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A network consisting of excitatory and inhibitory (EI) neurons is a canonical model for understanding cortical
network activity. In this study, we extend the EI network model and investigate how its dynamical landscape
can be enriched when it interacts with another excitatory (E) population with transmission delays. Through
analysis and simulations of a rate model and a spiking network model, we study the transition from stationary to
oscillatory states by analyzing the Hopf bifurcation structure in terms of two network parameters: 1) transmis-
sion delay between the EI subnetwork and the E population and 2) inhibitory couplings that induce oscillatory
activity in the EI subnetwork. We find that the critical coupling strength can strongly modulate as a function
of transmission delay, and consequently the stationary state is interwoven intricately with oscillatory states gen-
erating different frequency modes. This leads to the emergence of an isolated stationary state surrounded by
multiple oscillatory states and cross-frequency coupling develops at the bifurcation points. We identify the
possible network motifs that induce oscillations and examine how multiple oscillatory states come together to
enrich the dynamical landscape.

I. INTRODUCTION

The brain is organized as a network of highly specialized
subnetworks. Each of the subnetworks consists of a large
number of excitatory and inhibitory neurons communicating
via spikes. Randomly connected networks of excitatory and
inhibitory neurons have been a popular and useful model to
study the dynamical states and information processing in lo-
cal networks of the brain. Previous work has demonstrated
that balance of excitation and inhibition (EI-balance) is a cru-
cial variable that determines two qualitatively different states
of global network activity. When excitation and inhibition are
balanced, cancellation of excitatory and inhibitory synaptic
inputs to a neuron leads to asynchronous and nearly Poisson
type spiking [1, 2]. A mismatch between excitation and in-
hibition (in amplitude or timing) results in oscillatory states
[3–5], in which the population firing rate oscillates while in-
dividual neurons spike irregularly. Both network states are
considered to play important roles in cortical processing; the
asynchronous activity of the balanced state provides a suitable
substrate to perform complex computations [6, 7], balanced
amplification [8, 9] and propagation of rate and time coded
signals [10], and oscillatory rhythms play a crucial role in se-
lective routing information across multiple brain areas [11–
14].

Besides the EI-balance, spike propagation time delays in-
troduce various complex effects on the network activity dy-
namics. For instance, delays may destabilize the balanced
state of spiking networks [3–5], enrich the bifurcation struc-
ture of spatially-extended neural field models by introducing
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novel dynamical states [15, 16] and gate the propagation of
spiking activity [17]. Moreover, by suitably tuning the delays
oscillations can be enhanced and suppressed [18–20].

Here we go beyond the standard two population (one exci-
tatory and one inhibitory) model of local cortical networks and
investigate how the addition of one more excitatory popula-
tion alters the dynamical landscape of the standard excitatory-
inhibitory (EI) spiking networks composed of balanced and
oscillatory states. The third excitatory population is coupled
to standard EI network with a longer delay as compared to
the delays within in the EI network. Thus, this model allows
us to understand how long and short delays interact to shape
the critical coupling strength between excitatory-inhibitory or
inhibitory-inhibitory neurons that generate network-wide os-
cillations [3–5].

Through analysis and simulations of the three-population
network models, we show that the balanced state can be in-
terwoven intricately with multiple oscillatory states when the
EI network is strongly coupled to a third excitatory population
with delays. Such dynamical landscapes naturally give rise to
cross-frequency oscillations in parameter regime where mul-
tiple oscillatory states merge. Our study demonstrates the rich
dynamic repertoire of interacting sub-networks in the pres-
ence of delays and paves the way to study a network of many
sub-networks.

II. NETWORK MODEL

The network consisted of two excitatory (E1, E2) and one
inhibitory (I3) populations. The E2I3 subnetwork was the
standard EI network [3] which was reciprocally connected to
the E1 population (Fig. 1). We did not include recurrent ex-
citatory connections within E1 and E2 because we focused
on oscillatory network activity generated by the excitatory-
inhibitory and inhibitory-inhibitory couplings. We refer to the
connectivity parameters between E1 and E2I3 ”lateral”, and

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2018. ; https://doi.org/10.1101/360479doi: bioRxiv preprint 

https://doi.org/10.1101/360479


2

FIG. 1. The connectivity structure of E1E2I3 network.

those within the E2I3 subnetwork ”local”. The population E1

was considered to be located at a farther distance; therefore,
the transmission delay D between E1 and E2I3 was larger
than the transmission delay d within the E2I3 subnetwork. In
this work we investigated the effect of long transmission de-
lays and inhibitory connections from I3 to E1, E2 and itself
on network oscillations.

To study the network dynamics analytically, we considered
a rate model that describes the firing rate dynamics of three
populations and compared the results with numerical simula-
tions of a comparable network with spiking neurons.

