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Abstract 
Objective: The process of manually marking up epileptic spikes for simultaneous 
electroencephalogram (EEG) and resting state functional MRI (rsfMRI) analysis in epilepsy 
studies is a tedious and subjective task for a human expert. The aim of this study was to evaluate 
whether automatic EEG spike detection can facilitate EEG-rsfMRI analysis, and to assess its 
potential as a clinical tool in epilepsy.  
 
Methods: We implemented a fast algorithm for detection of uniform interictal epileptiform 
discharges (IEDs) in one-hour scalp EEG recordings of 19 refractory focal epilepsy datasets (from 
16 patients) who underwent a simultaneous EEG-rsfMRI recording. Our method was based on 
matched filtering of an IED template (derived from human markup) used to automatically detect 
other ‘similar’ EEG events. We comprehensively compared simultaneous EEG-rsfMRI results 
between automatic IED detection and standard analysis with human EEG markup only. 
 
Results: In contrast to human markup, automatic IED detection takes a much shorter time to detect 
IEDs and export an output text file containing spike timings. In 13/19 focal epilepsy cases, 
statistical EEG-rsfMRI maps based on automatic spike detection method were comparable with 
human markup, and in 6/19 focal epilepsy cases it revealed additional brain regions not seen with 
human EEG markup. Additional events detected by our automated method independently revealed 
similar patterns of activation to a human markup. Overall, automatic IED detection provides 
greater statistical power in EEG-rsfMRI analysis compared to human markup in a short timeframe. 
 
Conclusions: Automatic spike detection is a simple and fast method that can reproduce comparable 
and, in some cases, even superior results compared to the common practice of manual EEG markup 
in EEG-rsfMRI analysis of epilepsy.  
 
Significance: Our study shows that IED detection algorithms can be effectively used in epilepsy 
clinical settings. This work further helps in translating EEG-rsfMRI research into a fast, reliable 
and easy-to-use clinical tool for epileptologists. Our IED detection approach is now publicly 
available as a MATLAB package at:  
https://github.com/omidvarnia/Automatic_focal_spike_detection. 
 

Highlights 
• Automatic spike detection increases the number of detected uniform epileptic interictal 

discharges and enhances statistical power of EEG-rsfMRI inter-subject variability maps, 
• Automatic spike detection can identify additional activated brain regions with presumed 

epileptogenic focus not seen in standard analysis based on human markup, 
• Automatic spike detection can shorten the IED identification process. 

Keywords: EEG, fMRI, focal epilepsy, spike detection, interictal discharge, matched filtering 
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1 Introduction 
The ability to simultaneously acquire electroencephalogram (EEG) and functional MRI (fMRI) is 
clinically valuable in epilepsy, where EEG is used to detect the times at which epileptiform activity 
is present (due to its high temporal resolution) and fMRI is used to map the spatial location of the 
associated EEG activity (due to its high spatial resolution) (Allen et al. 1998). Surface EEG signals 
are associated with postsynaptic cortical currents of large pyramidal neurons, which are 
perpendicularly aligned to the cortical surface (Nunez and Srinivasan 2006; Daunizeau et al. 2010). 
FMRI data analysis, on the other hand, relies on the blood oxygen level-dependent (BOLD) 
contrast of active/inactive brain (Ogawa et al. 1990). Specifically, interictal epileptiform 
discharges (IEDs) are visible on scalp EEG when synchronous neuronal firing occurs in a 
substantial portion of cortex (between 10 and 20 𝑐𝑚#) (Tao et al. 2007). The significant prognostic 
value of IEDs for patients with newly diagnosed seizure disorders is well established as they have 
the potential of revealing a patient’s epileptogenic focus, even in cases with no other imaging 
evidence (Wirrell 2010).  

In order to extract the IED-induced BOLD changes in simultaneous EEG-rsfMRI recordings, a 
human expert inspects long EEG recordings using a ‘mental template’ for similar epileptogenic 
events in newly observed EEG signals. The accuracy of human markup is affected by several 
factors: i) it is a subjective, time-consuming and cumbersome procedure which is prone to the risk 
of missing spikes due to fatigue, in particular in long recordings, ii) it needs extensive experience 
and training, thus being expensive in clinical settings, iii) the statistical power of resulted 
epileptogenic networks may be significantly reduced by markup inconsistency (Waites et al. 2005; 
Flanagan et al. 2009). It is, therefore, important to obtain more objective and rapid ways of marking 
epileptogenic spikes in scalp EEG, as this step limits its clinical usefulness and reliability in routine 
clinical centers. 

Several attempts have been made to mitigate the burden of IED markup by a human expert in 
epilepsy studies (Grouiller et al. 2011; Geerts 2012; Tousseyn et al. 2014; Scheuer et al. 2017). In 
this context, there is a critical question regarding all existing techniques: can automated detection 
of scalp-level interictal epileptogenic discharges replicate, and possibly improve the performance 
of human markup? In the current study, we implemented a fast IED detection algorithm for scalp 
interictal EEG recordings with roughly uniform IEDs based on matched filtering. In this detection 
strategy, a known signal, or template, is searched throughout an unknown signal in order to find 
similar events. Specifically, we compared statistically significant BOLD changes across the brain 
obtained by standard EEG-rsfMRI analysis, based on manually marked spikes by an expert as well 
as detected IEDs by the algorithm. Our aim was two-fold: i) evaluate if automatic spike detection 
can improve performance of EEG-rsfMRI analysis in epilepsy studies, and ii) evaluate whether it 
has the potential to become a user-friendly and efficient tool for EEG experts.    

