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Abstract—Recently, a least-squares-based method has been
proposed to decode auditory attention from single-trial EEG
recordings for an acoustic scenario with two competing speakers.
This method aims at reconstructing the attended speech envelope
from the EEG recordings using a trained spatio-temporal filter. While
the performance of this method has been mainly studied for noiseless
and anechoic acoustic conditions, it is important to fully understand
its performance in realistic noisy and reverberant acoustic conditions.
In this paper, we investigate auditory attention decoding (AAD)
using EEG recordings for different acoustic conditions (anechoic,
reverberant, noisy, and reverberant-noisy). In particular, we
investigate the impact of different acoustic conditions for AAD filter
training and for decoding. In addition, we investigate the influence
on the decoding performance of the different acoustic components
(i.e. reverberation, background noise and interfering speaker) in the
reference signals used for decoding and the training signals used for
computing the filters. First, we found that for all considered acoustic
conditions it is possible to decode auditory attention with a decoding
performance larger than 90%, even when the acoustic conditions for
AAD filter training and for decoding are different. Second, when
using reference signals affected by reverberation and/or background
noise, a comparable decoding performance as when using clean
reference signals can be obtained. In contrast, when using reference
signals affected by the interfering speaker, the decoding performance
significantly decreases. Third, the experimental results indicate that it
is even feasible to use training signals affected by reverberation, back-
ground noise and/or the interfering speaker for computing the filters.

Index Terms—Auditory attention decoding, electroencephalogra-
phy (EEG), background noise, reverberation, interfering speaker.

I. INTRODUCTION

In complex acoustic conditions the human auditory system
has a remarkable ability to segregate a speaker of interest from
a mixture of speakers and background noise [1], [2]. In contrast
with normal-hearing persons, hearing-impaired persons typically
have more difficulties with such auditory segregation, particularly
in multi-talker scenarios [3]. Although many acoustic signal
processing algorithms are available to reduce background noise or
to perform source separation in multi-talker scenarios [4], [5], these
algorithms typically need to rely on assumptions about the target
speaker to be enhanced. For example, in hearing aid applications
the target speaker is typically assumed to be located in front of
the user or is assumed to be the loudest speaker. As in real-world
conditions such assumptions are often violated, the performance of
these algorithms may substantially decrease. Therefore, successfully
identifying the target speaker in hearing aid applications is very
important to improve speech intelligibility.

Recent studies have shown that auditory cortical responses are
correlated with the envelope of the attended speech signal [6]–[9].

Based on this finding, an auditory attention decoding (AAD) method
has been proposed in [10] to identify the attended speaker from
single-trial EEG recordings. This method aims at reconstructing the
attended speech envelope from the EEG recordings using a trained
spatio-temporal filter. In the training step, the clean speech signal
of the attended speaker is used to train a spatio-temporal filter by
minimizing the least-squares error between the attended speech
envelope and the reconstructed envelope. In the decoding step, the
clean speech signals of both the attended and the unattended speaker
are used as reference signals. In [10] it has been shown that for high-
density EEG recordings it is possible to decode auditory attention
when presenting the clean speech signals of the different speakers
to different ears of a listener (i.e. dichotic stimuli presentation).
When presenting competing speech signals in a simulated anechoic
condition including head filtering effects, it has been shown in
[11] that a larger AAD performance can be obtained compared to
dichotic presentation. Recently, a large research effort has focused on
investigating how to use AAD as part of a brain-computer interface
for real-world applications, e.g., to control a hearing aid [11]–[22],
mainly however for anechoic conditions. Aiming at integrating a
small-size EEG recording system in hearing aids, in [12]–[14] the
reliability of AAD using a low number of EEG electrodes has been
shown in an anechoic condition. Aiming at investigating the effect of
neurofeedback, in [15] the feasibility of an online closed-loop system
for AAD has been shown in an anechoic condition. Instead of using
the clean speech signals of the attended and the unattended speaker
as reference signals for decoding, in [16]–[20] the effect of different
reference signals on the AAD performance has been investigated
for an anechoic condition. Using simulated noisy reference signals
for decoding, in [16] we have investigated the robustness of AAD
to residual interference and background noise. In [17], [18] a neuro-
steered noise reduction algorithm has been proposed to suppress
the unattended speaker based on the AAD decision for an anechoic
condition. In [19] an AAD-based sound source separation algorithm
using deep neural networks has been presented to suppress the unat-
tended speaker. In [20] we have investigated steerable beamformers
to generate reference signals for AAD in an anechoic condition.

