
  

  

Abstract — Systems biology combines computational 
modeling with quantitative experimental measurements to 
study complex biological processes. Here, we outline an 
approach for parameterizing and validating a systems biology 
model to yield predictive tool that can generate testable 
hypotheses and expand biological understanding. 

I. INTRODUCTION  

When properly constructed and validated, computational 
systems biology models can provide unique insight into the 
complex biological processes that affect the growth, spread, 
and treatment of cancer. The computational models can be 
used to simulate many different experimental conditions, 
predict the effects of cancer drugs, evaluate alternative 
treatment protocols, and even identify new drug targets. 
Computational modeling can provide novel quantitative and 
mechanistic insight and reduce valuable resources invested in 
pre-clinical and clinical studies. However, development of 
predictive models is not trivial. It requires an iterative 
approach to identify an appropriate network structure and 
estimate the parameters such that the model can predict the 
outcome of different perturbations to the system. Here, we 
focus on parameterizing and validating mechanistic systems 
biology models and suggest how to troubleshoot issues that 
commonly arise.  

II. OVERVIEW OF METHODS 

We describe an iterative approach of model construction 
(Fig. 1), with a focus on model optimization and validation. 
We present some of the lessons we have learned from 
training and validating cancer systems biology models.  

A. Network structure 
Previous entries in this handbook have described the basic 

steps for building an ordinary differential equation (ODE) 
based mechanistic computational model relating to cancer, 
and provide a good starting point for model construction [1-
2]. A mechanistic model requires a detailed understanding of 
the biological system being analyzed. After implementing the 
biology mathematically, it is important to consider the type 
and amount of data that is available to fit the model. Each 
entity measured needs to be represented as an output of the 
model. While quantitative data is preferred, qualitative 
observations can also be utilized. For example, if a system 
shows a transient response to one input and a sustained 
response to another, these behaviors can be enforced during 
parameter fitting. Importantly, some of the experimental data 
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is used for training in the parameter fitting step, while a 
separate set of data is set aside for model validation. 

Although the ODEs that govern species’ interactions can 
be written by hand, this process can be cumbersome and 
error-prone, particularly in the case of multiple binding or 
modification sites on a single protein. To circumvent this, a 
rule-based formalism, like BioNetGen [3], can be used. 
BioNetGen populates the ODEs for every species 
permutation possible, based on a minimal set of rules that 
define the molecular interactions. The output of this step is a 
set of ODEs that can be solved to simulate the dynamics of 
the biological system. 

B. Parameter sensitivity analysis 
Frequently in computational models of biological 

systems, there are many more parameter values to specify 
than data points to which they can be fit. It is often the case 
that only a subset of the many parameters control the output, 
and it can be difficult to converge on a meaningful set of 
parameter values. Thus, it is important to identify the 
parameters that most significantly affect the model outputs. 
Parameters that are not influential can be held constant based 
on reasonable estimates from the literature, while influential 
parameters can be fit to the data.  

A global sensitivity analysis, like the extended Fourier 
amplitude sensitivity test (eFAST) [4], can be used to 
quantify how sensitive the model output is to the parameter 
values. With eFAST, all of the parameters are varied at the 
same time, within specified ranges, and sampled at different 
frequencies. The Fourier transform of the model output can 
then be used to identify which frequencies, corresponding to 
individual parameters, contribute most to the changing 
output. This method calculates the first-order sensitivities for 
each parameter, a local sensitivity measurement, as well as 
the total sensitivity, which measures higher order interactions 
between multiple parameters.  

Often, in biological systems, parameters can be correlated 
such that changes to one parameter are compensated for by 
proportionately changing another. This indicates that only 
one of the parameters can be determined, while the other is 
“non-identifiable”. To determine which parameters are 
identifiable, one can calculate the correlation between each 
pair of model parameters [5-7]. The output of the sensitivity 
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Figure 1: The model structure is specified and the values of influential 
parameters are estimated by fitting to experimental data. If model predictions 
do not match validation data, assumptions made in previous steps can be 
reevaluated to improve the predictive ability of the model.  
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and identifiability analyses is a set of identifiable parameters 
that significantly influence the model output, which will be 
fit to the experimental data.  