2 Methods 
2.1 Subjects and EEG-rsfMRI acquisition 
Since 2012, 35 patients with refractory focal epilepsy underwent an EEG-rsfMRI study as a part 
of pre-surgical work-up through the Austin Health Comprehensive Epilepsy Program. In total, 19 
patients were excluded from this study: 13 patients had no active EEG during EEG-rsfMRI and 
four patients had significant scanner and/or EEG artefacts. Two patients had ictal, but no IEDs 
during the scan. We subsequently analyzed simultaneous EEG-rsfMRI data of the remaining 16 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/361113doi: bioRxiv preprint 

https://doi.org/10.1101/361113
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

patients with focal epilepsy (aged 11-60, 8 females – see Table 1 for more details). All patients 
had one hour of continuous concurrent EEG-rsfMRI recording. Patients were included in the study 
if they had relatively frequent interictal epileptiform discharges (>15 IEDs/hour) during the scan. 
The study was approved by the Austin Health Human Research Ethics Committee and all patients 
gave written consent to participate in the study.   

Each patient was scanned using a 3 Tesla Siemens Skyra system (Erlangen, Germany) with eyes 
closed and instructed to fall asleep to maximize the probability of detecting epileptogenic events 
on scalp EEG. FMRI data were acquired using an echo-planar imaging sequence with 44 
interleaved 3 mm slices, repetition time = 3 s, echo time = 30 ms, flip angle = 85&, voxel size = 
3×3×3 mm, field of view = 216 mm and acquisition matrix size = 72×72. A total of 1200 volumes 
(60 minutes) of rsfMRI data were used for all patients. A T(-weighted anatomical image at 
1.2×1.2×1.2 mm resolution was also acquired during each recording session. 

Simultaneous EEG data were acquired using a 32-channel MR-compatible EEG cap (BrainCap 
MR, EasyCap GmbH, Breitbrunn, Germany) according to the 10-20 standard system using a 
BrainAmp recorder (Brain Products GmbH, Munich, Germany). Data were recorded based on the 
referential montage at the sampling rate of 5000 Hz with reference to the FCz electrode, but further 
converted to average reference, and grounded to AFz. Additional channels included echo-
cardiogram and signals from three motion coils that were developed in our lab (Masterton et al. 
2007). Sharp spikes and slow-spike-and-waves were the most frequent types of IEDs observed 
throughout the EEG recordings (see Table 2).  Sharp spikes were defined as focal changes of EEG 
activity in the time domain with duration less than 70 ms. Slow-spike-and-waves were defined as 
a slow decaying envelope followed by a few fluctuations of EEG activity with a duration less than 
200 ms.   
 

2.2 EEG-rsfMRI preprocessing 
All rsfMRI data were preprocessed in MATLAB (MathWorks Inc., Natick, Massachusetts, United 
States) using Statistical Parametric Mapping toolbox (SPM12, Welcome Department of Imaging 
Neuroscience, Institute of Neurology, London) and with the aid of the in-house developed iBrain 
Analysis Toolbox for Statistical Parametric Mapping (available at: www.brain.org.au/software) 
(Abbott et al., 2011). FMRI preprocessing steps included: slice timing correction and re-alignment 
of the fMRI images for head motion, segmentation of T(-weighted images into white matter, grey 
matter and cerebrospinal fluid areas and coregistration of fMRI images to the patient’s own T(-
weighted images. Slice time corrected and spatially normalized datasets were smoothed using a 
spatial Gaussian filter with full-width at half maximum of 8 mm. Also, nuisance signals (6 motion 
parameters as well as mean white matter and cerebrospinal fluid signals) were regressed out from 
the data. Slow signal drifts with a period longer than 128 seconds (i.e., frequencies below ~0.008 
Hz) were also removed from fMRI time series.  

EEG signals were preprocessed using the BrainVision Analyzer software (version 2.0, Brain 
Products) and the EEGLAB toolbox (Delorme and Makeig 2004). Cardioballistic artifacts were 
corrected automatically using information obtained via motion artefact detection loops (Masterton 
et al. 2007; Abbott et al. 2015). Gradient-switching artifacts were corrected by subtracting the 
averaged scanner artifact template from the continuous EEG recordings using the information of 
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scanner markups (Allen et al. 2000). The preprocessed EEG signals were further downsampled to 
250 Hz.  

Table 1: Patient details and clinical information 

Patient Age Sex 
Age of 
seizure 
onset 

Epilepsy 
type MRI finding PET finding Ictal SPECT finding VEM finding 

1 41y M 10y Left TLE 
Left hippocampal sclerosis, multiple 
tubers in the left temporal lobe, left 

parietal region and left anterior cingulate 

Left temporal 
hypometabolism Left temporal hyperperfusion 

IEDs: left temporal with rare 
discharges on there right;  

Ictal: left hemisphere 

2 42y F 7y Left TLE Periventricular nodular heterotopia, 
more severe on left NA NA IEDs and ictal: left temporal 

3 29y F 16y Left TLE MRI-negative  Left anterior temporal 
hypometabolism Left temporal hyperperfusion IEDs: left temporal 

4 39y F 3mo 
Right FLE 

or 
multifocal 

MRI-negative  Right frontal, right temporal 
hypometabolism 

Right superior frontal 
hyperperfusion IEDs and ictal: right frontal  

5 40y M 16y Right TLE Lesion negative, previous right 
hippocampal sclerosis removal 

