth (Figure 1B). Subsequently, we allow the resulting clones 

(carrying different single or multiple mutations) to grow in competition (Figure 1C), and study the 

parameters affecting clonal evolution. Finally, we investigate the additional effects of introducing extrinsic 

perturbations such as lack of oxygen and presence of growth factors, and enabling cell-microenvironment 

(Figure 1D) and cell-cell interactions (Figure 1E). 

1. Evaluation of the dynamics properties of the inner-cell gene networks 

Whilst there is a large number of methods, from traditional statistics to emerging deep-learning 

approaches, which permit accurate prediction of the behaviour of a population of cells given some initial 

inputs; such methods often constitute a black-box when it comes to interpreting mechanistically the results. 

They emphasize the predictive ability of the model, with respect to the study of the possible causative 

mechanisms of the predicted behaviour. In this first example, we show how for each single cell microC 

enables monitoring of the paths which have followed to arrive at a given prediction. In particular, we show 

how microC enables understanding of the dynamical properties of the gene networks within each cell. 
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We consider a previously developed large mitogen-activated protein kinase (MAPK) network (29). This 

is a Boolean network that has been assembled in a knowledge driven, bottom-up, manner by considering 

gene-gene relations (e.g. activation/repression) as reported in the published literature. As such, this 

network it is not specific to a given context, cell line or genotype; however, it is likely to be somewhat 

biased towards signalling and interactions observed in cancer cell lines, as the pathways modelled are key 

to the hallmarks of cancer. First, we verify that microC can correctly import the gene network, reformat it, 

recodify it, and execute it using our ABM framework. We then ask how intrinsic perturbations, namely 

mutations commonly occurring in cancer cells, affect the functioning of the network.  

 

To this end, we compare the gene activation profiles across populations of cells carrying different 

mutations and we determine the differences in the resulting fate of the cell, focusing on the four possible 

decisions of proliferation, growth arrest and apoptosis. This illustrates the ability of microC to simulate a 

logical network in a ABM framework, and to faithfully reproduce the stable configurations (or stable states) 

which were previously reported for this network in the published stable-state analysis (Figure 2A and 

Figure S1A). However, in addition to the published results, and thanks to the microC ABM framework, we 

can evaluate the probability of occurrence and temporal profile for cell-fate decisions by performing 

hundreds of replicated simulations (Figures 2B, Figure S1B, S2). This shows that not all stable-states are 

equally likely to occur, and it reveals transient states that would remain undetected in a standard stable 

state analysis. For example, we find that there is a contained but measurable (7%) probability of 

proliferation for cells with a single loss-of-function mutation in p53 (p53-) (Figure 2B). Often transient states 

have been dismissed as non-biologically relevant. However, if and when they are, or not, is neither a trivial 

nor fully answered question. Thus, to detect such states and their potential impact on the different fate 

decisions, is important in order to start to address their relevance.  
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Figure 2. microC simulation of 3D tumour multi-cellular spheroids reveals growth advantage 

provided by co-occurring mutations.  
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A. Activation status of genes in the MAPK network for the stable states. The states are labelled with the 

appropriate colour (Green: Proliferation, Red: Apoptosis, Yellow: Growth Arrest) depending on the cell-fate 

node activated. Cells with no specific decision, are not labelled with any colour.  

B. Detailed activation status for the clone with p53 loss-of-function mutation (p53-). Columns represent 

genes and rows cells (initial population: 100 cells, repeats: 100, length of simulation: 5000 steps). Pie 

charts represent probability profiles for cell-fate decisions for each clone.  

C. Typical examples of spheroids grown in a 3D environment, and MAPK network for two of the clones (left 

for WT cells and right for EGFR+p53- cells). Circle represent the cell boundary, inside network nodes 

represent gene products (colour represents activation status, red is inactive and green active); edges carry 

the information on the gene-gene interaction (here green is activation and red is inhibition).  

D. Clonal growth curves (initial population: 100 cells, repeats: 100, length of simulation: 2000 steps).  

E. Sphericity values of the 100 spheroids of similar size (< 500 cells). High values of sphericity correspond 

to more spherical shapes. 