Firing rate model. The rate model was described as a set
of delay differential equations,

τ1ṙ1(t) = −r1(t) +
[
J11s11(t) + J12s12(t)− J13s13(t) + I1

]
+

τ2ṙ2(t) = −r2(t) +
[
J21s21(t) + J22s22(t)− J23s23(t) + I2

]
+

τ3ṙ3(t) = −r3(t) +
[
J31s31(t) + J32s32(t)− J33s33(t) + I3

]
+
,

(1)

where Jab is the coupling strength of connection from popu-
lation b to population a, Ia is an external input, and the acti-
vation function [x]+ = x if x > 0 and = 0 otherwise. We
let J11 = J22 = 0 because there were no recurrent excitatory
connections. The dynamics of synaptic current from b to a
obeyed

τdṡab = −sab + rb(t−Dab) a, b ∈ {1, 2, 3}, (2)

where τd is a decay time constant and Dab is a transmission
delay from b to a.

The connections between E1 and E2I3 had a transmission
delay, D, and the connections within the E2I3 subnetwork
had a transmission delay, d; D = D12 = D21 = D13 = D31

and d = D23 = D32 = D33.
Network model with spiking neurons. For the spiking

network model, we considered a network of randomly con-
nected leaky integrate-and-fire (LIF) neurons where E1, E2

and I3 population consists of N1 = N/2, N2 = N and
N3 = N/4 neurons (N = 10, 000), respectively. The mem-
brane potential of neuron i in population a obeyed

τmaV̇i(t) = Vr − Vi(t) + µa + σaξi(t)

+
Ja1
pN1

∑
j∈E1

sij +
Ja2
pN2

∑
j∈E2

sij −
Ja3
pN3

∑
j∈I3

sij

(3)

and elicited an action potential when Vi reached a threshold
Vth. Here, τma is a membrane time constant, Vr is a resting

potential, Jab is total postsynaptic potential of synaptic con-
nections from population b to population a, µa is an external
input, and σaξi is Gaussian white noise with mean zero and
variance σ2

a.
Every neuron received the same number pNa of recurrent

synaptic inputs from randomly selected neurons in popula-
tions a = 1, 2, 3. The strength of individual synapses from
neuron i in population a to neuron j in population b was given
by Jab/(pNb)

The synaptic current sij decayed exponentially upon re-
ceiving a spike from a presynaptic neuron j in population b.

τdṡij = −sij + τma
∑
tki<t

δ(t− tki −Dab)

where tki is the spike-time of presynaptic neurons, and Dab is
the transmission delay from neurons in population b to neu-
rons in population a. As in the firing rate model, the connec-
tions between E1 and E2I3 had a transmission delay, D, and
the connections within the E2I3 subnetwork had a transmis-
sion delay, d.

Following the previous studies [3, 5, 6], we estimated the
steady-state firing rate using the Fokker-Planck approach,
which meant solving a system of three nonlinear equations
in a self-consistent manner.

ra = Ψa(Xa, Ya), a = 1, 2, 3 (4)

where

Ψa(Xa, Ya) =

[
τma
√
π

∫ (Vth−Xa)/Ya

(Vr−Xa)/Ya

et
2

(1 + erf(t))dt

]−1

Xa = µa + Ja1r1 + Ja2r2 − Ja3r3

Ya =
√
σ2
a + J2

a1r1 + J2
a2r2 + J2

a3r3.

Here, ra is the population-averaged firing rate,Xa is the mean
synaptic input, and Y 2

a is the variance of total synaptic input
to a neuron.

In the following network simulations, we adjusted the mean
(µa) and variance (σ2

a) of external inputs to obtain the same
steady-state firing rate (re = 5Hz, ri = 10Hz) for differ-
ent network configurations. The external inputs (Ia) to the
rate model was adjusted similarly to maintain same ra across
simulations. Firing rate equations (Eq. 1) were solved using
Matlab’s delay differential equation solver, dde23. The simu-
lation of networks with spiking neurons was performed using
the NEST simulation tool [21].

III. DYNAMICS OF OSCILLATIONS IN THE THREE
POPULATION MODEL

A. Linear stability of the steady-state

To characterize how the lateral delay D affects the emer-
gence of oscillatory activity within the E2I3 subnetwork, we
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performed linear stability analysis of the steady-state of the
rate model and the spiking network model. We added a
small perturbation term to the steady-state firing rate such that
ra(t) = ra0 + δra · eλt. The rate perturbation induced a per-
turbation in the synaptic current:

δsab(t) = Σab(λ)δrbe
λt, (5)

where the synaptic kernel (Eq. 2) in frequency domain is given
by

Σab(λ) =
e−λDab

1 + λτd
. (6)

From Eq. 5, we obtained the perturbation of total input to pop-
ulation a

δIa(t) = Ja1δsa1(t) + Ja2δsa2(t)− Ja3δsa3(t). (7)

Finally, the new output rate of the network in response to the
input rate perturbation is given by

δrae
λt = Ra(λ)δIa(t). (8)

Similar to the synapse, neuron population also acts like a fre-
quency filter which can written as, for the rate model,

RRM
a (λ) =

1

τa(1 + λω)
(9)

and, for LIF neurons, RFP
a can be either calculated numeri-

cally using the threshold integration method [22] or by hyper-
geometric functions [3, 5].