Right temporal 
hypometabolism, left 

temporal hypermetabolism 

Right frontal and posterior 
temporal hyperperfusion 

IEDs: bitemporal and right 
posterior temporal; Ictal: 

bilatral temporal 

6 26y M 13y Right FLE MRI-negative  Left frontal 
hypometabolism 

Right temporal, mesial 
frontal and right frontal polar 

cortex hyperperfusion 

IEDs and ictal: right central 
and right frontal  

7 23y M 16y 
Right 

hemisphere 
focal 

Right periventricular nodular 
heterotopia, right temporal peri-sylvian 
and parietal polymicrogyria, regions of 

cortical dysplasia 

Right polar, anteromesial 
and lateral temporal 

hypometabolism 

Right temporal 
hyperperfusion 

IEDs: right fronto-temporal; 
Ictal: temporal 

8 41y F 16y Left TLE MRI-negative  No definitive 
hypometabolism Left temporal hyperperfusion 

IEDs: left temporal; Ictal: 
right hemisphere and left 

posterior quadrant 

9 26y F 5y Multifocal 

Bilateral periventricular nodular 
heterotopia, ectopic posterior pituitary, 
extensive left cerebellar hypoplasia, left 

posterior schizencephaly with 
polymicrogyria 

Left posterior lateral 
temporal hypometabolism. 

Right parieto-temporal-
occipital hyperperfusion 

IEDs: bilateral fronto-
central, left posterior 

quadrant; Ictal: bilateral 

10 14y M 12y 
Right FLE 

or 
multifocal 

MRI-negative  Right parietal and frontal 
hypometabolism 

Right parietal and frontal 
hypoperfusion 

IEDs: right frontal and 
fronto-central 

11 19y F 12y Right 
parietal 

Right postcentral bottom of sulcus 
dysplasia 

Right postcentral 
hypometabolism 

Right postcentral 
hyperperfusion IEDs: right centro-temporal 

12 11y F 10y Left PHG 
or FLE 

Left PHG dysplasia, particularly 
posteriorly NA NA IEDs: left frontal, rare right 

frontal; Ictal: left frontal 

13 27y F 8y Right TLE MRI-negative Right posterior temporal 
hypometabolism 

Right posterior temporal 
hyperperfusion 

IEDs: right posterior inferior 
temporal; Ictal: right 

temporal. 

14 25y M 11y Right FLE  
Abnormality in the inferior bank of the 

calcarine sulcus around the right 
fusiform gyrus 

Right frontal 
hypermetabolism Right frontal hyperperfusion 

IEDs: right anterior 
quadrant; Ictal: right frontal 

and temporal 

15 53y M 16y Left FLE Left superior-frontal dysplasia, previous 
left superior frontal resection 

Left mesial inferior frontal 
hypermetabolism, at the 
posteroinferior margin of 

the resection cavity 

Left frontal hyperperfusion IEDs and ictal: left frontal 

16 60y M 26y Right TLE Right insular surgical defect, previous 
right inferior frontal resection 

Right anterior temporal 
hypometabolism 

Right anterior temporal 
hyperperfusion with 

surrounding hypoperfusion 
IEDs: right temporal 

Abbreviations: M = male, F = female, y = year, mo = month, NA = not available, TLE = temporal lobe epilepsy, FLE = frontal lobe epilepsy, 
PHG = parahippocampal gyrus, MRI = magnetic resonance imaging, PET = positron emission tomography, SPECT = single photon emission 

computed tomography, VEM = video electroencephalogram monitoring, IEDs = interictal epileptiform discharges 
 

2.3 Automatic IED detection using matched filtering 
Detection of IEDs in contrast to other non-spike events such as background noise and non-epileptic 
biological changes can be very challenging, as they may emerge in a wide range of temporal 
morphologies. In this study, we focused on two types of IEDs with consistent shape in the time 
domain (i.e., sharp spikes and slow-spike-and-waves) as two of the most widely seen spike types 
in focal epilepsy. With some simplifying assumptions, the challenge of IED detection can be 
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reframed as a classical detection problem in signal processing where an event of interest is going 
to be detected throughout a noisy signal. An optimal solution to this problem is offered by the 
matched filter theorem (Geerts 2012; Boashash and Azemi 2014).  

Suppose the interictal EEG signal 𝑥(𝑡) of length 𝑇 at a target EEG electrode has been generated 
through a linear time-invariant system with impulse response function ℎ(𝑡) and consists of a set 
of deterministic and real-valued events 𝑠(𝑡) (here, IEDs) plus additive white Gaussian noise 𝑛(𝑡). 
Two statistical hypotheses can be applied to 𝑥(𝑡): 

1 𝐻3:	𝑥
(𝑡) = 𝑛(𝑡),																𝑡ℎ𝑒	𝑒𝑣𝑒𝑛𝑡𝑠	𝑠(𝑡)	𝑎𝑟𝑒	𝑎𝑏𝑠𝑒𝑛𝑡	𝑖𝑛	𝑥(𝑡),

𝐻(:	𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡),					𝑡ℎ𝑒	𝑒𝑣𝑒𝑛𝑡𝑠	𝑠(𝑡)	𝑎𝑟𝑒	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑖𝑛	𝑥(𝑡). 