 

 

 

 

2. Effect of mutations on gene network dynamics and multi-cellular growth 

The range of abilities, or hallmarks, that a cell needs to acquire in order to progress to become a cancer 

cell have been extensively described, and the role of somatic mutations in such processes is well 

documented (9). However, the chain of events from a single mutation occurring in a normal cell to the 

acquisition of such hallmarks, and then to the occurrence and progression of cancer, is extremely complex 

and not fully understood. Here, we used microC to begin to dissect such questions by asking how the 

occurrence of single and multiple mutations might impact on the behaviour of the inner signalling networks, 

and how this results in different patterns of single-cell and multi-cellular growth.  

 

We consider the growth of single-clone populations with loss-of-function mutations in the well-known 

tumour suppressor genes p53 and PTEN, and the activation of the known cancer driver EGFR. We 

observe considerable differences in the 3D growth patterns of cell types carrying different mutations, 

including WT, single mutations carrying clones (EGFR activating mutation, EGFR+; p53- or PTEN- loss-of-

function mutations), and clones with co-occurring mutations in two or three of these genes. Importantly, co-

occurring mutations show a significantly more aggressive phenotype with faster growth (Figure 2C) with 

respect to cases in which single mutations occur  (Figure 2D, and Figure S3A). This is in agreement with 

experimental data showing that co-existing alterations in these specific genes in pre-malignant breast 

cancer cell lines significantly increases growth with respect to the single alterations in EGFR, P53 and 

PTEN genes (30, 31). Furthermore, we confirm that the presence of active growth factor signalling is 

determinant for rapid growth.  Specifically, all EGFR+ clones (EGFR+, EGFR+PTEN-, EGFR+p53-, 

EGFR+p53-PTEN-) exhibit initial exponential growth while clones with no activated EGFR signalling grew 

at a much slower rate (Figure 2C).  
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 We then compare the geometrical properties of spheroids growth in a 3D environment. This shows 

that spheroids consisting of the most aggressive clones (higher proliferations rates), namely EGFR+p53- 

and EGFR+p53-PTEN-, grow in a much more symmetrical manner and have higher sphericity values 

(Figure 2E, Figure S8), a measure of how near an object is to a perfect sphere (see Methods). Although 

there is not much published evidence to confirm this prediction, as spheroids are typically grown for just 

one cell line (one genotype) at any given time, and morphology is either not assessed or not reported, this 

is an extremely intriguing result. It highlights that simple physical space-constraint rules can dictate 

profound morphological differences between the growth of multi-cellular spheroids, hence tumours; and it 

reveals how this is linked with the cell genotype. Importantly, it also highlights how to make the correct 

assumptions about physical constraints when modelling cellular growth is paramount in order to predict the 

correct behaviour. In this simulation, we assume that proliferating cells can randomly occupy any of the 

free neighbouring slots, and, in the case that no slots are available, proliferation is postponed until a free 

slot becomes available. Whilst this is a reasonable approximation in the case of small spheroids grown in 

suspension, it needs to be evaluated further in, and it may not be suitable for, cases of more complex 

organoids cultures or simulations of tumours in-vivo.  
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Figure 3. Paths of clonal evolution: the order in which mutations occur affects spheroids’ growth.  

A. Experimental setup. The experiments start with 50 cells of the same clone (Clone 1, shown as grey 

spheres). At time point t = 750, we introduce a mutation to one cell (Clone 2, shown as red spheres), and 

at time point t = 1500 we introduce an additional mutation to a cell of type Clone 2 (that we call Clone 3, 

shown as blue spheres). We extend the experiment up to 4000 simulation steps.  

B. There are six potential combinations in which the three mutations (p53-, PTEN-, EGFR+) can occur.  

C. The total and clonal subpopulations are shown in the stacked bar chart. Bars are averages of 100 

repeats and error bars represent the standard error.  
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3. Scrutiny of clonal evolution paths: significance of the order at which mutations occurs  

In the previous examples, we considered the simultaneous occurrence of multiple mutations. This reflects 

reasonably well experimental conditions where mutations are artificially introduced, but it does not 

represent clonal evolution in real tumours. Scrutiny of clonal evolution paths is an emerging field of 

research, however this has typically been done without taking into account the signalling and context in 

which mutations occur. In this example, we ask how the order in which mutations occur affects both 

individual cells and the overall multi-cellular growth.  