Combining Eqs. 5, 7 and 8, we obtained a system of three
linear equations in δra, a = 1, 2, 3, which has non-trivial so-
lutions when the determinant of following matrix is zero:

0 =

∣∣∣∣∣∣
−1 A12(λ) −A13(λ)

A21(λ) −1 −A23(λ)
A31(λ) A32(λ) −(1 +A33(λ))

∣∣∣∣∣∣ (10)

where Aab(λ) = JabΣab(λ)Ra(λ). Rearranging Eq. (10), we
obtained

0 = (1−A12A21)(1 + A33︸︷︷︸
J33 coupling

)

+A32A23 +A31A12A23︸ ︷︷ ︸
J23 coupling

(Fast inhibition)

+A31A13 +A32A21A13︸ ︷︷ ︸
J13 coupling

(Slow inhibition)

(11)

Eq. 11 describes network motifs in the E1E2I3 model that
can induce network oscillations. The two first lines of Eq. 11
consist of motifs that receive fast inhibition with short delay
d via two different pathways. The local inhibitory coupling
J33 is responsible for generating oscillatory activity via the
monosynaptic A3A3 loop, whereas the inhibitory coupling
J23 is responsible for generating oscillatory activity via disy-
naptic A32A23 and trisynaptic A31A12A23 loops. The third

line of Eq. 11 consists of network motifs that receive slow in-
hibition. In this case, the inhibitory coupling J13 is responsi-
ble for generating oscillatory activity via disynaptic A31A13

and trisynaptic A32A21A13 loops with long delay D. In the
following we systematically investigate how the slow and fast
inhibitory pathways interact to shape the oscillatory dynamics
of the three population network.

B. Transition to oscillatory states

To obtain analytical estimates of a Hopf bifurcation, which
marks the transition from a steady state to an oscillatory state,
we substituted λ = iω into Eq. 11 to find bifurcation points as
a function of D and J33 (or D and J23). A similar calculation
was performed in [5]. We denoted the amplitude and the phase
of the population response function Ra(iω) as Ha and φa, re-
spectively, i.e. Ra(iω) = Ha(ω) exp(−iφa(ω)). The ampli-
tude and the phase of synaptic kernel Σab(iω) were denoted
asHs and φs, respectively, i.e. Σab = Hs(ω) exp(−iφs(ω)−
iDabω) where Dabω is the phase shift due to a transmission
delay. To simplify notations, we let Φa = φa +φs be the sum
of phase shifts due to population response of a and synaptic
dynamics (without a delay), and Φab = Φa + Φb etc.

The real part of Eq. 11 is

0 = 1− cr cos(Φ12 + 2Dω)

+ ci
[

cos(Φ3 + dω)− cr cos(Φ123 + 2Dω + dω)
]

+ cpd cos(Φ23 + 2dω) + cpt cos(Φ123 + 2Dω + dω)

+ ct cos(Φ123 + 2Dω + dω) + cd cos(Φ13 + 2Dω)

(12)

and its imaginary part is

0 = −cr sin(Φ12 + 2Dω)

+ ci
[

sin(Φ3 + dω)− cr sin(Φ123 + 2Dω + dω)
]

+ cpd sin(Φ23 + 2dω) + cpt sin(Φ123 + 2Dω + dω)

+ ct sin(Φ123 + 2Dω + dω) + cd sin(Φ13 + 2Dω)

(13)

where cr = J12J21H1H2H
2
s is the bidirectional coupling

between E1 and E2, ci = J33H3Hs is the I3-I3 coupling,
cpd = J32J23H2H3H

2
s and cpt = J31J12J23H1H2H3H

3
s are

the disynaptic and trisynaptic E2-I3 couplings, respectively,
and cd = J13J31H1H3H

2
s and ct = J32J21J13H1H2H3H

3
s

and the disynaptic and trisynaptic E1-I3 couplings, respec-
tively.

In the following calculations, J33 and D are the two bifur-
cation parameters, and we sought to express them as functions
of ω (See Appendix A for the derivation of other critical cou-
plings). First, to write J33 as a function of ω, we removed D
from Eqs. 12 and 13 by moving three (two) terms in Eq. 12
(Eq. 13) that did not include D to the other side of the equa-
tion, squaring both sides of each equation, then adding two
equations to obtain a quadratic equation of ci,

0 = Ac2i + 2Bci + C.
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Then,

c±i =
1

A

(
−B ±

√
B2 −AC

)
or

J±I3I3 = c±i /(H3Hs) (14)

where

A = c2r − 1

B = −cr(cpt + ct) + (c2r − 1) cos(Φ3 + dω)

−(crcd + cpd) cos(Φ2 + dω)

C = 2
[
(cpt + ct)(−cr cos(Φ3 + dω) + cd cos(Φ2 + dω))

−cpd cos(Φ23 + 2dω)− crcd cos(Φ3 − Φ2)
]

+c2r − c2pd + c2pt + c2d + c2t + 2cptct − 1.