While the performance of the aforementioned least-squares-based
AAD method has been extensively investigated for noiseless
and anechoic acoustic conditions, in practice also background
noise and reverberation, i.e. acoustic reflections against walls and
objects, are present. Reverberation is known to spectro-temporally
distort speech signals, causing the binaural spatial cues and pitch
to become less reliable for performing auditory attention tasks
[23]–[26]. In addition, interfering speakers and background noise
degrade the attended speech signal, possibly leading to a severe
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Fig. 1: Binaural acoustic simulation setup used for simulating the presented
stimuli in different acoustic conditions.

speech encoding degradation at the level of the auditory nerve and
the brainstem [27], [28]. Since in noisy and reverberant conditions
the available signals at the ears contain several acoustic components
(i.e. reverberation, background noise and interfering speaker), fully
understanding the impact of each acoustic component on AAD is of
crucial importance, e.g., in order to generate appropriate reference
signals for decoding from these signals.

Recently, in [29] the performance of the least-squares-based
AAD method was investigated for noisy and reverberant acoustic
conditions. In [29] the same acoustic condition was used for
AAD filter training and for decoding and the feasibility of using
reverberant speech signals both as training and as reference signals
was investigated. It was shown that in this way a comparable
decoding performance for the reverberant condition as for the
anechoic condition can be obtained. In this paper, we perform a
more detailed analysis of the performance of the least-squares-based
AAD method for an acoustic scenario comprising two competing
speakers, background noise and reverberation. Compared to [29]
we consider more acoustic conditions, especially with regard to
background noise, and we specifically investigate the impact of
different acoustic conditions for the training and the decoding
steps. In addition, we investigate the influence on the decoding
performance of the different acoustic components in the reference
signals used for decoding and the training signals used for
computing the filters. Some preliminary results were presented in
[30], where we investigated the feasibility of using the (unprocessed)
signals at the ears, containing reverberation, background noise and
the interfering speaker, as reference and training signals.

The paper is organized as follows. In Section II the different
acoustic conditions used for recording the EEG responses and the
different acoustic signals used for the experimental analysis are
introduced. In Section III the training and decoding steps of the
least-squares-based AAD method are briefly reviewed. Section IV
describes the acoustic and EEG measurement setup used for the
experiments. In Section V the experimental results are presented
and discussed, exploring the influence on the decoding performance
of the different acoustic conditions and acoustic components.

II. ACOUSTIC CONDITIONS AND COMPONENTS

We consider an acoustic scenario comprising two competing
speakers and background noise in a reverberant environment (see
Fig. 1). The clean speech signal of the attended speaker is denoted

as sa [i], while the clean speech signal of the unattended speaker
is denoted as su[i], with i the discrete time index. The signals at the
ears of the listener consist of a mixture of both speakers, including
head filtering effects, reverberation and background noise. The
signal ym[i] at the m-th ear, with m=1 denoting the left ear and
m=2 denoting the right ear, can be written as

ym[i]=ham[i]∗sa[i]︸ ︷︷ ︸
xa
m[i]

+hum[i]∗su[i]︸ ︷︷ ︸
xu
m[i]

+vm[i], (1)

where ham[i] and hum[i] denote the (reverberant) acoustic impulse
response between them-th ear and the attended and the unattended
speaker, respectively, ∗ denotes the convolution operation, and
vm[i] denotes the background noise component at them-th ear. The
reverberant speech signal of the attended and the unattended speaker
at the m-th ear is denoted as xam[i] and xum[i], respectively. These
reverberant speech signals consist of an anechoic speech signal
encompassing the (anechoic) head filtering effect, i.e. xa,anm [i] and
xu,anm [i], and a reverberation component. For notational conciseness
the index i will be omitted in the remainder of this paper.

For the EEG recordings we will consider four different acoustic
conditions, i.e. anechoic, reverberant, noisy and reverberant-noisy.
Depending on the acoustic condition, the stimuli presented at the ears
of the listener obviously comprise different acoustic components:
• in the anechoic condition (an), the mixture of the anechoic

speech signals of the attended and the unattended speaker is
presented.

• in the noisy condition (no), the mixture of the anechoic
speech signals of the attended and the unattended speaker and
background noise is presented.

• in the reverberant condition (re), the mixture of the reverberant
speech signals of the attended and the unattended speaker is
presented.

• in the reverberant-noisy condition (rn), the mixture of the
reverberant speech signals of the attended and the unattended
speaker and background noise is presented.

To investigate the impact of the different acoustic components
on the AAD performance, we will consider several acoustic signals
(see Table I):
• the clean speech signals sa and su.
• the anechoic speech signals xa,anm and xu,anm , i.e. the clean

speech signals affected by head filtering effects.
• the reverberant speech signals xam and xum, i.e. the anechoic

speech signals affected by reverberation.
• the interfered speech signals, i.e. the anechoic speech signals

affected by an interfering speaker

xanm =xa,anm +xu,anm . (2)

• the noisy speech signals, i.e. the anechoic speech signals
affected by background noise

xa,nom =xa,anm +vm, x
u,no
m =xu,anm +vm. (3)

• the binaural speech signals ym in (1), i.e. the anechoic speech
signals affected by reverberation, background noise and an
interfering speaker.