The target EEG electrode is selected where the dominant IED events occur (i.e., the one with 
greatest mean IED amplitude over all electrodes – see Figure 2-A and Figure 3-A for two 
examples). The basic idea of matched filtering is to magnify the events of interest in 𝑥(𝑡) by 
passing it through a linear and shift-invariant filter which is matched to 𝑠(𝑡). It is mathematically 
shown that the filter ℎ(𝑡) = 𝑠(−𝑡) can do this job by maximizing the signal-to-noise ratio between 
𝑥(𝑡) and 𝑛(𝑡). A test statistic 𝜂(𝑡) is then obtained by filtering 𝑥(𝑡) and sampling the resulted 
signal at 𝑡 = 0: 

𝜂(𝑡) = 𝑥(𝑡) ∗ 𝑠(−𝑡)|FG3 = H𝑥(𝑡)𝑠(𝑡)𝑑𝑡
	

J
, Eq.  1 

where * denotes the convolution operator. In the case of automatic IED detection, the template 
𝑠(𝑡) is defined for each patient by averaging their manually marked epileptogenic events 
throughout the EEG recorded inside the MRI scanner. It is important to note that matched filtering 
works best for IEDs with consistent morphology, as they can be represented by a template. In fact, 
Eq.  1 describes a correlation procedure in the time domain where the ‘similar’ parts of interictal 
EEG recording to the IED template 𝑠(𝑡) are being highlighted by the matched filter ℎ(𝑡). The test 
statistic 𝜂(𝑡) is further normalized by its Euclidean norm and compared with a fixed threshold 𝜂FKL  
for hypothesis testing: 

1𝐻3:	𝜂 < 𝜂FKL,
𝐻(:	𝜂 ≥ 𝜂FKL.

 

True detection is when we reject 𝐻3 and the event is present. False detection is when we reject 𝐻3, 
while the event is not present.   

2.4 Finding the optimal threshold between matching template and new spikes 
In order to estimate the optimal threshold 𝜂FKL  for each patient (i.e., the threshold which can lead 
to maximum similarity between the template and detected events), we performed a receiver 
operating characteristic (ROC) analysis. We increased the thresholding level 𝜂FKL  from 1% to 99% 
with 1% incremental steps. At each level, we treated the suprathreshold amplitudes as ‘detected 
IEDs’ and assigned a binary mask to their timing (i.e., 1 for above-threshold and 0 for below-
threshold time points). We considered this binary timing as a score set returned by a binary IED 
classifier whose true class labels were the binary timing of human markup. This resulted in a ROC 
curve for each thresholding level (99 ROCs in total for each patient). Finally, we chose the optimal 
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threshold as the one associated with the highest area under the ROC curve. Table 2 summarizes 
the optimum thresholds as well as the results of automatic IED detection in contrast to human 
markup for all patients.  
 
Table 2: IED identification details for each patient. Here, ‘Peak F-value’ refers to the highest F-value observed in each statistical parametric map 

of our EEG-rsfMRI analysis.  

 Human markup Automatic IED detection 

Patient IED type Target EEG 
electrode 

Number of 
marked 

IEDs 

Peak 
F-value 

Number of 
detected 

IEDs 

Peak 
F-value 

Thresholding 
level (𝜂FKL) 

Processing 
time (s)* 

1 Sharp F7 154 11.68 209 13.88 99% 45 

2 Sharp T7 444 6.07 588 19.52 61% 78 

3 Sharp T7 587 4.98 1406 7.87 62% 39 

4 Sharp/slow F4 45 7.15 83 10.17 94% 51 

5 Sharp T7 211 6.79 833 8.73 71% 88 

6 SSW Fp2 36 9.20 545 16.27 68% 34 

7 SSW T8 38 9.72 39 10.63 70% 49 

7 Sharp T8 15 6.02 28 8.19 69% 45 

8 Sharp P3 93 6.66 336 7.15 78% 72 

9 SSW CP5 301 8.83 1095 9.91 99% 58 

10 Sharp/slow Fp2 314 8.35 879 9.95 94% 91 

10 Sharp F8 42 NA 637 8.46 65% 60 

11 Sharp C4 254 NA 323 4.93 89% 84 

12 Sharp/slow Fp1 414 NA 839 5.23 67% 52 

13 Sharp T8 43 NA 53 7.54 99% 62 

13 Sharp P4 16 NA 30 5.92 90% 70 

14 Sharp F8 42 NA 637 4.98 87% 37 

15 Sharp F7 109 4.48 233 6.17 71% 40 

16 Sharp T8 259 4.85 466 4.98 66% 53 
   Mean: 180  Mean: 487   Mean: 58.3 s 

   STD: 170  STD: 397   STD: 17.7 s 
Abbreviation: SSW = slow-spike-and-wave, IEDs = interictal epileptiform discharges, STD = standard deviation, NA = not applicable, s = 

seconds. * ‘Processing time’ here is the elapsed time which template matching takes to detect IED-like events. It excludes the preprocessing of 
EEG-rsfMRI and standard general linear modelling of fMRI analysis. 

 
 

2.5 Simultaneous EEG-rsfMRI analysis based on automatic IED detection and human 
markup 

We used general linear modelling to quantify joint information of IEDs (either automatically 
detected or manually marked) and simultaneous rsfMRI (Bénar et al. 2002). This process treats 
IEDs as a binary sequence of delta functions, each of which represents an epileptogenic discharge. 
We convolved this binary sequence with a canonical hemodynamic response function peaking at 
6s to resemble the delay between neural responses and their associated hemodynamic changes. We 
introduced EEG-derived information to the general linear modelling design matrix as regressors 
of interest. We identified the spatial epileptic networks associated with IEDs by applying a 
statistical F-test on the fitted general linear model parameters. We thresholded the statistical 
parametric maps at a voxel-level p-value of <0.001 and a cluster-level p-value of <0.05 using 
Gaussian Random Field Theory (Friston et al. 1994).  