 

Focusing on the aggressive EGFR+p53-PTEN- clone (Figure 3A), we examine the six possible evolution 

paths for this clone (Figure 3A-B). This revealed that the order in which mutations occur has a significant 

effect on a spheroid’s growth (Figure 3C). Specifically, the time of occurrence of the EGFR+ mutation was 

crucial: clones that acquire this mutation before the loss of a tumour suppressor resulted in larger 

spheroids, followed by those clones that acquire the EGFR+ mutation, and finally those that acquire the 

EGFR+ mutation (Figure 3C).  

 

These results confirm first that cancer can occur from multiple evolutionary paths, but they also suggest 

that a proliferation stimulus, namely EGFR activation, followed by the loss of a tumour suppressor, p53 

loss-of-function, and then PTEN loss-of-function, results in the most rapid evolution. This appears to 

support the preponderance of experimental data indicating that p53 mutations is a relatively late, rather 

than cancer initiating, event in a number of cancers (see e.g. (32)). However, the evidence on this point is 

contrasting, and it is well known that p53 is affected by multiple mutations, with different functional 

implications (for a review see e.g. (33)), so further studies are needed to include such differences. 

Importantly, and differently from other approaches to study clonal evolution, microC enables exploration of 

how differences in growth rates between cells carrying different mutations might result from the underlying 

characteristics of the network (Figure 1, 2 and S4). For example, EGFR activation directly affects the status 

of a large group of genes including ELK1, CREB, MYC and RAS that promote proliferation and block 

apoptosis (Figure S5), so to acquire this mutation early would be very advantageous.  

 

Finally, growth rates depend also on dynamical network parameters, such as the speed of the specific 

intercellular processes. We performed a thorough sensitivity analysis by changing the value of the 

parameters, starting from values suggested in the literature and expanding the range far from this initial 

choice (see Methods and Supplementary Material, and Figure S6). This identified the temporal decision 

window as one of the critical parameters, which is tightly linked with the temporal ratio between intracellular 

to intercellular processes. This analysis shows that changes in this parameter can significantly affect the 

resulting growth curves, and thus growth rate, and the effect is different when different mutations are 

considered. In our case, a value of 100 was the optimal choice in order to preserve dynamical behaviour of 

the model, while minimizing computational intensity of the simulations (Figure S6).  

  

4. Emerging competition patterns impact the growth of multi-clonal cell populations 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/360446doi: bioRxiv preprint 

https://doi.org/10.1101/360446


 

 

Next, we asked how competition between different clones, grown together in a 3D multi-cellular spheroid, 

affects the 3D growth dynamics. To this end, we introduce multiple clones in the same environment (Figure 

4A and 4B), and compare the growth curves of the resulting spheroids (Figure 4C), and their final size 

(Figure 4D), with those observed when the same clones were grown in isolation, that is in single-clone 

spheroids.  

 

In the multi-clonal simulations, we reveal that clones with aggressive phenotypes systematically take 

over the free surface area of the spheroids, thus restricting the rest of the clones in the central parts of the 

spheroid. This is particularly evident in the 2D geometry (Figure 4A). This is a striking finding and it implies 

that the population of the aggressive phenotypes not only increases rapidly against the rest of the clones 

due to faster growth, but it also creates a physical barrier to for any further proliferation of the inner, slower 

growing, population.  

 

This effect significantly affects both the growth curves (Figure 4C) and the final population fractions 

(Figure 4D) achieved by the same clones grown in competition and in isolation. The most aggressive 

clones (EGFR+p53- and EGFR+p53-PTEN-) increase their presence by 16.7% (EGFR+p53-, from 31.1% 

of total population in isolation to a 36.3% in competition), and by 27.3% (EGFR+p53-PTEN-, from 33.0% of 

total population in isolation to a 42.0% in competition). The rest of the clonal populations decrease by 28-

54%. The population of cells that decrease the most (by 54.5%) are the EGFR+ clones.  

 

Interestingly, these findings can be examined in light of the proliferation rates and the dynamical 

properties of the different clones (Figure 2B). In particular, EGFR+p53- and EGFR+p53-PTEN- clones, are 

the only ones characterized by a single possible outcome for the cell fate decision, which is proliferation. 