Next, to writeD as a function of ω, we invoked trigonomet-
ric identities in Eqs. 12 and 13 to derive a system of equations
to explicitly solve for cos 2Dω and sin 2Dω.[

M11 M12

M21 M22

] [
cos 2Dω
sin 2Dω

]
=

[
P
Q

]
where

M11 = −M22 = −cr cos Φ12 − crci cos(Φ123 + dω)

+cpt cos(Φ123 + dω) + cd cos Φ13 + ct cos(Φ123 + dω)

M12 = M21 = cr sin Φ12 + crci sin(Φ123 + dω)

−cpt sin(Φ123 + dω)− cd sin Φ13 − ct sin(Φ123 + dω)

P = −1− ci cos(Φ3 + dω)− cpd cos(Φ23 + 2dω)

Q = ci sin(Φ3 + dω) + cpd sin(Φ23 + 2dω).

Substituting c±i calculated above, we obtained an expres-
sion for the lateral delay for Hopf bifurcation

D± =
1

2ω
atan

(
−M±21P± +M±11Q

±

M±22P
± −M±12Q±

)
. (15)

In the following sections, we describe the Hopf bifurcation
lines (D±, J±33) that satisfy both Eqs. 13 and 12 by varying ω
and compare the analytical results with numerical solutions of
delay differential equations for the rate model and simulations
of networks of leaky integrate-and-fire neurons for the spiking
network model.

IV. DYNAMICAL STATES OF E1E2I3 NETWORK

In the following, we refer to the (non-oscillatory) steady-
state as S and three oscillatory states as O1, O2 and O3.
As described in Eq. 11, three types of inhibitory couplings
J13, J23 and J33 are responsible for generating the oscillatory
states O1, O2 and O3, respectively.

A.i A.ii A.iii

B.i B.ii B.iii

FIG. 2. Bifurcation diagrams of (A) rate model and (B) spiking
network model as a function of I3-I3 coupling J33 and lateral de-
lay D. The strength of synaptic projection, JE1(= J21, J31), from
E1 to E2I3 is weak (A.i, B.i), intermediate (A.ii, B.ii) and strong
(A.iii, B.iii). For the rate model, J12 = 0.5, J13, J23, J32 = 2,
d = 2.5, τd = 0. For the spiking network model, the total (individ-
ual) synaptic weights J12 = 30(0.03), J13 = 80(0.32), J23, J32 =
50(0.2, 0.05) mV. Note that the weights of individual synapses from
neuron i in population a to neuron j in population b is given by
Jab/(pNb) (Eq. 3), so that I3 to I3 synaptic weights are between
0 and 0.6mV. Local delay d = 2.5ms, and synaptic decay time
τd = 1ms. Color bars show the coefficient of variations of the
network models (See text for details). White lines show analytical
estimates of a Hopf bifurcation (Eqs. 14 and 15).

A. Network activity states

To characterize different dynamical states of the three pop-
ulation network, we systematically varied the I3-I3 coupling
(J33) and the delay in lateral connections (D) (Fig 2). For
each parameter pair (J33, D), we simulated the network for
1.2 seconds and measured the standard deviation of the pop-
ulation rates to estimate whether the network exhibited oscil-
lations. The external input to each population was adjusted
to maintain constant population rates across different network
setups (5 Hz for excitatory and 10 Hz for inhibitory spiking
neurons) while other network parameters remained fixed. For
both network models, the standard deviation of each popula-
tion rate was normalized by its means and averaged over three
populations to obtain the coefficient of variation of the popula-
tion activity. When the network was oscillating, the standard
deviation of the network activity was higher as the network
activity waxed and waned. This is, however, only an indirect
measure and may not directly imply oscillations, therefore, we
also examined the spectrum of the population activity (Fig. 3).

For a fixed value of D, the network exhibited three distinct
states, O1, S and O3, as we varied J33. (Hopf bifurcation
estimates are shown as white lines in Fig. 2). The estimates
of the network activity states closely matched with the states
obtained from a corresponding simulations of a network of
spiking neurons (Figs. 2A, B). For low values of J33, O1 was
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observed which is characterized by slow frequency oscilla-
tions (≈ 25 Hz) mediated by the E1-I3 loop with lateral delay
D = 5 ms (see white squares in Fig. 2B.i and the correspond-
ing spiking activity in Fig. 3A, top). For moderate values of
J33, oscillations vanished and a non-oscillatory state emerged
(S) in which neurons fired asynchronously and the population
firing rate randomly fluctuated around the steady-state (akin
to the asynchronous irregular state of [3]). Finally for very
strong inhibitory coupling (high J33), the non-oscillatory state
was transformed into another oscillatory state O3, which was
characterized by high frequency oscillations (≈ 100 Hz) me-
diated by the local I3-I3 loop with local delay d = 2.5 ms.

As the lateral delays D was increased the regions of O1

monotonically creased and the state S was observed at higher
values of J33. The lateral delays D had a more dramatic ef-
fect on the emergence of the state O3. The value of J33 at
which the oscillatory state O3 was observed varied in a peri-
odic manner as D was increased (see the interface of O1 and
S and that of O3 and S in Figs. 2A.i and B.i). While, the os-
cillation frequency in O1 state decreased monotonically with
D, the oscillation frequency in O3 state was independent of
D (Fig 3A, bottom; black lines: analysis, red squares: simu-
lations).