 
2.6 Comparison of the automatic approach and human markup 

The automatic IED detection method was compared with human markup in two ways: (1) based 
on visual comparison of statistical EEG-rsfMRI parametric maps by two unbiased and experienced 
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epileptologists and EEG experts, and (2) by comparing the processing time used to identify, mark 
and export timing files of IEDs from EEG recordings using both methods. Figure 1 illustrates the 
block diagram of this study for a typical dataset. 
 

 
Figure 1: Comparison of automatic IED detection and manual IED markup methods. For each subject, EEG-rsfMRI maps of the two IED markup 

approaches were given to two independent experts for visual comparison.   
 
2.6.2.  Visual evaluation of maps by EEG experts 
Spatial EEG-rsfMRI maps (multiple axial slices through the brain in own-space anatomy) for each 
patient were visually inspected by two independent epileptologists. For each pair of EEG-rsfMRI 
maps (one based on human markup and the other based on automatic spike detection method – see 
Figure 1 for an example of this), the two experts were asked to assess the level of visual similarity 
of maps on a scale from 1 (completely different maps) to 10 (identical maps). If no EEG-rsfMRI 
clusters were observed in the human markup results, the two EEG experts assessed whether the 
additional spatial information provided by the automated IED method were clinically informative. 
Specifically, the experts checked whether the results were in line with available clinical 
information and other imaging modalities such as PET and ictal SPECT (Table 1).  
 
The experts underwent no specific training or preparation for the study, they were not given any 
guidance as to how to put their similarity scores and they were asked to not discuss the assessment 
with each other. The order of presented pairs of F-maps was randomized to avoid any underlying 
confounding patterns and was kept the same for both experts. Table 3 shows the questionnaire as 
well as the associated scores. Note that two general classes of IEDs with relatively persistent 
morphology over time (i.e., slow-spike-and-wave and sharp discharges) were present in our cohort 
of 16 patients (Table 2). All EEG datasets had one IED type, except for dataset 7, 10 and 13 having 
two types. Consequently, 19 different IED events from 16 patients were included in this study. 
Figure 2 and Figure 3 illustrate the results of two exemplary datasets (Patients 1 and 6), while the 
complete set of results can be found in Figure 4 and Figure 5.  
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Table 3: The questionnaire which was used by two independent EEG experts to score the similarity between the EEG-rsfMRI statistical maps 
associated with automatically detected IEDs and human markup. 

In general, does the automated IED detection method provide comparable results with the standard 
human markup method? YES/NO.  

On a scale from 1 (completely different) to 10 (identical), how similar are these two maps in your 
opinion?  

Patient no. Expert 1 Expert 2 
1 Yes, 9 Yes, 9 
2 Yes, 7 Yes, 7 
3 No, 4 Yes, 4 
4 Yes, 6 Yes, 6 
5 Yes, 7 Yes, 7 
6 Yes, 4 Yes, 6 

7 (sharp) Yes, 4 Yes, 6 
7 (SSW) Yes, 9 Yes, 8 

8 Yes, 4 Yes, 4 
9 Yes, 6 Yes, 7 

10 (sharp slow) Yes, 9 Yes, 9 
10 (sharp) N/A N/A 

11 N/A N/A 
12 N/A N/A 

13 (sharp T8) N/A N/A 
13 (sharp P4) N/A N/A 

14 N/A N/A 
15 No, 2 No, 3 
16 No, 4 No, 5 

Mean 6.1 6.5 
Standard deviation 2.4 1.9 

 
The conventional Cohen’s к (Cohen 1960) was used as measures of interrater agreement among 
the two experts. The к value was interpreted according to the standard guidelines: > 0.81 very good 
agreement, 0.61-0.80 good, 0.41-0.60 moderate, 0.21-0.40 fair and < 0.20 poor agreement (Altman 
1991). 

3 Results 

3.1 Automatic IED detection has a short processing time 
The most time-consuming and demanding task in any standard EEG-rsfMRI analysis of epilepsy 
datasets is manually locating interictal epileptiform discharges in EEG recordings by a trained 
EEG expert. While it would typically take several hours for a human expert to mark epileptogenic 
events in our one-hour EEG recordings and prepare files with IED onset and duration details, the 
automatic IED detection method was able to detect IEDs and export an output text file containing 
IED timings in less than two minutes for all cases (see Table 2 – right column).  
 

3.2 Automatic IED detection finds more spikes than human markup  
The number of automatically detected IEDs was significantly greater than manually detected IEDs 
(Wilcoxon rank sum test with p = 0.012). Specifically, the number of manually marked IEDs by 
the EEG expert ranged from 15 to 587, while the number of automatically detected epileptogenic 
events varied from 28 to 1,406 (Table 2).  
 