It should be noted that in the experiments (see Section IV-B) the
positions of the attended and the unattended speaker are not always
the same, i.e. for some participants the attended speaker is on the
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TABLE I: Acoustic Signals Used for Experimental Analysis

Signal Definition

sa, su clean speech signal
xa,anm , xu,anm anechoic speech signal

xam, xum reverberant speech signal
xanm interfered speech signal

xa,nom , xu,nom noisy speech signal
ym binaural speech signal

right side (and the unattended speaker on the left side), whereas for
some participants the attended speaker is on the left side (and the
unattended speaker on the right side). Due to the head filtering effect,
the broadband energy ratio between the attended speech component
and the unattended speech component in the signals at the ears is
always smaller at the side of the unattended speaker than at the side
of the attended speaker for the considered scenario. Therefore, the
speech signals in Table I at the side of the attended speaker will
be referred to as attended speech signals and the speech signals at
the side of the unattended speaker as unattended speech signals.

III. AUDITORY ATTENTION DECODING METHOD

This section briefly reviews the least-squares-based AAD method
proposed in [10]. This method aims at reconstructing the attended
speech envelope from the EEG recordings using a trained spatio-
temporal filter. Section III-A describes the training step, where
the envelope of a training signal is used together with the EEG
recordings to compute the filter. Section III-B describes the decoding
step, where the envelopes of two reference signals (attended and
unattended) are compared with an estimate of the attended speech
envelope computed using the trained filter. In most previous work
[10]–[18], [21], [22] anechoic EEG recordings have been used in the
training and decoding steps and/or the clean (or anechoic) speech
signals have been used as training and reference signals. In this
paper we will use EEG recordings from different acoustic conditions
(see Section II) and we will explore the influence of using different
acoustic signals (see Table I) as training and reference signals.

A. Training Step

In the training step, the attended speaker is assumed to be known
and an attended speech signal (e.g., the clean speech signal of the
attended speaker sa) is used as training signal. From this signal the
attended speech envelope ea[k], with k= 1...K the sub-sampled
time index, is extracted, e.g., based on the Hilbert transform [31].
The attended speech envelope is then estimated from the EEG
recordings rc[k], c=1...C, using a spatio-temporal filter as

êa[k]=

C∑
c=1

L−1∑
l=0

gc,l rc[k+l+∆], (4)

with gc,l the l-th filter coefficient in the c-th channel, L the number
of filter coefficients per channel, and ∆ modeling the latency of
the attentional effect in the EEG responses to the speech stimuli.
In vector notation, (4) can be written as

êa[k]=gTr[k], (5)

with
g=
[
gT
1 gT

2 ...g
T
C

]T
, (6)

gc=[gc,0gc,1...gc,L−1]
T
, (7)

r[k]=
[
rT1 [k]rT2 [k] ...rTC[k]

]T
, (8)

rc[k]=[rc[k+∆]rc[k+1+∆] ...rc[k+L−1+∆]]
T
, (9)

with (.)
T denoting the transpose operation. The spatio-temporal

filter g is computed by minimizing the least-squares error between
the attended speech envelope ea[k] and the reconstructed envelope
êa[k], regularized with the squared l2−norm of the derivatives of
the filter coefficients to avoid over-fitting [12], [30], i.e.

J(g)=
1

K

K∑
k=1

(
ea[k]−gTr[k]

)2
+βgTDg, (10)

with D denoting the derivative matrix and β denoting a
regularization parameter. The filter minimizing the regularized
least-squares cost function in (10) is equal to

g=(Q+βD)
−1

q, (11)

with the correlation matrix Q and the cross-correlation vector q
given by

Q=
1

K

K∑
k=1

(
r[k]rT [k]

)
, q=

1

K

K∑
k=1

(r[k]ea [k]). (12)

In this paper we will consider several training conditions (tc) for
computing the filter g, i.e. tc=an using EEG responses recorded
in the anechoic condition, tc= re using EEG responses recorded
in the reverberant condition, tc=no using EEG responses recorded
in the noisy condition, and tc=rn using EEG responses recorded
in the reverberant-noisy condition. In addition, we will consider
the training condition tc= ac, in which EEG responses from all
conditions are used for computing the filter.

Aiming at investigating the influence of each acoustic component,
in this paper we will consider different attended speech signals (see
Table I) as training signals, more in particular the clean attended
speech signal sa, the anechoic attended speech signal xa,anm , the
reverberant attended speech signal xam, the interfered attended
speech signal xanm , the noisy attended speech signal xa,nom , and the
binaural attended speech signal ym.

B. Decoding Step

For each acoustic condition, the complete set of EEG responses
is segmented into T trials (see Section IV-C for more details). The
filter corresponding to trial t to be decoded is denoted as gt. To
decode to which speaker a listener attended during trial t, first an
estimate of the attended speech envelope êat [k] is computed using
the (trained) filter gt, i.e.