This is a strong advantage when competing with clones that are characterized by multiple decision 

outcomes. For example, EGFR+ clones have a higher probability of undergoing apoptosis or growth arrest, 

which constitutes a strong disadvantage under direct competition since apoptotic events free space that 

are likely to be rapidly occupied by more aggressive clones. 

 

5. Interaction between the genotypes and the physical microenvironment affects multi-

cellular growth and clonal selection 

Although the mechanisms are not yet fully elucidated, increasing evidence points to a key role of the 

microenvironment in clonal selection, hence multi-cellular growth of heterogeneous populations. To 

illustrate how microC can address this, we focused on hypoxia simulations as this is one of the major 

microenvironmental differences between cancer and normal tissue (34-37). Specifically, we aim to study 

the formation of necrotic cores in larger spheroids (Figure 5A-B), and their growth under artificially uniform 

well-oxygenated conditions (our Control configuration) with respect to growth when oxygen consumption 

and diffusion are enabled (we refer to this as the Hypoxia configuration) (see also Methods section).  
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We introduce the following into our spheroid model: a) we define environmental agents that can 

simulate the diffusion of oxygen in the microenvironment, b) we upload a new extended network which 

includes a hypoxia responsive module (Figure S5), and c) a new cell fate decision, necrosis, to be 

triggered as response to extremely low oxygen concentrations (0.02mM O2,) (see below and Methods). We 

then simulate the modified model in our control and hypoxia configurations. Interestingly, we observe that 

EGFR+ clones are the only ones with the potential to outgrow a critical spheroid size that triggers necrosis. 

For a configuration setup with initial consumption rate 0.005mM.s-1 and diffusion coefficient 10-9 m2.s, the 

necrotic core that was formed ranged between 20 – 360 cells (Figure 5C) in agreement with previous 

reports (38). Accordingly, spheroids with necrotic cores had on average 4.8% - 23.6% less living cells than 

spheroids without necrotic cores. 

 

We perform a sensitivity analysis on the parameters involved in the diffusion-reaction equation 

(Equation 1), namely we change the oxygen consumption rate and the diffusion coefficient to one of a 

broad range of values (Figure S10). We found that the consumption rate was the only parameter which, 

when changed, significantly affects oxygen concentration (Figure S10A), which may impact spheroid 

growth indirectly by triggering necrosis. This prediction is in agreement with previous evidence showing 

oxygen consumption to be the most critical kinetic parameter (38).  

 

We then study the combined effect of hypoxia (as defined above), and clonal competition (see section 

3). Namely, we introduce all eight clones in the simulation environment and compared growth in isolation 

and competition, under either hypoxic and control conditions (Figure S9B). Overall, our simulations showed 

that spheroids where hypoxia was enabled had reduced clonal diversity (Figure 5D). In particular, we 

noticed that the EGFR+p53- and EGFR+p53-PTEN- clones increased their presence in the total 

population.  This was additional to the initial enrichment of this population due to competition (white bar 

series in Figure 5D). On the contrary, the rest of the clones decreased their presence in the spheroids by 

an average of 4 - 5%. This selection pressure, and consequent reduction of clonal diversity due to hypoxia 

can be explained by the spatial distribution of clones (Figure 4A). Less aggressive clones are more likely to 

be segregated to the central part of the spheroids, that eventually will become necrotic under hypoxia. Of 

note, in this example we have not introduced possible mutations which might occur as a result of hypoxia, 

which could impact on the observed clonal diversity.  
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Figure 4. Growth of multi-clonal spheroids is affected by, and in turns affects, the competition 

between the clones.  

A-B. Cells with different mutation profiles (colours corresponds throughout) are grown within the same 

virtual microenvironment. At the end of the simulation each cell type shows a distinct growth pattern. Here 

patterns are shown in 2D and 3D.  

C. Growth curves of clones under competition in 3D simulations.  

D. Relative clonal population (over total population of cells) under isolation and competition in 3D 

simulations. Results are averages of 100 repeats of an initial population of 100 cells. Under competition the 

initial population was shared in equal parts among the eight clones. Error bars in bar charts represent 

standard error. * indicates Kruskal–Wallis p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  
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6. Impact of cell-cell signalling on multi-cellular growth in a heterogeneous 

microenvironment  

Our final example asks how accounting for cell-cell interaction affects the growth of spheroids. This 

experiment highlights one of the most innovative aspects of microC. As cell signalling and its relevance for 

normal development and disease are increasingly understood, a framework which enables such modelling, 

and study of the consequences of such signalling on cell behaviour, is correspondingly advantageous. 