3.3 Automatic IED detection improves the statistical power of EEG-rsfMRI F-maps  
Human markup led to statistically significant clusters of BOLD changes in only 13 out of 19 EEG-
rsfMRI maps (from 16 subjects). On the other hand, statistically significant clusters were present 
in all 19 EEG-rsfMRI maps using automatic spike detection. Across subjects, the peak F-value 
across all suprathreshold voxels was higher with automatic spike detection compared to manual 
markup (Wilcoxon rank sum test, p = 0.031 - see Table 2). Importantly, the number of detected 
fMRI voxels in the automatic IED detection approach was not significantly correlated with the 
corresponding threshold values 𝜂FKL  (Pearson’s r = -0.24 p = 0.32), suggesting that lower 
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‘similarity’ thresholds (i.e., a more lenient inclusion of ‘automatic spikes’) do not necessarily lead 
to greater number of suprathreshold voxels in the F-maps.  
 

 
Figure 2: A representative illustration of automatic spike detection (A) and human markup (B) for Patient 1. Top panel shows the spatial 

distribution of IEDs and the target electrode (F7). Left/right panels show the mean and stack plot of aligned IEDs as well as their associated 
BOLD inter-subject variability maps. For this dataset, the number of automatically detected spikes was 209 in contrast to 159 manually marked 

spikes. 
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Figure 3: A representative illustration of automatic spike detection (A) and human markup (B) for Patient 6. Top panel shows the spatial 

distribution of IEDs and the target electrode (Fp2). Left/right panels show the mean and stack plot of aligned IEDs as well as their associated 
BOLD inter-subject variability maps. For this dataset, the number of automatically detected spikes was 545 in contrast to 36 manually marked 

spikes. 
 

3.4 EEG-rsfMRI maps of automatic and human markup are spatially comparable 
Two independent reviews were comparable when evaluated the spatial similarity of EEG-rsfMRI 
maps between manual and automatic IED markup (expert 1: 6.1 ± 2.4 s.d., expert 2: 6.5 ± 1.9 s.d., 
see Table 3). Pairwise Cohen’s к coefficients across two sets of review scores for the two types of 
spatial EEG-rsfMRI maps was 0.759 (very good agreement between the two EEG experts).  
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Figure 4: Left panel: BOLD responses based on human markup (left column) and automatic IED detection (right column) of 13 datasets for 

which at least one markup approach led to the detection of significant BOLD changes in EEG-rsfMRI analysis. Right panel: BOLD responses 
based solely on manually missed spikes. All T-maps have been thresholded at a voxel-wise significance level of p<0.001 and cluster-wise 

p<0.05.  
 

3.4.1 Cases in which both human markup and automatic IED detection show significant BOLD 
clusters 

In 13 out of 19 analyses, both human markup and automatic IED detection algorithm elicited 
statistically significant BOLD changes in EEG-rsfMRI analysis (see Table 3 and Figure 4). In most 
cases, additional BOLD inter-subject variability identified with automated IED detection were 
proximate to significant BOLD changes seen on the maps of human markup and consistent with 
other clinical and imaging evidence (see Table 1, for full clinical information and clinical imaging 
findings). In two cases (Patient 6 and Patient 8), however, the BOLD response related to automatic 
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IED detection method provided additional information to the EEG-rsfMRI analysis of human 
markup. Next, we discuss the results of these two patients in more details.  
Patient 6  
This patient was a 26-year-old male whose frequent seizures involved discomfort in his chest, and 
turning head to the right followed by swearing and repetitive movements. EEG-rsfMRI analysis 
based on manual IED markup highlighted BOLD changes cross right frontal cortex, midline 
structures and left cerebellum, suggesting the involvement of a focal frontal epileptogenic network. 
EEG-rsfMRI analysis of the automatically detected IEDs, on the other hand, showed right parietal 
lobe inter-subject variability in addition to the previously highlighted brain regions by human 
markup. This additional region was fully consistent with the origin of patient’s eight stereotypical 
seizures recorded during EEG-rsfMRI as well as his independent PET results.  
Patient 8 
This patient was a 41-year-old female with seizures characterized by right hand aura of a “crawling 
feeling” in her hand, followed by a typically generalized seizure. Significant BOLD response based 
on human markup was detected mainly across left temporal lobe. Based on long-term video EEG 
monitoring, the patient had interictal discharges with a complex field arising in the left temporal 
and left posterior quadrant. Her ictal events appeared to have a left posterior quadrant and right 
hemisphere onset. BOLD changes revealed by the timing of automatically detected IEDs showed 
that both hemispheres may be involved in epileptogenic networks, a finding which is supported by 
the video EEG monitoring data. 
 
3.4.2 Cases where human markup led to no EEG-rsfMRI result 

In the remaining 6/19 analyses, the IED timing obtained from manual markup did not lead to any 
significant BOLD changes in EEG-rsfMRI analysis (Figure 5). In most of these cases, IEDs 
identified by automatic spike detection method revealed significant clusters of BOLD changes 
which were in line with other available clinical data (PET, SPECT– see Table 1). Next, we review 
these cases in more details.  
Patient 10 (sharp IEDs) 
This patient, a 14-year-old male, had focal seizures involving clonic jerking down the left side, 
focal dyscognitive seizures associated with left sided jerking and a psychiatric history with visual 
hallucinations. His EEG showed bi-frontal epileptiform activity, maximum in the right frontal 
region at FP2 and F4. Similarly, ictal SPECT showed right frontal changes. EEG-rsfMRI analysis 
of automatic IED detection method revealed BOLD inter-subject variability in the right frontal 
regions including midline, middle frontal gyrus, cingulate and temporal lobe. These activated brain 
regions were consistent with regions identified by nuclear imaging as well as with BOLD signal 
related to another type of his typical IED included in this study (i.e., sharp-slow – see Table 1). 
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Figure 5: Significant clusters of BOLD changes based on automatic IED detection of five datasets for which manual markup led to no significant 
results. Therefore, no similarity score by the EEG experts has been given. All F-maps have been thresholded at a voxel-wise significance level of 

p<0.001 and cluster-wise p<0.05. 
 