To better understand why the critical J33 weights varied in
a periodic manner as a function of lateral delays D, we next
examined the oscillation dynamics at the interface of the non-
oscillatory state S and the oscillatory state O3

B. Modulation of critical I3-I3 coupling due to lateral delay

To gain intuition on why the local coupling J33 may de-
pend on lateral delays D, we reduced the subnetwork E2I3 to
an inhibitory population I3. This effectively assumes that the
subnetwork E2I3 operates in an inhibition dominated regime.
By solving Eqs. 12 and 13 for the critical I3-I3 coupling in
terms of D we obtained

J33 =

(
1− 2cd(ω) cos(Φ13 + 2Dω + π) + cd(ω)2

)1/2
H3(ω)Hs(ω)

.

(16)

From Eq. 16, the reduced network model suggests that the
critical J33 modulates periodically as a function of D, and the
period of modulation T = π/ω∗ = 1/(2f∗) is determined by
the frequency of network oscillations, ω∗ = 2πf∗. (Here we
assumed that the oscillation frequency at the transition to O3-
state depends weakly on D; in other words, ω(D) ≡ ω∗ on
the boundary of O3 as shown in Fig. 3A (bottom).) Moreover,
the maximum of J33 is attained at

(2n+ 1)π = Φ13(ω∗) + 2Dω∗ + π, (17)

and the minimum of J33 at

2nπ = Φ13(ω∗) + 2Dω∗ + π (18)

for n = 0,±1, ..., where Φ13(ω∗) + 2Dω∗ is the total phase
shift induced by the bidirectional lateral connections between

A B

C D

FIG. 3. (A) (top) Instantaneous firing rate of E1 (black), E2 (blue)
and I3 (red) populations in S, O1 and O3 states; (middle) Spike
raster of the corresponding spiking activity. (bottom) Oscillation fre-
quency of O1 and O3 states as a function of lateral delay; black:
analysis, red: simulations (B) (top) Alternation between S and O3

states due to the lateral delay, corresponding to white squares in Fig.
2B.ii. (middle) Analytical estimates of critical JI3I3 (black line) and
network states corresponding to the top row (black squares). (bot-
tom) Analytical estimate of the phase lag ∆φ31 of I3 with respect
to E1 in the O3 state; black: full network (Eq. (B1)), red: simpli-
fied E1I3 network (Eq. (19)). (C) Cross-correlation of mean firing
rate of E1 and I3, calculated using simulation results from part (B).
(D) Cross-frequency coupling appears whenO1 andO3 merge; (top)
mean firing rate of I3 (gray), its high (red) and low (green) frequency
components, and the sum of high and low frequencies (black); (left
bottom) power spectrum of I3 mean firing rate; (right bottom) Cor-
relation between fast oscillation amplitude (black bar) and slow os-
cillation phase (angle).

E1 and I3, and π appears due to the inhibitory coupling.
In other words, Eq. 17 (Eq. 18) suggests that the critical J33
reaches its maximum (minimum) when the network oscilla-
tion relayed through the lateral connections is anti-phase (in-
phase) to the oscillations generated in I3.

Conceptually, this phenomenon can be understood as fol-
lows. If oscillatory activity relayed through lateral connec-
tions is in-phase with oscillatory activity generated by the lo-
calE2-I3 loop, weak coupling is sufficient to induce network-
wide oscillations. On the other hand, if the relayed network
activity is anti-phasic to locally generated activity, stronger
coupling is required to overcome the suppression of the local
activity by the relayed activity. Because changing the lateral
delay shifts the phase of relayed activity continuously, the crit-
ical coupling strength modulates qusi-periodically with a pe-
riod determined by the oscillation frequency. In Fig. 2B.i, for
instance, the period ofO3-boundary (T ≈ 5 ms) is determined
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by the oscillation frequency ofO3 state (f ≈ 100 Hz, Fig. 3A,
bottom): T ≈ 1/(2f) as predicted by Eq. 16.

We also calculated the relative phase ∆φmax
31 (∆φmin

31 ) of
I3 population rate with respect to the E1 population rate at
the maximum (minimum) of J33. For the reduced network
model, the phase lag is given by

∆φ31 = −π + Φ1 +Dω, (19)

and at the max and min of J33,

∆φmax
31 = (n− 1)π,

∆φmin
31 =

(
n− 1

2

)
π, n = 0,±1,±2, ...

(20)

where we used Eqs. 17 and 18 to evaluate Dω∗ and assumed
that the phase shifts due to population response functions are
equal, i.e. Φ1 = Φ3. We then verified numerically that the
phase lag in the full E1E2I3 network can be approximated by
that of the reduced network (Fig. 3B, bottom; black: full net-
work, red: reduced network). See Appendix B for the deriva-
tion of phase lags in the full and reduced network models.