êat [k]=(gt)
T
rt[k], (13)

with rt [k] denoting the EEG recordings of trial t. Next, the
correlation coefficients between the estimated attended speech
envelope êat [k] and the envelope of two reference signals, i.e. namely
the attended and the unattended reference signal, are computed as

ρat =ρ(eat [k], êat [k]), ρut =ρ(eut [k], êat [k]), (14)

where ρat and ρut denote the attended and the unattended correlation
coefficient, respectively, and eat [k] and eut [k] denote the attended
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and the unattended speech envelope, respectively. When ρat >ρ
u
t ,

it is decided that auditory attention has been correctly decoded.
Accordingly, a larger difference between the attended and the
unattended correlation coefficient ρat−ρut (referred to as correlation
difference) is indicative of a more reliable AAD decision. The
decoding performance P is defined as the percentage of correctly
decoded trials over all considered trials and all participants. To
compute the correlation coefficients in (14), EEG recordings in
different acoustic conditions can be used for computing êat [k]. In
addition, aiming at investigating the influence of each acoustic
component on the decoding performance, different reference
signals (see Table I) can be used for computing the attended and
the unattended speech envelope eat [k] and eut [k], respectively.

In this paper we will investigate the decoding performance
for several evaluation conditions ec ∈ {an,re,no,rn,ac}, with
Pec denoting the decoding performance for a specific evaluation
condition. To decode trial t of an evaluation condition using the filter
trained in a specific training condition which is not necessary the
same as the evaluation condition, the filter gt is computed as follows:
• when the trial t to be decoded is part of the trials in the training

condition, the filter is computed using (11) as

gt=
(
Q̃t+βD

)−1
q̃t, (15)

with Q̃t the average correlation matrix, computed by averaging
all correlation matrices corresponding to trials in the training
condition except trial t, and q̃t the average cross-correlation
vector, computed by averaging all cross-correlation vectors cor-
responding to trials in the training condition except trial t, i.e.

Q̃t=
1

T−1

T∑
n=1,n6=t

Qn,q̃t=
1

T−1

T∑
n=1,n6=t

qn. (16)

This procedure corresponds to leave-one-out averaging.
• when the trial t to be decoded is not part of the trials in the

training condition, the filter is computed using (11) as

gt=
(
Q̄+βD

)−1
q̄, (17)

with Q̄ the average correlation matrix, computed by
averaging all correlation matrices corresponding to trials in
the training condition, and q̄ the average cross-correlation
vector, computed by averaging all cross-correlation vectors
corresponding to trials in the training condition, i.e.

Q̄=
1

T

T∑
n=1

Qn,q̄=
1

T

T∑
n=1

qn, (18)

Since the number of trials across acoustic conditions is different
(see Section IV-B), for tc = ac the average correlation matrix
and the average cross-correlation vector (Q̃t, Q̄, q̃t and q̄) are
computed in such a way that the contribution of trials from each
acoustic condition is considered equally.

In [16] it has been shown that the parameters involved in the
filter design (∆, L, β) play an important role in obtaining a good
decoding performance. In order not to favour one specific acoustic
evaluation condition, the filter parameters have been determined to
optimize the average decoding performance Pac over all considered
acoustic conditions. Please note that the filter parameters have
been optimized per participant and for each training condition (see
Section IV-B and IV-C).

Fig. 2: The correct answer scores related to the attended story, averaged
across all participants, for different acoustic conditions. Error bars represent
one standard error around the mean and ∗ indicates a significant difference
(p<0.05) between acoustic conditions, based on the Kruskal-Wallis test
followed by the post-hoc Dunn and Sidak test.

IV. ACOUSTIC AND EEG MEASUREMENT SETUP

A. Participants

Eighteen native German-speaking participants (right-handed
and aged between 21 and 34 years) took part in this study. All
participants were normal-hearing as was confirmed by pure tone
audiometry. The participants reported no past or present neurological
or psychiatric conditions. All participants signed an informed
consent form and were paid for their participation. Two participants
were excluded from the analysis, one participant due to poor
attentional performance (as revealed by the questionnaire results)
and the other participant due to a technical hardware problem.

B. Acoustic Stimuli

Two German audio stories, uttered by two different male speakers,
were used as the clean speech signals (sampling frequency of 16
kHz). One story was from the German audio book website [35] and
the other story was from a selection of audio books [36]. Speech
pauses that exceeded 0.5 s were shortened to 0.5 s. The acoustic
stimuli were simulated by convolving the clean speech signals (i.e.
the audio stories) with non-individualized binaural acoustic impulse
responses, either from [32], [33], or [34], and by adding diffuse
babble noise, generated according to [37]. The competing speakers
were simulated at −45◦ (left) and 45◦ (right). Eight different
acoustic conditions were considered for the stimuli (see Table II):
anechoic, reverberant with a moderate and a large reverberation time
(T60=0.5 s, T60=1 s), noisy with two different broadband signal-
to-noise ratios (SNR=9.0 dB, SNR=4.0 dB), and three combina-
tions of reverberation and noise. For the experimental analysis, the
acoustic conditions were grouped based on acoustic similarity as
shown in Table II, resulting in four experimental analysis conditions,
i.e. anechoic, reverberant, noisy, and reverberant-noisy. The acoustic
stimuli were presented to the participants via insert earphones
(E-A-RTONE 3A) using an RME HDSP 9632 PCI Audio Interface
and Tucker Davis Technologies programmable attenuators.