Patient 11 
This patient, a 19-year-old female with a 7-year-history of focal seizures beginning in the left hand 
with some secondarily generalized attacks, had very frequent discharges at C4 on multiple EEG 
studies. Her MRI showed a possible subtle area of focal thickening involving the depths of the 
right postcentral sulcus. PET studies revealed hypometabolism in the right post-central region. 
Stereo EEG confirmed the involvement of the depths of the post-central in epileptogenic focus. 
The patient subsequently underwent a surgical resection of the suspicious abnormal brain tissue, 
with significant improvement in her seizure frequency. Interestingly, EEG-rsfMRI based on 
automatic spike detection method showed significant BOLD changes in right parietal lobe – rather 
distant from the regions identified by other modalities, but within the same hemisphere. 
Patient 12  
This patient, an 11-year-old female, had a complex left temporal lobe epilepsy or multifocal with 
possible subtle left parahippocampal dysplasia. She had occasional generalized convulsion 
seizures, absence seizures characterized by staring periods, with no aura, as well as focal seizures 
with head/eye deviation to the right. The epileptogenic focus could never be accurately localized. 
Multiple EEG video-monitoring studies pointed towards left frontal lobe. The patient did not have 
any nuclear imaging. EEG-rsfMRI based on automatic spike detection method revealed BOLD 
signal diffuse inter-subject variability in midline and right hemisphere, which is not consistent 
with other available very limited data. 
Patient 13 
This patient was a 27-year-old female whose weekly seizures began at age 8 and involved impaired 
consciousness, characterized by blurred vision and were associated with an epigastric sensation, 
rubbing hands and occasionally lips smacking. Multiple MRI scans showed no lesion, while 
numerous EEG studies showed focal T8 spikes and ictal SPECT study showed regional right 
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posterior temporal involvement. EEG-rsfMRI analysis based on automatic spike detection method 
and involving two different types of patient’s characteristic IEDs showed a highly focal area in 
right inferior temporal posterior brain region, consistent with other clinical findings. Subsequently, 
intracranial monitoring confirmed this region as the origin of epileptogenic activity. The patient 
underwent a surgery and is now seizure free after about 24 months of follow-up.  
Patient 14 
This patient was a 25-year-old male whose focal seizures began at the age of 11 years and involved 
complex visual auras, cognitive and behavioral automatisms, generalized convulsions as well as 
hemi-clonic activity involving the left side. He also appeared to have some progressive cognitive 
decline through the 14 years of his seizures. The localization of epileptogenic focus was unclear. 
His EEG showed interictal frequent discharges in the right anterior quadrant both at F8, F4 and T4 
with rare O2 spikes. His anatomical MRI showed diffuse atrophy. Ictal SPECT showed a right mid 
frontal seizure focus on a background of widespread cortical metabolic abnormality in the right 
cerebrum, and medial right occipital lobe and right temporal lobe involvement. Automatically 
detected IEDs in EEG-rsfMRI analysis were associated with significant clusters of BOLD 
variability in right mid frontal regions, which was consistent with other clinical observations.  
 

4 Discussion 
In this study, we show that automatic IED detection can reduce the burden of manual EEG markup 
without compromising data quality. Statistical parametric maps derived from automatic EEG 
markup had higher statistical power than the ones with manual EEG markup. The additional events 
seen in automated detection reiterated the pattern of activation seen in the human markups. These 
results support the use of automatic IED detection for focal epilepsy studies, making EEG-rsfMRI 
studies more routinely achievable in the investigation of intractable focal epilepsy.  
After marking up a sample of the epileptiform events, the subsequent average processing time of 
IED detection using our matched filtering approach is less than one minute (see Table 2 and Table 
3). The resulting EEG-rsfMRI F-maps are comparable or better. This contrasts with a typical EEG 
markup time of several hours by an experienced EEG reporter for a one-hour EEG recording. This 
approach solves two major issues with EEG fMRI. Firstly, not every event has to be identified 
individually. Marking every epileptiform event in an hour-long EEG study is difficult, stressful 
and not the primary skill of the typical reporting EEG individual. Confident identification of a 
sample of epileptiform events, as needed with our method, is a more typical activity and easily 
performed. Secondly, the time saving of only marking a few events in the lengthy record makes 
EEG-rsfMRI a practical step in the clinical evaluation of patients. 
  
Our results also suggest that, even with the best human mark-up, there may be a large number of 
IEDs throughout an interictal EEG recording which are missed by EEG experts. This is probably 
because of the uncertainty of recognising low voltage events, Patient 6 is an example of this, where 
with the automated markup a clearer picture of epileptic networks emerged showing involvement 
of the association cortex. 
 
Previous studies have suggested a direct relationship between the number of IEDs included in the 
statistical analysis and the percentage of voxels surviving the statistical thresholding (Flanagan et 
al., 2009, Gkiatis et al., 2017). Our study confirmed that including more IEDs improves the 
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statistical power of EEG-rsfMRI analysis. The ’new’ epileptogenic events detected by the 
automated method enhance the statistical power of the test and revealed (previously hidden) 
elements of the patient’s epileptogenic networks.  
 