C. Parameter fitting 

Parameter fitting can be both difficult and time 
consuming, particularly if there is a wide range over which 
the parameters can vary. We have implemented a two-tiered 
approach to address this issue. First, a global fitting 
algorithm, like particle swarm optimization (PSO), can be 
used to efficiently search a wide parameter space. PSO 
mimics the way that a swarm of bees searches for a new 
nesting place [8]. The algorithm begins with many different 
particles (parameter sets) scattered randomly throughout the 
parameter space. The model is run with each particle, and we 
calculate the error between the model predictions and the 
training experimental data. The particles then communicate 
their error to one other and move through the parameter space 
toward the lowest error, with some stochasticity to fully 
explore the range of parameter values. This process is 
repeated hundreds of times, ultimately arriving at the 
parameter set with the lowest error. We execute the whole 
PSO algorithm multiple times to generate a handful of sets 
that allow the model predictions to match the training data. 

In the second step, the estimated parameter sets from the 
global fitting algorithm are fine-tuned using a local parameter 
fitting algorithm, such as nonlinear least-squares optimization 
to find the local minimum around the region identified by 
PSO. The output of this step is a series of parameter sets that 
can all fit the experimental training data well.  

D. Model validation  

Model validation ensures that the model is able to predict 
data not used in the training process. Each set of parameters 
estimated in the parameter fitting step needs to be 
independently tested in the model to determine how well the 
model predictions match the validation data. Parameter sets 
that do not accurately reflect the validation data are 
discarded. Once a group of validated parameter sets is 
determined, it is also useful to analyze the median and 
standard deviation for the parameter values of that group. 
This can provide insight into how robust the model is and 
how heterogeneity in the model parameters may affect the 
output. If the model with the best fit parameters does not 
match the validation data, then the assumptions made in the 
previous steps need to be reevaluated. The model structure is 
an obvious step to return to; however, the initial starting 
values of the parameters and the fitting algorithm inputs may 
also need to be changed.   

Finally, the validated model can be utilized to generate 
new hypotheses. The hypotheses can be tested 
experimentally, providing another level of model validation. 
It is interesting to encounter cases when the experimental 
results do not match the model predictions, as this means that 
some aspects of the model should be reevaluated. Ultimately, 
this iterative process between mathematical modeling and 
experimental analysis improves our understanding of the 
underlying biology. The output of this step is a predictive 
model that can be used to better understand and optimize the 
biological system being studied. 

III. ILLUSTRATIVE EXAMPLES 

Below, we present three examples of how we have 
implemented the process outlined above in our own research. 

A. LCK autoregulation 
Lymphocyte-specific protein tyrosine kinase (LCK) 

mediates T cell activation. Activated T cells can release 
cytokines and cytotoxic factors to kill cancer cells. LCK’s 
activity is modulated via phosphorylation at two residues 
(Y394 and Y505). LCK catalyzes its own phosphorylation at 
both sites, and CSK, a regulatory kinase, phosphorylates 
LCK at the Y505 site. To better understand LCK regulation, 
we constructed a model composed of ODEs using mass 
action kinetics [9]. We followed the steps outlined above 
(sensitivity analysis, two-tiered parameter fitting, and 
comparison to validation data) to generate a predictive model 
of the dynamics and regulation of LCK phosphorylation. 

We analyzed the optimal parameter sets, revealing 
statistically significant differences in LCK’s catalytic rates. 
These differences are dependent on LCK’s phosphorylation 
status. For instance, phosphorylation at Y394 increases 
LCK’s catalytic activity, while phosphorylation at Y505 
reduced the catalytic activity. The eFAST analysis 
demonstrated that the association rate of LCK with itself or 
with CSK, and the dissociation and catalytic rates of CSK to 
the unphosphorylated form of LCK significantly influence 
the level of LCK phosphorylation. Interestingly, the model 
predicted novel autoregulatory feedback mechanisms that 
modulate LCK activity. Overall, our methodology not only 
estimated kinetic parameters of LCK phosphorylation, but 
also identified mechanisms involved in LCK regulation. 