Before performing the experiment, the participants reported no, or
very limited, knowledge of the audio stories. Among all participants,
8 participants were instructed to attend to the left speaker, while
10 participants were instructed to attend to the right speaker. The
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TABLE II: Acoustic conditions used for experimental analysis and stimuli presentation

Experimental Analysis Condition Stimuli Presentation SNR[dB] T60[s]

Anechoic (an) Anechoic [32] ∞ <0.05

Reverberant (re)
Reverberant I [32] ∞ 0.50

Reverberant II [33], [34] ∞ 1.00

Noisy (no)
Noisy I [32] 9.0 <0.05

Noisy II [32] 4.0 <0.05

Reverberant-noisy (rn)
Reverberant-noisy I [32] 9.0 0.50

Reverberant-noisy II [32] 4.0 0.50

Reverberant-noisy III [33], [34] 9.0 1.00

participants were instructed to look at a fixation cross on a screen
and minimize eye blinking. The stimuli were presented in 11
sessions, each of length 10 minutes, interrupted by short breaks. For
each participant, the anechoic condition was always assigned to
the first session and subsequently to every other third session (i.e.
session 4, 7, and 10). Aiming at minimizing the influence of the
speech material on AAD, the acoustic conditions (except for the
anechoic condition) were randomly assigned to the other sessions.
Following each session, the participants were asked to fill out a
questionnaire consisting of 10 multiple-choice questions related
to each story. The questionnaire was aimed to indicate whether
the participants attended to the instructed speaker and whether the
audio story was intelligible in the different acoustic conditions. The
experiment for each participant took place on two different days.

C. EEG Setup and Signal Pre-processing

The EEG responses were recorded using C = 64 channels,
provided by Easycap GmbH, Germany, with a sampling frequency
of 500 Hz. The EEG responses were referenced to the nose elec-
trode and recorded using the Brain-Vision recorder software. The
EEG recordings were re-referenced offline to a common average
reference, band-pass filtered between 2 Hz and 8 Hz using a third-
order Butterworth band-pass filter, and subsequently downsampled
to fs = 64 Hz. The envelopes of all considered 16 kHz speech
signals were obtained using a Hilbert transform [31], followed by
low-pass filtering at 8 Hz and downsampling to fs=64 Hz. For the
training and decoding steps (see Section III), the EEG recordings of
each session were split into 10 trials, each of length 60 seconds. For
filter training and evaluation, each participant’s own data were used.

V. RESULTS AND DISCUSSION

In this section, the decoding performance of the least-squares-
based AAD method is investigated for different acoustic conditions
(see Table II) using the experimental setup discussed in the previous
section. Section V-A discusses the results of the questionnaire. In
Section V-B the impact of different acoustic conditions for the
training and decoding steps is investigated. In Section V-C the
impact of the head filtering effect is explored by comparing the
decoding performance using either the clean or the anechoic speech
signals. Finally, in Section V-D the influence of each acoustic
component is investigated by comparing the decoding performance
using reference and training signals affected by background noise,
reverberation, and/or interfering speaker.

A. Questionnaire Analysis

For all considered acoustic conditions, Fig. 2 presents the correct
answer scores related to the attended story, averaged across all
participants. The highest score is obtained for the anechoic condition,
while the lowest score is obtained for the reverberant-noisy condi-
tion. The statistical multiple comparison test (Kruskal-Wallis test
followed by post-hoc Dunn and Sidak test [38]) showed a significant
difference (Kruskal-Wallis test: χ2 =19.0, p=0.002) in terms of
the correct answer score between the anechoic condition and either
the noisy or the reverberant-noisy condition (post-hoc Dunn and
Sidak test: p=0.022 and p=0.000, respectively) and between the
reverberant condition and the reverberant-noisy condition (post-hoc
Dunn and Sidak test: p=0.013), implying that – as expected – the
noisy and the reverberant-noisy condition are more challenging.

B. Impact of Acoustic Conditions

For all considered evaluation conditions, Fig. 3 presents the
decoding performance for different training conditions when the
clean speech signals are used as reference and training signals.

First, we investigate the feasibility of decoding EEG responses
in different acoustic conditions ec∈{an,re,no,rn,ac} when using
filters trained using EEG responses in a specific acoustic condition
tc∈{an,re,no,rn} (i.e. left part of Fig. 3, separated by dashed line).
When the evaluation and training conditions are equal (indicated by
∇), it can be observed that a very good decoding performance (>
96%) is obtained for all evaluation conditions. These results are con-
sistent with previous findings for the anechoic condition [11], [13],
[15]–[18] as well as with recent findings for the reverberant and the
reverberant-noisy conditions [30]. For each training condition tc∈
{an,re,no,rn}, it can be observed that the decoding performance
when the evaluation and training conditions are equal (indicated by
∇) is among the highest decoding performances for all evaluation
conditions. When the evaluation and training conditions are not
equal, typically a lower decoding performance is obtained (except in
some cases for the anechoic and the reverberant training conditions).
For example, for the reverberant-noisy training condition the highest
decoding performance is obtained for the reverberant-noisy evalu-
ation condition (>97%), while a lower decoding performance is ob-
tained for the anechoic, reverberant, and noisy evaluation conditions
(>90%). In addition, for all training conditions tc∈{an,re,no,rn}
it can be observed that the average decoding performance for all
conditions Pac is considerably high (>93%).