C. Cross-frequency coupling

The network architecture investigated here has been sug-
gested to generate cross-frequency oscillations in which
power in a frequency band is modulated by the phase of an-
other oscillation [13]. In our model, multi-frequency oscil-
lations appeared as we increased the strength of long range
excitation JE1

.
At an intermediate step towards the emergence of multi-

frequency oscillations, we examined how the strength of con-
nections from the excitatory population E1 (JE1

) affected the
landscape of the network states. First, we found that increase
in JE1

increased the region of the state O1. Second, JE1
also

increased the modulation in the boundary of state O3. To-
gether, these changes meant that the region of non-oscillatory
state was not observed for some values of D, such that the
non-oscillatory state appeared in isolated regions, S1 and S2

in Figs. 2A.ii and B.ii. There was a wide range of inhibitory
coupling J33 (e.g. 80 - 120 mV in Fig. 2B.ii), over which the
network can switch between non-oscillatory and oscillatory
states by varying the lateral delay (white squares in Fig. 2B.ii
and the corresponding spike activity shown in Fig. 3B, top and
middle).

As the strength of synaptic input from E1 was further in-
creased, two Hopf bifurcation lines defining the O1 and O3-
states merged and created a small region in the space spanned
by J33 and D in which the network exhibits non-oscillatory
activity S1 (Fig 2A.iii and B.iii). Outside of S1, where O1

and O3 merged (e.g. white square in Fig. 2B.iii), the slow os-
cillatory activity induced by the lateral E1-I3 loops and the
fast oscillatory activity induced by the local I3-I3 loop co-
existed. This was evident in the power spectrum of inhibitory
population firing rate, which showed two peaks at low (25 Hz)
and high (100 Hz) frequencies (Fig. 3D, left bottom). More-
over, when the population rates were band-passed filtered at

A.i ii iii

B.i ii iii

FIG. 4. Composition of three oscillatory states. α denotes the rel-
ative strength of E2-I3 loop: J23 = αJI , J33 = JI (A) Rate
model; J12 = 0.5, J13 = 2, J32 = 4, J21 = J31 = 1, d = 2.5,
τd = 0. (B) Spiking network model; B.ii, Power spectrum of pop-
ulation I3’s mean firing rates for D = 7ms in B.i.; Total (individ-
ual) synaptic weights, J12 = 30(0.03), J13 = 60(0.24), J32 =
120(0.12), J21 = J31 = 30(0.06) mV, d = 2.5 ms, τd = 1
ms. Color bars show the coefficient of variations of network models.
White lines show analytical estimates of a Hopf bifurcation (Eqs. A2
and 15).

high and slow frequencies then summed up, the filtered pop-
ulation rates closely followed the actual inhibitory firing rates
(Fig. 3D, top). Interestingly, in our model the amplitude of
fast oscillation was modulated according to the phase of slow
oscillation (Fig 3D, right bottom). This is akin to the modu-
lation of gamma band osculations power by the phase of theta
oscillations [23] in the hippocampus.

Thus, we show that when a partially overlapping neuron
population participates in generation of both fast oscillation
and slow oscillation (i.e. I3 is part of the fast I3-I3 loop and
the slow E1-I3 loop), cross-frequency coupling emerges in
which slow oscillation generated via the lateral loop (E1-I3)
with long delay D modulates the amplitude of fast oscillation
(I3-I3) by providing periodic input.

D. Emergence of an oscillatory state driven by E2-I3 coupling

Thus far, we considered oscillatory activity generated by
the I3-I3 loop. In this section, we describe how including
the oscillatory activity due to the E2-I3 loop further enriches
the dynamical landscape of the three population network. To
control the interaction of the E2-I3 and I3-I3 loops, we intro-
duce a parameter α that determines the relative strength of the
E2-I3 coupling with respect to I3-I3 coupling: J23 = αJI ,
J33 = JI .

With weak coupling between E2-I3 (i.e. small α), Hopf bi-
furcation structure was identical to the one obtained by vary-
ing J33 alone, as shown in Figs. 2A.i and 2B.i. In other words,
theO3 state, driven by the I3-I3 loop, was the only oscillatory
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state that can be generated by the E2I3 subnetwork. When α
was increased, a new oscillatory state O2, driven by the E2-
I3 loop, emerged in the small isolated regions in the space
spanned by J1 and D (Figs. 4A.i and B.i). The O2 state
emerged in a parameter space which led to the non-oscillatory
state (S) for low values of α. That is, for high α values,
long-range interactions with the population E1 destabilized
the non-oscillatory state of the E2I3 subnetwork to create os-
cillations.

To better understand why non-oscillatory and different os-
cillatory states appear as a function of JI , we fixed the lateral
delay (e.g. D = 9 in Fig. 4A.i) and examined the changes
in network state as JI increases. For small JI , local inhi-
bition was too weak to withstand the oscillatory instability
driven by the lateral E1-I3 loop, so the network entered the
O1-state. The network shifted to the non-oscillatory state S
when the local inhibition JI was increased. When JI became
sufficiently strong to generate oscillatory activity through the
E2-I3 loop, the network entered O2-state. When JI was fur-
ther increased, the increased I3-I3 coupling suppressed the
oscillatory activity induced by the E2-I3 loop, which brought
the network back to the non-oscillatory state. For strong JI ,
the I3-I3 coupling becomes the dominant network motif pro-
ducing oscillatory activity, hence the network entered the O3-
state.