B.  TSP-1 and VEGF in breast cancer 
 We have also applied mathematical modeling to study 

angiogenesis, or the formation of new blood vessels. Tumors 
require their own blood supply to grow beyond the limits of 
oxygen and nutrient diffusion. Therefore, inhibiting 
angiogenic promoters, such as vascular endothelial growth 
factor (VEGF), and mimicking the action of inhibitors, such 
as thrombospondin-1 (TSP1), have a potential therapeutic 
role in limiting tumor development. We used the methods 
described here to develop a model of TSP1 and VEGF 
distribution in breast tumors [10].  We applied the model to 
help explain why some TSP1-derived anti-angiogenic drugs 
have not shown much success in the clinic. We also used the 
model parameter values and mechanistic predictions to 
hypothesize new ways to improve these therapies.  

The sensitivity analysis of the model predicted that the 
concentration of the TSP1 receptor CD47 most significantly 
affects the main model output, the angiogenic ratio (the ratio 
of the pro- and anti-angiogenic signaling complexes). This 
quantity can be used to better understand why a TSP1 
mimetic that targeted CD36 performed poorly in clinical 
trials. Furthermore, the model suggests that a CD47 binding 
mimetic may perform better. These predictions continue to be 
tested experimentally. 

C.  NK cell signaling 
 As a final example, we present new results from our 

study to model Natural Killer (NK) cell activation leading to 
cytotoxic effects that target cancer cells.  NK cell activation 
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requires the integration of signaling inputs from multiple 
pathways [11]. A predictive computational model that 
quantifies the synergy between the multiple pathways 
involved in NK cell activation provides mechanistic insight 
into the NK cell’s killing potential and can accelerate the 
development of NK cell-based therapies. 

We have constructed a molecularly-detailed model of 
three stimulatory pathways that contribute to overall NK cell 
activation: the CD16, NKG2D, and 2B4 pathways (Fig. 2A). 
These receptors activate MAPK, Akt, and PLCγ, signaling 
species that mediate NK cell activation and cytotoxicity. We 
produced a system of ODEs that incorporates biochemical 
reactions reported in the literature and predicts the signaling 
species’ concentrations. We trained the model using 
published experimental data (immunoblot measurements of 
key intracellular signaling species).  Using the eFAST global 
sensitivity analyses, we first identified the most influential 
parameters that affect the main model outputs: the 
phosphorylated forms of the NK cell receptors, ERK, Akt, 
and PLCγ. We then applied PSO to estimate the values of the 
influential model parameters needed to match the training 
data. We validated the model using a separate set of data: 
measurements for NK cells simultaneously stimulated by 
multiple receptors or in the presence of molecular 
perturbations (e.g., RNAi, kinase inhibitors, or species 
knockdown). Fig. 2B shows predictions from the validated 
model compared to experimental data for ERK and Akt, 
following stimulation of the NKG2D receptor.  

 

Interestingly, although the CD16, 2B4, and NKG2D 
receptors all contribute to NK cell activation and cytotoxicity, 
their magnitude and mechanisms of action are quite different 
[11]. Our model shows that stimulation of CD16 produces a 
strong but transient response, compared to the other 
receptors. This can be explained by examining the estimated 
parameter values that characterize CD16 signaling: CD16 
binds more tightly to its ligand and is more efficient in 
transducing the input signal (i.e., catalyzing subsequent 
reactions after ligand binding). Overall, the model provides 
mechanistic insight into the dynamics of different NK cell 
receptor stimulation and identifies ways to tune the signaling 
pathways for targeted cell-based therapies. 
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Figure 2: Relative level of phosphorylated ERK (red) and Akt 
(blue) upon NKG2D stimulation. Lines, mean model predictions. 
Circles, experimental data. Shading, 95% confidence interval. 
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