Secondly, we investigate the feasibility of decoding EEG
responses in different acoustic conditions ec∈ {an,re,no,rn,ac}
when using filters trained using EEG responses in all acoustic
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Fig. 3: The decoding performance for different training and evaluation
conditions when using the clean speech signals. The plus signs represent
the upper boundary of the confidence interval corresponding to chance
level, based on a binomial test at the 5% significance level, the error bars
represent the bootstrap confidence interval at the 5% significance level,
∇ indicates the decoding performance when the training and evaluation
conditions are equal, and ∗ indicates a significant difference (p < 0.05)
with the decoding performance for all conditions (Pac) based on the
Kruskal-Wallis test followed by the post-hoc Dunn and Sidak test.

Fig. 4: Average correlation differences for different training conditions and
evaluation conditions when using the clean speech signals. The error bars
represent the bootstrap confidence interval at the 5% significance level.

conditions tc=ac (i.e. right part of Fig. 3, separated by dashed line).
It can be observed that a very good decoding performance (>95%)
is obtained for all evaluation conditions and that the decoding
performance across evaluation conditions is more consistent com-
pared to when using filters trained in a specific acoustic condition.
In addition, the average decoding performance for all conditions
Pac obtained with filters trained in all conditions is occasionally
significantly larger than with filters trained in a specific acoustic
condition. For example, the decoding performance Pac obtained
with filters trained in all conditions (tc=ac) is significantly larger
than with filters trained either in the reverberant condition (tc=re)
or in the reverberant-noisy condition (tc=rn) (Kruskal-Wallis test:
χ2=16.5, p=0.002; post-hoc Dunn and Sidak test comparisons of
tc=acwith tc=re and tc=rn: p=0.020, p=0.001, respectively).

The feasibility of using either filters trained in a specific acoustic
condition or filters trained in all acoustic conditions to perform AAD
in different acoustic conditions may be explained by considering the
robust neural responses to degraded – but still intelligible – speech
signals. Several studies have shown that auditory cortical responses
resemble the clean attended speech signal more than the speech
signal degraded by different acoustic components (e.g., background
noise, interfering speaker), suggesting a robust neural representation

of the clean attended speech signal [6], [7], [28], [29], [39]. To
decode auditory attention, the trained filters aim at reconstructing
the clean attended speech envelope from EEG responses that are
largely invariant to degradations. Hence, the reconstructed attended
envelope is expected to be more correlated to the clean attended
speech envelope than to the clean unattended speech envelope, i.e.
the correlation difference (ρa−ρu) is expected to be larger than zero.
For all considered evaluation conditions, Fig. 4 presents the correla-
tion difference for different training conditions, averaged across all
considered trials and participants (note that these average correlation
coefficients are not directly used for decoding). It can be observed
that a correlation difference significantly larger than zero is obtained
for all considered acoustic conditions, which is consistent with a
robust neural representation of the clean attended speech signal.

Finally, we investigate the parameters involved in the filter design
(∆, L, β) across training conditions. Fig. 5 depicts the optimal
parameter values (see Section III-B), averaged across all considered
trials and all participants. It can be observed that the optimal value
for ∆ varies only slightly between 93.8 ms to 101.6 ms, while the
optimal value for L varies more substantially between 109.3 ms to
128.9 ms. Accordingly, the EEG responses contributing most to the
AAD performance are those with latencies between 93.8 ms and
230.5 ms, consistent with previous findings in [12], [16], [28]. In
addition, the optimal value for the regularization parameter β varies
between 10−1 to 102. It can be observed that the optimal regulariza-
tion parameter is smaller when using filters trained in all conditions
than when using filters trained in a specific acoustic condition. A
possible explanation may be that training in all conditions can by
itself be considered as some form of regularization.

In summary, the results in this section show the feasibility of
using either filters trained in a specific acoustic condition or filters
trained in all conditions to perform AAD in different acoustic
conditions. While these results were obtained using the clean speech
signals as training and reference signals, in the next sections we
will investigate in more detail the influence of the different acoustic
components (head filtering effect, reverberation, background noise,
interfering speaker) in the training and reference signals.

