
Pyramids and cascades: a synthesis of food chain functioning and stability

Matthieu Barbier1∗ and Michel Loreau1

(Dated: November 1, 2018)

Food chain theory is one of the cornerstones of ecology, providing many of its basic predictions,
such as biomass pyramids, trophic cascades and predator-prey oscillations. Yet, ninety years into
this theory, the conditions under which these patterns may occur and persist in nature remain
subject to debate. Rather than address each pattern in isolation, we propose that they must be
understood together, calling for synthesis in a fragmented landscape of theoretical and empirical
results. As a first step, we propose a minimal theory that combines the long-standing energetic
and dynamical approaches of food chains. We chart theoretical predictions on a concise map,
where two main regimes emerge: across various functioning and stability metrics, one regime is
characterized by pyramidal patterns, the other by cascade patterns. The axes of this map combine
key physiological and ecological variables, such as metabolic rates and self-regulation. A quantitative
comparison with data sheds light on conflicting theoretical predictions and empirical puzzles, from
size spectra to causes of trophic cascade strength. We conclude that drawing systematic connections
between various existing approaches to food chains, and between their predictions on functioning
and stability, is a crucial step in confronting this theory to real ecosystems.

INTRODUCTION

The concept of food chain, since its formulation by
Elton [1], has become one of the most widely studied
in empirical and theoretical ecology [2]. It provides a
lens through which we can understand many ecological
phenomena, by partitioning species into trophic levels,
describing how biomass or energy is distributed among
these levels, and studying their dynamics, from popula-
tion cycles to trophic cascades [3].

Yet, its fundamental predictions have a checkered his-
tory of success outside of textbook examples. When
predicted patterns are not observed, it is often unclear
whether the issue lies with the theory and its application,
or the influence of other factors such as complex interac-
tions and spatial fluxes [4–11]. Even when predictions do
agree with empirical data, they might not be sufficient
to ascertain the underlying trophic structure [12–15].

This lack of consensus may be due to an increasing
fragmentation of the literature. Food chains are char-
acterized by an interconnected set of structural, func-
tional and dynamical properties. Yet, these properties
have grown into separate topics of investigation, influ-
enced by two main paradigms (Fig. 1).

The energetic paradigm, following Hutchinson and
Lindeman [16], focuses on macroscopic energy flows up
the food chain. Based on scaling arguments and statisti-
cal relationships, it is associated with large-scale empir-
ical and applied studies, notably in marine systems [17–
19]. It seeks laws describing how aggregated metrics of
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functioning (e.g. biomass, growth or consumption) vary
across trophic levels or body sizes [20, 21], how they scale
with each other within a level [22], and how they relate to
environmental or physiological parameters. These static
relationships are built upon the implicit assumption that
ecosystems operate at, or close to, some steady regime.

The dynamical paradigm, following Lotka [23] and
Volterra [24], focuses on how the impacts of predation
ripple down the food chain. It often operates at the scale
of individual species, with an attention to the response
and behavior of predators and prey. Drawing on a rich
mathematical literature, it emphasizes the importance
of feedback mechanisms and nonequilibrium phenomena
such as cycles or collapse [25]. Some of its predictions,
including trophic cascades and the paradox of enrich-
ment [26], have prompted extensive empirical investiga-
tions, but theory and empirics have rarely been matched
at a quantitative level [27].

While these two paradigms usually address different
questions, it is possible to apply one’s methods to the
other’s objects, revealing unexpected conflicts. Jonsson
[28] noted that energetic arguments produce pyramidal
biomass distributions, whereas dynamical models often
do not. We will exhibit a number of other discrepancies
in relations between metabolism, biomass, productivity
and stability.

Yet, we believe that these theoretical approaches can
and must be embedded within a single framework. This
systematic viewpoint has been argued for at a conceptual
level by Leibold et al. [29]. But the field is still lacking
a general quantitative formalism: a concise map of all
essential food chain behaviors and their interplay, along
with the key ecological parameters that govern them.