 

We study EGF signalling (Figure 5E), a response triggered by many stress factors, including hypoxia. We 

compare growth under two experimental conditions: Oxygen diffusion simulations with disabled EGF 

signalling (which we call Hypoxia - no signalling, same as Hypoxia in section 4), and Oxygen diffusion 

simulations with enabled EGF signalling (which we call Hypoxia - signalling), thus where the cells are 

producing growth factors which are sensed by the nearby cells. For this experiment we used clones that 

did not constitutively activated EGFR. 

 

We observed a significant increase in the population of cells under the Hypoxia – signalling condition. 

This increase ranged between 130 - 870 living cells, that is 26 – 174% of the spheroid size (Figure 5F). 

These effects were consistent with the aggressiveness of the clones that we have seen in the previous 

examples; namely, p53- and p53-PTEN- clonal populations increased significantly more than the PTEN- 

and WT clones under hypoxia when EGF signalling was accounted for. Interestingly, enabling EGF 

signalling between cells further increased the tendency of hypoxia to reduce clonal diversity (Figure 5D and 

5G). This reveals that the reduction in clonal diversity attributable to central necrosis (Figure 5D), is further 

increased due to the different proliferation rates of clones which are sensing EGF released under hypoxia. 

 

A sensitivity analysis of the parameters determining the strength and the length of the EGF response, 

namely the activation threshold of the stimulus receptor and consumption rate of the growth factor, showed 

that low activation threshold values are more likely to activate the EGF receptor for any given EGF 

concentration above the threshold value, whereas lower consumption rates of EGF are more likely to 

activate the EGF receptor for longer (Figure S10B). Both events increase the probability of proliferation, 

that in turn affects the size of the spheroid (Figure S10C).  
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Figure 5. The effect of a hypoxic microenvironment and cell-cell signalling on multi-cellular growth.  

A. Necrotic core within a spheroid as a result of oxygen consumption by cells. Necrotic cells do not 

consume oxygen (-), in contrast to living cells (R: Oxygen consumption rate). Oxygen diffusion is simulated 

by the diffusion-reaction equation (Equation 1, in Materials and Methods).  

B. Spheroids growing under artificially well-oxygenated conditions (Control, initial and boundary condition: 

0.28 mM O2) and an environment with oxygen level drop in the inner layer of the 3D spheroid due to 

diffusion (Hypoxia, initial and boundary condition: 0.04 mM O2).  

C. Growth under the well-oxygenated (Control) condition and the hypoxic condition (Hypoxia), for eight 

clones. EGFR+ clones develop necrotic cores under the hypoxic condition (differences between white and 

red bars (right braces) show the number of necrotic cells).  
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D. Differences in clonal population fractions (in-silico living cells) between cells grown isolated and in 

competition to each other, under well-oxygenated condition (Control) and the hypoxic condition (Hypoxia). 

Bars are averages of 100 repeats (initial population: 100 cells, experiment length: 2000 temporal steps, 

RO2 = 5.0e-3 mM. s-1, DO2 = 1.0e-9 m. s-1), and error bars represent standard error. * indicates Kruskal–

Wallis p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  

E. EGF signalling between cells. Red-coloured cells have activated EGF receptors, whereas grey-coloured 

cells have inactivated EGF receptors (junctions on cells). EGF molecules (small, black spheres) are 

produced (S: EGF production rate) by cells and may be consumed (R: EGF consumption rate) by 

activating the EGF receptor of the same or a neighbouring cell (spheres attached to the EGF receptors), 

thus promoting proliferation. Cell – cell interaction is simulated by the diffusion – reaction equation (see 

Material and Methods).  

F. Spheroids grown with disabled EGF signalling (Hypoxia - no signalling), and with enabled EGF 

signalling (Hypoxia – signalling, 0.04mM O2, ACTEGF = 5.0e-4 (+).m3, REGF = 5.0e-4 (+).m3.s-1, RO2 and dO2 

as above), initial population: 500 cells, experiment length: 2000 temporal steps. The initial and boundary 

configuration under Hypoxia is 0.04 mM O2. Bars are averages of 100 repeats. Error bars represent 

standard error.  