The O2-state, however, appeared only within a restricted
range of lateral delays (e.g. 7 <D <10 in Fig. 4A.i) and van-
ished gradually outside of this range. As discussed in Section
IV B, the O2 state appears when the oscillatory activity re-
layed through the lateral connections is in-phase with the on-
going oscillations in the E2I3 subnetwork. On the other hand,
the O2 state can no longer exist when the relayed network
activity no longer enhances the local activity. Such resonance
and cancellation effects, occurring repeatedly, gave rise to iso-
lated O2-states at multiple sites. The periodic appearance of
stationary and oscillatory states is a robust phenomenon in
delayed feedback system, which has been investigated in the
context of controlling pathological brain rhythms [18, 20].

When the E2-I3 coupling became stronger (α was in-
creased), the O2 state expanded across the non-oscillatory
state S and merged with the O1 state, creating a complex con-
figuration of multiple network states as shown in Fig. 4A.ii.
The O1 and O3 states, previously separated by S, were now
bridged by an elongated O2 region. When α was further in-
creased, all three oscillatory states, O1, O2 and O3, appeared
contiguously, and the non-oscillatory states formed isolated
regions surrounded by the O1 and O2 states (Figs. 4A.iii and
B.iii). Such dynamical landscape is similar to the previously
discussed bifurcation structure that produced cross-frequency
oscillations at a parameter region where multiple Hopf bifur-
cations meet (see Figs. 2 A.iii and B.iii).

In networks of spiking neurons,O2-states emerged from the
non-oscillatory state at multiple sites, as predicted by the anal-
ysis. However, unlike the dynamical landscape of the firing
rate model (Fig. 4A.i), network simulations showed that O2

states did not exist in isolation. The network activity remained
oscillatory in-between the O2 and O3 states (Fig. 4B.i), and
the oscillation frequency increased gradually as the network

transitioned from O2, S, to O3 (Fig 4B.ii). When α became
large as shown in Fig. 4B.iii, the O2 state expanded horizon-
tally across the non-oscillatory state, connected theO1 andO3

states, and created isolated non-oscillatory states surrounded
by the oscillatory states,O1 andO2, similarly to the firing rate
model (Fig. 4A.iii).

V. CONCLUSION

Population of neurons embedded in a larger network rarely
acts alone but interacts in concert with neighboring neurons
to produce network activity. In this study we extended the
standard two-population model consisting of excitatory and
inhibitory neurons, and demonstrated in a minimal three-
population model that when an excitatory-inhibitory network
is coupled to an additional excitatory population, the lateral
connections between them can create a rich bifurcation struc-
ture, composed of isolated stationary states, multiple oscil-
latory states and cross-frequency coupling. Such dynamical
landscape allows the network to fix its operating point in the
non-oscillatory stationary state and easily tap into various os-
cillatory states generating slow frequency oscillations (via lat-
eral E1-I3 loop), fast frequency oscillations (via local E2-I3
and I3-I3 loops), or nested (cross-frequency) oscillations (by
positioning itself in a region where slow and fast oscillations
merge). We also found that two types of local oscillations
(O2 and O3) can be interwoven intricately with the station-
ary states, which has not been observed in isolated excitatory-
inhibitory networks.

Previously, the coupling of gamma (30-80 Hz) and theta
(4-12 Hz) frequency oscillations in the hippocampus was in-
vestigated using a network model composed of one excitatory
and two types of inhibitory neuron models, where one of the
inhibitory neuron type (O-LM interneuron) was responsible
for generating the gamma rhythm [24]. Our results, as sug-
gested in [13], demonstrate a different mechanistic model for
cross-frequency coupling where there is only one type of in-
hibitory neuron but two modes of oscillations can be gener-
ated via long lateral and short local delays.

Various effects of time delay on neural dynamics have been
studied extensively in neural field equation that models spatial
interactions. It has been shown that the delay can induce oscil-
lations for local excitation-lateral inhibition interaction [25],
give rise to rich bifurcation structure in simple scalar model
[26], and stabilize stochastic bump attractors [27].

Our results demonstrate that a lumped firing rate model and
randomly connected spiking models can also develop rich dy-
namic repertoire without any spatial interactions.

To cleary expose the rich dynamics of the three population
network we have used rather wide range of delays (0−20 ms).
Long delays beyond 10 ms are usually not observed in bio-
logical neuronal networks. All the key dynamical states (O1,
S, S1, O2, O3 can be observed for lateral delays up to 5 ms
which are known to exist in the brain. For instance, the thala-
mocortical loop has 3.4 ms delay in mice [28]) and the inter-
hemispheric connections can show delays of 3 − 9 ms in dif-
ferent species [29]. In primates inter-hemispheric delays are
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about 4 ms [30]. Our results show that slow conductation de-
lays in thalamocortical loops and inter-hemispheric connec-
tions can play a very important role in reshaping the local
network dynamics and introducing new dynamics through the
long range interactions. Our network simulations and analy-
sis was restricted to a special case in which all delays were
fixed. It would be of interest to study the effects of distributed
delays in the future, as in [31–33], to reflect biologically real-
istic connectivity and go beyond the three population motifs.
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Appendix A: Calculation of critical couplings