As a first step toward this synthesis, we propose an
approach that captures aspects of both paradigms. We
use a simple dynamical food chain model that includes
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•Non-pyramidal and top-heavy distributions
    (Trebilco et al. 2016, Woodson et al. 2018)

•Origin of scaling laws (e.g. Bi versus Pi)
    (Banse et al. 1980, Cebrian et al. 1994)

•What controls trophic cascade strength?
    inconsistent predictors, attenuation across levels
   (Micheli 1999, Borer et al. 2005)

•Are food webs stable, and how?
   (Brose et al. 2006, Rip et al. 2010)

Macroscopic equilibrium patterns Species-level temporal patterns

•Major differences between biomes (Chase 2000)

•Distributions across body sizes or trophic heights
   (vertically diverse data e.g. Sheldon et al. 1972)

•Scaling of functions, within and across levels
   (horizontally diverse data e.g. Hatton et al. 2015)

• Species traits and behaviors encapsulated
    in the functional response (Holling 1965)

Donor control

Biomass B2

Biomass B1

Production

Production

Mortality

Productivity

Control
type

Antagonistic control

Biomass B2

Biomass B1

• Impact of perturbations (species introduction,
   harvesting, enrichment, e.g. Rosenzweig 1971)

• Stability and transitions to cycles, chaos,
    collapse (McCann 2011)

FIG. 1. The energetic and dynamical approaches to food chain behaviors. The energetic paradigm focuses on static and
macroscopic patterns, while the dynamical paradigm emphasizes temporal patterns and individual species characteristics.
Beyond these complementary concerns, each paradigm also offers a different vision of how trophic levels interact. In donor
control, each level’s biomass scales with its production, fixed by the biomass of the level below. We explain in the main text
that this scaling requires self-regulation. Antagonistic control, seen in dynamical models without self-regulation (8), is less
intuitive: each level’s biomass is set either by its prey’s productivity, or by its predator’s mortality, and is uncorrelated with
its own productivity. These two assumptions lead to clashing theoretical expectations, and empirical puzzles specific to each
approach. We list here four such challenges that we address in the main text.

metabolic rates and self-regulating mechanisms within a
trophic level. In distinct parameter ranges, this model
can recover either the energetic paradigm’s scaling re-
lationships, or the stability patterns investigated in the
dynamical paradigm.

We show that the modelling assumptions of the two
paradigms can be understood as opposite corners in a
multidimensional spectrum (Fig. 2), and we systemat-
ically explore how functioning and stability properties
vary across the full spectrum. The most important axis
is the relative strength of predation and self-regulation,
which predicts the transition between two qualitatively
different regimes. In the bottom-up regime dominated
by self-regulation, all the properties studied here, from
biomass to variability, exhibit pyramidal patterns. In the
top-down regime dominated by predation, these proper-
ties all display cascade (alternating) patterns.

We finally illustrate how this approach can lead to new
insights into empirical data and quantitative tests of food
chain theory. We discuss how these results may extend
to more complex food webs and functional responses.

A SYNTHETIC MODEL

The energetic and dynamical paradigms

The energetic and dynamical paradigms described
above appear to be at odds (Fig. 1), yet they can be un-
derstood as two different limits in a unified framework.
We will demonstrate this with the minimal food chain
model presented in Box 1.

We first establish a list of key ecological parameters,
used throughout this study, which are common to both
approaches. The environment determines the energy in-
flux into the basal level, g [31]. Two important physio-
logical parameters are the ratio m of predator and prey
metabolic rates [30] and the efficiency ε with which con-
sumed biomass is converted into growth [32, 33]. Finally,
we must account for two types of ecological interactions:
trophic interactions between levels, and self-regulation
(e.g. direct competition) within a level [34, 35], which
we denote by α and D, respectively. The ratio a = α/D
plays a central role in our results, as it captures the rel-
ative strength of trophic and non-trophic feedbacks.
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Box 1: Synthetic food chain model and key parameters

We propose the simplest model that can synthesize the predictions of both energetic and dynamical paradigms (Fig. 1 and 2).

dBi

dt
= Bi (gi −DiBi + εαi,i−1Bi−1 − αi+1,iBi+1) (1)

where Bi is the biomass of trophic level i, demographic processes are represented by intrinsic biomass growth or loss gi and self-
regulation Di, ε is the biomass conversion efficiency, and αij the strength of trophic interactions. All the rates appearing in this
equation may depend on the species’ metabolic rate mi. For simplicity, we assume a linear scaling:

Di = miD, g1 = m1g (basal growth), gi = −mir (i > 1, consumer mortality). (2)