It may have been possible that the automated detection selected ‘noise’ events with characteristics 
similar to the marked epileptiform events. This is a potential issue that applies to all spike detection 
techniques as ‘spike-like’ features that match our algorithm may be present in EEG recordings 
(but actually be noise). However, the third column of Figure 4 shows that, as a group, the new 
IED’s detected by the algorithm led to biologically meaningful maps of BOLD changes in all 
patients. Therefore, if there is detection of any additional ‘noise events’ that were not epileptiform 
it is not a significant problem in our cohort. Separate analysis of only the additional events showed 
a pattern similar to the original definitely epileptiform events. 
 
Our IED detection algorithm has been validated against human markup. In other words, it gives 
the same result from marking up just a sample set of discharges as marking up the whole study 
and all epileptiform events. The brain maps from manual and automatic IED detection were 
comparable to each other, with additional power in the automated markup. The pattern shown in 
the additional events ‘marked up’ by the automatic algorithm were similar. This demonstrates that 
automatic spike detection is a simple, fast and potentially robust tool.  
 
We found it encouraging that in six of our refractory focal epilepsy patients who had no statistically 
significant results in the standard EEG-rsfMRI analysis with human markup, automatic spike 
detection provided additional significant fMRI voxels in plausible areas for most of these cases 
(see patients 10 to 14 - Figure 5). These ‘newly detected’ brain regions were compatible with other 
available clinical information and imaging modalities such as PET and ictal SPECT (see patient 
10, 13 and 14 - Figure 5). 
 
It is important to reinforce that our purpose in this paper was not to evaluate the clinical 
information provided by the EEG fMRI study, but to assess the automated markup method against 
human markup.  Reliable validation of EEG-rsfMRI results is not a trivial issue, especially when 
it comes to clinically complicated focal epilepsy patients we report here who often have no clear-
cut structural epileptogenic lesion on conventional MRI. In general, surgical resection of the 
presumed seizure focus with seizure freedom is the gold standard to evaluate this. Our study group 
included complex patients with active EEGs who mostly did not go on the surgery. As far as we 
can go (and as can be seen from Figure 4 and 5 as well as the case descriptions), the activated areas 
are plausible as being linked to the clinical epilepsy phenotype in most cases, including those 
where activations were only seen when using the automated method. 
 
We consider the current approach as a helper to EEG expert. In essence, the EEG expert only needs 
to mark a few epileptogenic EEG events to obtain a template definition, and the remainder of the 
EEG markup will be finalized by the algorithm. Our analyses suggest that automatic spike 
detection can obtain EEG-rsfMRI results typically in less than a minute by using as few as 15 
manually marked spikes (see the fourth column in Table 2). This process is bound to save time 
and cost of medical staff while providing with the same or improved results as human markup. In 
order to facilitate the replicability of our findings by other researchers, we are releasing the 
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MATLAB implementation of our IED detection approach available to public 
(https://github.com/omidvarnia/Automatic_focal_spike_detection.).  
 
Previous studies have reported good clinical sensitivity using template-based, feature based and 
topography-based automatic EEG detection methods (Grouiller et al., 2011, Tousseyn et al., 2014, 
Hao et al., 2018). It is common to use outside-scanner EEG for making a template (in the case of 
homogenous spikes) or extracting features (in the case of spikes with different temporal and spatial 
morphologies) and search for similar ‘features’ across in-scanner EEG recordings. Whether an 
IED template from outside-scanner EEG can be used for inside-scanner EEG dataset with our 
method has not been tested in this study but might be a future direction for research. Outside-
scanner EEG differs from our approach in that the inside-scanner EEG is affected by MRI gradient 
noise and electrical induction by movement including ballistocardiogram artifacts.  
 
Given that our spike detection method requires a spike template based on human IEDs mark-up, 
the template matching methods cannot be used for detecting epileptogenic events with inconsistent 
IED morphology (variable time and shape of epileptic events) such as paroxysmal fast activity. 
While this may seem to be an issue in patients where spike morphology differs, practically we 
were able to obtain ‘biologically plausible’ results in our complex cohort despite this. Another 
limitation is that the spike detection algorithm used in this study only incorporates information of 
a single target EEG electrode, but the presentation of IEDs may be reflected in a field consisting 
of multiple EEG channels. A recent study incorporated multiple EEG channels within an automatic 
IED detection framework. This was done by using a predictive model (deep learning) to include a 
wider range of IED types in multichannel EEG (Hao et al., 2018). While this is a very elegant 
solution, it requires lots of data and it is computationally and time demanding. We emphasize that 
our simple and fast automatic IED detection approach is the ‘polar opposite’ to deep learning 
algorithm that demands massive amount of data and heavy computational power. We believe that 
‘complex’ machine learning techniques and ‘simpler’ signal detection algorithms have 
complementary roles when it comes to incorporating automatic spike detection as a practical step 
in epilepsy studies. 
 

5 Conclusion 
Automatic spike detection is a simple and fast method for reproducing comparable and, in some 
cases, even superior results in contrast to manual EEG markup in EEG-rsfMRI analysis of 
epilepsy. Our study shows that automatic detection of interictal epileptiform discharges can be 
effectively used in epilepsy clinical settings. This work further helps in translating EEG-rsfMRI 
research into a fast, reliable and easy-to-use clinical tool for epileptologists.  
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