G. Relative clonal populations in isolation and competition, under different oxygen configurations (Control 

(Normoxia), Hypoxia – no signalling, and Hypoxia – signalling). Percentages are normalised for each 

condition to the number of living cells at the end of the simulation across the four cell types. Bar charts are 

averages of 100 repeats (initial population 500 cells, 2000 steps). Error bars represent standard error. * 

indicates Kruskal–Wallis p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. (+) fraction of the EGF production 

rate. 
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Discussion 

To respond to the need to deepen understanding of the intricate relationship between cell genotype and 

phenotype, we have developed microC, which combines a powerful stochastic method, ABM, and gene 

networks modelling, into a novel  framework for in-silico experimentation. Specifically, microC addresses 

the challenge of modelling and simulating the dynamics and evolution of a heterogeneous population of 

cells within a changing microenvironment. ABM is increasingly used to simulate the dynamics and 

evolution of complex systems in applications ranging from engineering to ecology (39-42); this approach 

makes microC a naturally multiscale framework, enabling assessment of  both multi-cellular systems and 

individual cells, and their physical and molecular properties. 

 

One of the most innovative aspects of microC is that it substantially extends the capacity of ABM 

simulations of living cells, considering each individual cell as a meta-agent.  Each cell is considered as a 

community of computational agents, the genes and molecules, acting and interacting within each cell. This 

enables the user to modify and/or replace gene networks in the cells, to define new constrains representing 

different types of mutations in different cells or in the same cell, and to customize cell-cell and cell-

microenvironment interaction parameters. As a consequence, the proposed framework is naturally suited 

to study how the behaviour of a specific perturbation, such as a mutation, occurring in individual cells within 

a three dimensional, dynamic microenvironment, affects the collective behaviour of other, similar or 

different, cells and the whole system. This reveals in some cases unexpected patterns of collective 

behaviour, not a-priori defined in the model, and which could not be predicted by observing the individual 

elements. Instead, there are emerging properties of the system as a whole and affect the evolution of the 

cell population and the behaviour of the single elements in return.  

 

microC comes with example networks that can be used, modified or replaced with new ones by users. 

Using one of these networks, a MAPK signalling network, we illustrated microC features through the study 

of growth patterns of 3D in-silico spheroids, affected by perturbation of intrinsic (mutations) and extrinsic 

(oxygen and growth factor availability) factors. We demonstrated that clones carrying multiple mutations 

have a growth advantage with respect to clones carrying single mutations, and that the order in which 

these mutations are acquired has a significant impact on the spheroid growth rate and final size. This was 

true both when the clones were grown in isolation and when they were allowed to compete with other 

clones. We also showed that this effect increased under more extreme microenvironmental conditions, 

namely lack of oxygen.  

We also generated a hypothesis linking the geometric properties of spheroids with their genotype. The 

morphological characteristics of spheroids of the same clone vary considerably and may be a source for 

high data variability in in-vitro experiments (43). Here, we demonstrated how the dynamics of a gene 

network which is specified by the genotype and microenvironmental characteristics, affects the proliferation 

rate, which in turn has a significant impact on the overall spheroids’ shape, irrespective of other elements 

such as adhesion forces which are long known to affect morphology (44).  
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Finally, we observed expected emerging properties, such as the formation of necrotic cores in the larger 

spheroids, and new unpredicted emerging properties, such as the effect of hypoxia and EGF signalling on 

clonal diversity of the spheroids. These properties were not encoded at the cellular level, but rose from the 

cell agents competition for nutrients, space and cellular interaction.  

 

In summary, in this paper we assessed the capabilities of a new modelling framework that links 

genotype with phenotype, via gene networks and signalling pathways. We have provided a number of 

examples of using the framework, which not only enables a broad range and new types of modelling 

studies, but it also delivers a microenvironment for in-silico experimentation built using well-recognised 

formats and shared standards, thus enabling widely used model representations. This provides an 

environment for prediction, experimentation and reasoning using existing gene networks, as well as a 

starting point for gene network development.  
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