Here, g represents the basal energy influx, including nutrient supply and autotroph efficiency, while r represents biomass loss and
mortality due to metabolic costs. Note that the carrying capacity g1/D1 of the autotroph level sets the scale for the total biomass
in the chain. To allow direct comparison between density-dependent and independent terms, we can choose biomass units such that
g1 = D1. The model further simplifies if the predator-prey metabolic ratio and the ratio of interaction strength to self-regulation

m = mi+1/mi, a = αi+1,i/Di (3)

are both constant throughout the chain. The equilibrium condition for surviving consumers (i > 1), which we derive and solve in
Appendix S1 in Supporting Information, is then

0 = − r/g︸︷︷︸
metabolic costs

− Bi︸︷︷︸
self-regulation

+ εaBi−1︸ ︷︷ ︸
consumption

− maBi+1︸ ︷︷ ︸
predation loss

. (4)

Its solution is the equilibrium biomass distribution, which depends on three synthetic parameters:

ρ = r/g, λ = εa×ma = mεa2, κ = εa/ma = ε/m. (5)

The product λ denotes the strength of top-down control in the chain. It represents the feedack of a trophic level on itself through
its predators: how much one unit of prey biomass increases predator biomass at equilibrium (εa), times how much this additional
predation suppresses the prey (ma), normalized by the prey’s self-regulation. The ratio κ represents how much biomass is gained by
consumers per unit biomass lost by resources, and we see in Fig. 3 that large κ allows top-heavy distributions. Finally, ρ captures
the balance between metabolic losses r and basal energy influx g. Losses can limit growth or even cause extinctions, but if g is
comparatively large (ρ ≈ 0), their effect becomes negligible, and equilibrium patterns are instead determined by interactions alone.

The two paradigms share a basic account of biomass
creation, loss and transfer between levels [16]. Given the
biomass Bi and production Pi (biomass created per unit
time) of trophic level i, we can write the dynamical and
static equations

dBi
dt

= −Li+Pi−
1

ε
Pi+1, Pi+1 ≤ εPi (equilibrium).

(6)
where ε is the conversion efficiency defined above, and
Li represents all non-trophic biomass losses. The static
inequality becomes an equality when Li = 0. Since ε <
1, any food chain at equilibrium must display smaller
energy flux (production) at higher levels.

The energetic paradigm emphasizes static relationships
such as the equilibrium condition in (6). To predict
biomass distributions, various studies [36–38] have pro-
posed heuristic equations for energy stocks rather than
fluxes:

miBi = Emi−1Bi−1 (7)

where mi is the metabolic rate of trophic level i, and
miBi is interpreted as its energy content. Some stud-
ies identify fluxes and stocks, Pi = miBi [39], and thus
E = ε. In general, this identification does not hold and
E is not an efficiency, but a phenomenological factor [36].
Our model yields the relationship E = εma (Appendix
S1) and we note that, contrary to fluxes, no physical prin-

ciple prevents the accumulation of larger energy stocks at
higher levels, E > 1.

By contrast, the dynamical paradigm emphasizes the
nonequilibrium patterns arising in (6) from feedbacks
between predator and prey. Behavior and physiology
are encapsulated in a functional response [40] specify-
ing how consumer production, Pi, depends on consumer
biomass, Bi, and resource biomass, Bi−1. To facilitate
comparisons, we follow a classic model with metabolic
scaling [30] and adopt a simpler Lotka-Volterra (Type 1)
functional response, giving

1

Bi

dBi
dt

= mi(−r + εBi−1)−mi+1Bi+1 (8)

where r represents metabolic costs. This corresponds
to setting production Pi = εmiBiBi−1 and losses Li =
rmiBi in (6). More complex models are considered in
the Discussion.

Our central observation is that the energetic for-
mula (7) cannot arise as an equilibrium of the dynamical
equation (8), but that it could with the addition of self-
regulation. We construct our synthetic model (Box 1) as
a dynamical equation with self-regulation, and show in
Fig. 2 that it admits both (7) and (8) as special cases
(we show in Appendix S1 that this holds for other ways
of modelling self-regulation, e.g. predator interference).
This allows a quantitative comparison between energetic
and dynamical models.
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Synthetic model (see Box 1)

Equation

Consumption
rate set by
(see Box 2)

Resource metabolism Consumer metabolism

Energetic paradigm Dynamical paradigm

Metabolic
costs

Self-
regulation

Energy influx
(consumption)

Predation
losses

Synthetic
parameter
regime

Synthetic parameters
Metabolic ratio
Predation/self-regulation
Costs/basal growth
Predation feedback
Top-heaviness

(see Discussion on functional response)

Self-
regulation

Predation
losses

Metabolic
costs

Basal
growth

(b)