C. Influence of head filtering effect

In this section, we investigate the influence of the head filtering
effect by comparing the decoding performance when using clean or
anechoic speech signals either as training or as reference signals. Fig.
6a presents the decoding performance for the anechoic condition
(ec=an) when using filters trained in the anechoic condition (tc=
an). Fig. 6b presents the average decoding performance for all con-
ditions (ec=ac) when using filters trained in all conditions (tc=ac).
A paired Wilcoxon signed rank test revealed no significant difference
(p>0.05) between using either the clean speech signals or the ane-
choic speech signals as training or as reference signals. These results
indicate that for all considered acoustic conditions head filtering
effects have no significant influence on the decoding performance.

D. Influence of background noise, reverberation and interfering
speaker

To investigate the influence of each acoustic component on AAD,
Fig. 7 presents the decoding performance for all considered acoustic
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(a) Filter parameters ∆ and L (b) Regularization parameter β

Fig. 5: The optimal values for the filter parameters (a) ∆ and L, and (b) the regularization parameter β, averaged across all trials and all participants
when using the clean speech signal. The shaded area indicates the bootstrap confidence interval at the 5% significance level.

(a) Anechoic condition (ec=an, tc=an)

(b) All conditions (ec=ac, tc=ac)

Fig. 6: Influence of head filtering effect on AAD. Comparison of decoding
performance using either the clean or the anechoic speech signals when the
evaluation and training conditions are equal to (a) the anechoic condition
or (b) all conditions. The plus signs represent the upper boundary of the
confidence interval corresponding to chance level based on a binomial
test at the 5% significance level, the error bars represent the bootstrap
confidence interval at the 5% significance level.

conditions (anechoic, reverberant, noisy, reverberant-noisy) using
the following signals as training signals or as reference signals:
• the clean speech signals sa and su.
• the anechoic speech signals xa,anm and xu,anm .
• the anechoic speech signals affected by different acoustic com-

ponents, i.e. the noisy speech signals xa,nom and xu,nom in (3) for
the noisy condition, the reverberant speech signals xam and xum
in (1) for the reverberant condition, the interfered speech signal
xanm (attended and unattended side) in (2) for the anechoic
condition1, and the binaural speech signals ym (attended and
unattended side) in (1) for the reverberant-noisy condition.

Similarly, Fig. 8 presents the correlation difference (ρa − ρu),
averaged across all considered trials and participants (note that these
average correlation coefficients are not directly used for decoding).

First, we investigate the case where the clean or the anechoic
attended speech signal is used as training signal (i.e. left part of
Fig. 7 and 8, separated by dashed line). When using the clean or
anechoic speech signals as reference signals, a very good decoding
performance (> 94%) is obtained for all acoustic conditions, as
already shown in Fig. 3. When using the noisy speech signals (in
the noisy condition, Fig. 7a) or the reverberant speech signals (in
the reverberant condition, Fig. 7b) as reference signals, there is no
significant difference in decoding performance (p>0.05) compared
to when using the clean or anechoic speech signals as reference
signals. On the other hand, when using the interfered speech signals
(in the anechoic condition, Fig. 7c) or the binaural speech signals
(in the reverberant-noisy condition, Fig. 7d) as reference signals, the
decoding performance is significantly lower (p<0.05) than when
using the clean or anechoic speech signals as reference signals,
although the decoding performance is still considerably large
(>87%). The feasibility of using either the interfered speech signals
or the binaural speech signals as reference signals for AAD can
be explained by considering the broadband energy ratio between
the attended and unattended speech components in the signals
at the ears. As already mentioned in Section II, due to the head
filtering effect this broadband energy ratio is smaller at the side

1The interfered speech signal is used in the anechoic condition to exclude the
influence of other acoustic components (background noise and reverberation) on
the analysis.
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(a) Noisy condition (ec=no, tc=no) (b) Reverberant condition (ec=re, tc=re)

(c) Anechoic condition (ec=an, tc=an) (d) Reverberant-noisy condition (ec=rn, tc=rn)

Fig. 7: Influence of different acoustic components (background noise, reverberation and interfering speaker) on AAD. Comparison of
decoding performance when using (a) the noisy speech signals in the noisy condition, (b) the reverberant speech signals in the reverberant
condition, (c) the interfered speech signals in the anechoic condition, (d) the binaural speech signals in the reverberant-noisy condition,
either as training signal or as reference signals. The plus signs represent the upper boundary of the confidence interval corresponding
to chance level based on a binomial test at the 5% significance level, the error bars represent the bootstrap confidence interval at the
5% significance level, and ∗ indicates a significant difference (p<0.05) based on the paired Wilcoxon signed rank test.

of the unattended speaker than at the side of the attended speaker.
In summary, the results in Fig. 7 (left side) show that when using
reference signals affected by reverberation or background noise,
a comparable decoding performance can be obtained as when using
clean or anechoic speech signals, whereas when using reference
signals affected by the interfering speaker the decoding performance
significantly decreases. This also suggests that in order to generate
appropriate reference signals, it is more important to reduce the
interfering speaker than to reduce background noise or reverberation.