We substitute λ = iω and calculate the rate response func-
tion Ra(iω) and the synaptic kernel Σab(iω). For the rate
model,

RRM
a (iω) = 1/(1 + iτaω) = Ca exp(−iφa)

Ca =
1√

1 + τ2aω
2
, φa = atan(τaω),

with 0 ≤ atan(τaω) < π/2, and for the spiking network,

RSN
a (iω) = τmaR

THIN
a (iω) = Ca exp(−iφa)

Ca = τma|RTHIN
a |, φa = −arg(RTHIN

a )

where RTHIN
a is the population response function obtained nu-

merically from the threshold integration method [22]. The
synaptic kernel

Σab(iω) = exp(−iωDab)/(1 + iωτd) = Cs exp(−iφs − iωDab)

Cs =
1√

1 + ω2τ2d
, φs = atan(τdω).

with 0 ≤ atan(τdω) < π/2.
Substituting Ra(iω) and Σab(iω) to Eq. (11) yields

0 = 1− cr exp(−iΦ12 − i2Dω)

+ ci[exp(−iΦ3 − idω)− cr exp(−iΦ123 − i2Dω − idω)]

+ cp0 [cp1 exp(−iΦ23 − i2dω)

+ cp2 exp(−iΦ123 − i2Dω − idω)]

+ ct exp(−iΦ123 − i2Dω − idω) + cd exp(−iΦ13 − i2Dω)

where we decompose cpd and cpt in Eqs. (12) and (13) in
terms of cp0 = J23A2As, cp1 = J32A3As and cp2 =
J31J12A1A3A

2
s in order to explicitly solve for J23 in the fol-

lowing calculations.

To study the bifurcaiton structure when J23 are varied,
we manipulated Eqs. (12) and (13), as discussed in Sec-
tion III B, to solve for the inhibitory coupling strength J23 =
cp0/(A2As).

Ac2p0 + 2Bcp0 + C = 0

cp0 =
1

A

(
−B ±

√
B2 −AC

) (A1)

where

A = c2p2 − c
2
p1

B = −crcp2 cos(Φ3 + dω) + (cdcp2 − cicp1) cos(Φ2 + dω)

−cp1 cos(Φ23 + 2dω)− crcicp2 + ctcp2

C = c2r + (crci)
2 + c2d + c2t − c2i − 1

+2
[
(c2rci − ci − crct) cos(Φ3 + dω)− crcd cos(Φ3 − Φ2)

+(ct − crci)cd cos(Φ2 + dω)− crcict
]

On the other hand, to study the bifurcation structure when
both J23 and J33 are varied, we similarly manipulate Eqs. (12)
and (13) to solve for the inhibitory coupling JI where J23 =
αJI and J33 = JI .

AJ2
I + 2BJI + C = 0

JI =
1

A

(
−B ±

√
B2 −AC

) (A2)

where

A = (cr c̄i − cp2 c̄p0)2 − c̄2i − (cp1 c̄p0)2 − 2c̄icp1 c̄p0 cos(Φ2 + dω)

B = (c2r c̄i − crcp2 c̄p0 − c̄i) cos(Φ3 + dω)

+(cp2 c̄p0cd − cr c̄icd) cos(Φ2 + dω)

−cp1 c̄p0 cos(Φ23 + 2dω)− cr c̄ict + cp2 c̄p0ct

C = c2r + c2d + c2t − 1 + 2
[
− crcd cos(Φ3 − Φ2)

−crct cos(Φ3 + dω) + cdct cos(Φ2 + dω)
]

and c̄p0 = αcp0/J23 and c̄i = ci/J33.

Appendix B: Phase lag

From the second and third lines of the coefficient matrix,
Eq. (10), we can derive

δr3 =
A31 +A32A21

1 +A33 +A23A32
δr1,

which implies that the relative phase difference

∆φ31 = arg
[
(A31 +A32A21)/(1 +A33 +A23A32)

]
(B1)

of I3 with respect to E1 is determined by the later couplings,
A31 and A32A21, that connect E1 to E3, and the local cou-
plings, A33 and A23A32. In Fig 3B, we numerically evaluate
the above ∆φ31.
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On the other hand, for the reduced two-population network
considered in Section IV B, the first line of Eq. (10),

δr3 = − 1

A13
δr1,

gives a simple expression for the phase difference

∆φ31 = −π + Φ1 +Dω.

[1] C. van Vreeswijk and H. Sompolinsky, Science 274, 1724
(1996).

[2] C. van Vreeswijk and H. Sompolinsky, Neural computation 10,
1321 (1998).

[3] N. Brunel, Journal of Computational Neuroscience 8, 183.
[4] N. Brunel and X.-J. Wang, Journal of neurophysiology 90, 415

(2003).
[5] E. Ledoux and N. Brunel, Frontiers in computational neuro-

science 5, 25 (2011).
[6] S. Ostojic, Nature neuroscience 17, 594 (2014).
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