(a)

Energy of
level i

Transfer
"efficiency"

Energy of
level i  1

Synthetic predictions and evidence

Pyramidal
patterns

Cascade
patterns

+

+

Functioning
and stability
patterns

(a)

Metabolism(b)

Cascade strength              (Borer et al. 2005)Aquatic and terrestrial herbivory data (Fig. 5)

Slow consumers destabilize, more top-down Slow consumers stabilize, less top-down

Evidence:

FIG. 2. Synthesizing the energetic and dynamical paradigms and deriving systematic predictions. In the energetic paradigm,
the biomass Bi of trophic level i is often predicted using the heuristic formula (7) reproduced in the figure. The dynamical
paradigm emphasizes the role of predators in regulating their prey, and explores the role of different functional responses [26]
such as the Lotka-Volterra model (8) shown here. By embedding both paradigms in our synthetic model (defined in Box 1), we
can highlight their differences. At equilibrium, dBi/dt = 0, we can identify the equations term-by-term. Terms are color-coded
by their dependence in Bi, Bi−1 and Bi+1. Each approach emphasizes some terms over others, as symbolized by the color
gradients and arrows in “Synthetic parameter regime”. We see that the energetic formula (7) neglects predation mortality
(λ � 1) and ignores metabolic losses (ρ ≈ 0, equivalent to high basal growth). This leads to pyramidal patterns in various
properties, from biomass (Fig. 3) to stability (Fig. 4). On the other hand, the dynamical paradigm emphasizes predation
loss but ignores consumer self-regulation (right-hand arrows), leading to cascade patterns, i.e. alternating patterns of positive
and negative, or high and low, values across trophic levels. In addition, the energetic formula assumes that consumption is
proportional to resource metabolism, while dynamical models [30] generally assume it is proportional to consumer metabolism
(Box 2). This leads to divergent predictions on the role of metabolism in biomass distribution and stability, see main text and
Fig. 5. The labels (a) and (b) relate assumptions to predictions.

Connecting the paradigms

We show in Fig. 2 how the synthetic model developped
in Box 1 connects with both paradigms.

The first discrepancy between the two paradigms lies in
the role of self-regulation, which is central, if implicit, in
the energetic argument, yet often absent from dynamical

models. We will see that these two choices correspond to
opposite extremes in the value of the synthetic parameter
λ = mεa2, which encapsulates the balance between self-
regulation and predation losses (Box 1).

This discrepancy may reflect the difference between a
microscopic viewpoint, where a predator species may dra-
matically deplete its prey species in a small locality, and
a macroscopic viewpoint, where we generally find sta-
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Box 2: Metabolic scaling of interactions

In the model defined in Box 1, interactions αi+1,i can depend
on both consumer metabolism mi+1 and resource metabolism
mi. The dynamical paradigm assumes that attack rate is
proportional to consumer metabolism, hence αi+1,i ∼ mi+1.
In the energetic paradigm, energy transfer is proportional to
the resource’s energy content (see Fig. 2). This implies that
interactions scale with resource metabolism, αi+1,i ∼ mi.
These two choices can be summarized in a generalized equa-
tion, with a parameter ν = −1 (resource-driven) or ν = 0
(consumer-driven):

αi+1,i ∼ mνmi+1 ⇔ a ∼ mν . (9)

Note that λ = mεa2 ∼ m1+2ν . In the dynamical paradigm
(ν = 0), top-down control increases with metabolic ratio,
λ ∼ m. In the energetic paradigm (ν = −1), top-down con-
trol decreases with metabolic ratio, λ ∼ 1/m. We discuss
the empirical evidence for each scaling in the main text (see
Fig. 5).

ble coexistence of trophic levels [41]. Yet, even locally,
empirical evidence suggests the underestimated role of
self-regulation, notably in the form of predator interfer-
ence [35].

The second difference is that energetic models gen-
erally assume negligible energy loss through metabolic
costs, ρ = r/g � 1 (Box 1). In that limit, basal energy
influx g plays no role in the dynamics, only acting as a
constant factor in the equilibrium biomass of all levels.
The dynamical paradigm, however, assumes significant
losses and thus assigns a major role to basal energy in-
flux g, which can determine whether higher trophic levels
go to extinction. This can notably lead to the paradox
of enrichment [26], where an increase in nutrient supply
may cause a loss of stability.