The decoding performance results in Fig. 7 can be further ex-
plained by considering the influence of each acoustic component on
the correlation difference in Fig. 8. For the noisy condition (Fig. 8a),
there are no significant differences between the considered reference
signals, which corresponds to the decoding performance results in
Fig. 7a. For the reverberant condition (Fig. 8b), it can be observed
that the correlation differences significantly decrease (ρa−ρu <
0.04) when using the reverberant speech signals as reference signals,
but only when using the clean attended speech signal as training
signal. Nevertheless, this lower correlation difference does not result
in a significantly lower decoding performance in Fig. 7b. For the
anechoic condition (Fig. 8c) and the reverberant-noisy condition (Fig.

8d), it can be observed that the correlation differences significantly
decrease when using the interfered speech signals (ρa−ρu<0.03)
or the binaural speech signals (ρa−ρu<0.02) as reference signals.
These lower correlation differences are also reflected by significantly
lower corresponding decoding performances in Fig. 7c and 7d.

Secondly, we explore the potential of using the attended speech
signal affected by different acoustic components as training signal
(i.e. right part of Fig. 7 and 8, separated by dashed line). On the
one hand, when using the noisy attended speech signal (in the noisy
condition, Fig. 7a) or the reverberant attended speech signal (in
the reverberant condition, Fig. 7b) as training signal, there is no
significant difference in decoding performance (p>0.05) compared
to when using the clean or the anechoic attended speech signal
as training signal (for all considered reference signals). On the
other hand, when using the interfered attended speech signal (in the
anechoic condition, Fig. 7c) or the binaural attended speech signal
(in the reverberant-noisy condition, Fig. 7d) as training signal, the
decoding performance is significantly lower compared to when
using either the clean or the anechoic attended speech signal as
training signal (for all considered reference signals). Nevertheless,
even when using the binaural attended speech signal as training
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(a) Noisy condition (ec=no, tc=no) (b) Reverberant condition (ec=re, tc=re)

(c) Anechoic condition (ec=an, tc=an) (d) Reverberant-noisy condition (ec=rn, tc=rn)

Fig. 8: Influence of different acoustic components (background noise, reverberation and interfering speaker) on AAD. Comparison of
correlation difference when using (a) the noisy speech signals in the noisy condition, (b) the reverberant speech signals in the reverberant
condition, (c) the interfered speech signals in the anechoic condition, (d) the binaural speech signals in the reverberant-noisy condition,
either as training signal or as reference signals. The error bars represent the bootstrap confidence interval at the 5% significance level,
and ∗ indicates a significant difference (p<0.05) based on the paired Wilcoxon signed rank test.

signal in the reverberant-noisy condition, it is still feasible to
perform AAD with a decoding performance larger than 82%. The
decoding performance results in Fig. 7 when using attended speech
signals affected by different acoustic components as training signal
are mostly consistent with the correlation differences in Fig. 8.

In summary, the results in this section show that using speech
signals affected by background noise and reverberation as training
or reference signals results in a decoding performance that is
comparable to using the clean or anechoic speech signals as training
or reference signals. On the contrary, using speech signals affected
by the interfering speaker as training or reference signals typically
results in a significantly lower decoding performance.

VI. CONCLUSIONS

In this paper, we investigated the performance of the least-squares-
based AAD method for different acoustic conditions (anechoic,
reverberant, noisy, and reverberant-noisy), both in the training step
as well as in the decoding step. The experimental results showed
that for all considered acoustic conditions it is possible to decode
auditory attention with a decoding performance larger than 90%,
even when the acoustic conditions for training and decoding are
different. In addition, for most acoustic conditions there is no
significant difference in decoding performance when using filters
trained in all conditions or filters trained in a specific condition.

Furthermore, we investigated the influence of the head filtering
effect and of acoustic components (reverberation, background noise
and interfering speaker) on the decoding performance. The experi-
mental results showed that for all considered acoustic conditions the
head filtering effect has no significant impact on the decoding per-
formance. Moreover, when using speech signals affected by either
reverberation or background noise as reference signals, a comparable
decoding performance is obtained as when using clean speech
signals as reference signals. On the contrary, when using speech
signals affected by the interfering speaker as reference signals, the
decoding performance significantly decreases. Nevertheless, even
when using the binaural speech signals as reference signals for
decoding, a relatively large decoding performance can be obtained.

Finally, we explored the potential of using the attended speech
signal affected by different acoustic components as training
signal for computing the filter. When using attended speech
signals affected by either reverberation or by background noise
as training signal, a comparable decoding performance is obtained
as when using the clean attended speech signal as training signal.
However, when using attended speech signals affected by the
interfering speaker as training signal, the decoding performance
may significantly decrease. Nevertheless, even when using the
binaural attended speech signal as training signal, it is still feasible
to achieve a decoding performance larger than 82%.
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While the discussion in this paper has been limited to the least-
squares-based AAD method, in which auditory attention is decoded
using an envelope reconstruction model, AAD approaches based on
a neural encoding model [40] have not been investigated in this paper.
Further work could therefore include a study on how reverberation
and noise influence these neural-encoding-based AAD approaches.
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