The third difference lies in the metabolic scaling of in-
teractions (see Box 2 and Fig. 2). Dynamical models (8)
again adopt the consumer’s perspective: a predator with
a faster metabolism is expected to have a higher attack
rate, hence the consumption rate αi+1,i scales with the
consumer ’s metabolism mi+1 [30]. On the other hand,
energetic models assume that consumption – or energy
transfer, the right-hand term in (7) – scales with the
metabolic rate of the resource.

As a result of these conflicting assumptions, we expect
the two paradigms to emphasize either bottom-up or top-
down effects, but also make different predictions about
the effects of nutrient enrichment and metabolic scaling.

Bottom-up and top-down control

We now explain how the assumptions of the energetic
and dynamical paradigms lead to a prevalence of bottom-
up or top-down patterns, respectively, in the food chain.
We also point out that the two paradigms have conflicting
notions of bottom-up control.

Consider a two-level chain as an illustration. In the
absence of any self-regulation, setting Di = 0 (and
metabolic scaling αi,i−1 = miα) in (1), the chain reaches
the equilibrium

0 = g −mαB2, 0 = −r + εαB1 (10)

where we see that each level controls the other. Resource
biomass B1 is fixed by consumer mortality r, correspond-
ing to top-down control (if r is small, the resource is
almost driven to exhaustion). On the other hand, con-
sumer biomass B2 is fixed by the basal energy influx g.
While consumers are limited by a constraint from below
(and this is sometimes called a bottom-up effect), this is a
consequence of their own control of the resource, as they
grow until they divert all of the resource’s production to
maintain their biomass.

This situation persists if at least one trophic level lacks
self-regulation: whether consumers or resources, that
level will grow until it is limited by the antagonistic in-
teraction, i.e. until consumers remove all extra resource
growth and cannot grow further themselves.

It is only with self-regulation Di > 0 at both levels that
the two populations can stabilize before resource produc-
tion is entirely consumed. Self-regulation thus gives rise
to the classic notion of donor control, where a trophic
level’s biomass is fixed by its prey’s, but does not in-
crease enough to exert a negative impact on that prey.
This low-impact coexistence of predator with prey can-
not happen if even a single level lacks self-regulation.

An important difference between these two settings is
the relationship between biomass Bi and production Pi
or productivity pi = Pi/Bi, widely studied empirically
[22, 42] and illustrated in Fig. 1.

Donor control is characterized by the fact that a level’s
production determines its own equilibrium biomass Bi.
In our model (Box 1), per-capita losses from self-
regulation are proportional to Bi, and when they equi-
libriate with per-capita growth pi, we obtain Bi ∼ pi.

On the other hand, antagonistic control is character-
ized by the fact that each level’s growth or losses deter-
mines the other’s biomass. All prey production goes to
predators, hence Bi ∼ pi−1. Counter-intuitively, there is
no correlation between a trophic level’s biomass and its
own productivity or mortality, as we see in (10).

Following usage in empirical studies, “bottom-up” will
hereafter be used in the donor sense, rather than in the
antagonistic sense in which top-down and bottom-up con-
trol co-occur as two sides of the same interaction.

FUNCTIONING PATTERNS

We now use our model to clarify theoretical relation-
ships between food web patterns, illustrating them for
a four-level food chain in the limit of low mortality or

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/361246doi: bioRxiv preprint 

https://doi.org/10.1101/361246
http://creativecommons.org/licenses/by-nc/4.0/


6

εa

m
a

Positive interactions

λ=
m

εa
2

κ=
ε/m

101
10-1

10-1

101

Bottom-up
pyramid

Top-down
cascade

(b) Two regimes(a) Biomass distributions
N

eg
at

iv
e 

in
te

ra
ct

io
ns

(c) Empirical biomass-size scaling
Kelp forest fish

Pyramid Cascade

2048g

32g

(Trebilco 2016)

from stable isotopes)(

FIG. 3. Theoretical map of equilibrium biomass patterns in a food chain, and application to an empirical puzzle. The
parameters (defined in Box 1) are predator-prey metabolic ratio m, conversion efficiency ε and the strength of interactions a
relative to self-interaction. Results are illustrated for a four-level chain with negligible metabolic losses ρ� 1 (other examples
in Supporting Information). (a) Biomass distribution. For each trophic level, a colored bar represents its equilibrium biomass
(in log scale), and a grey bar represents the amount of biomass lost to its predator, reflecting the intensity of top-down control.
(b) Two parameter regimes define the shape of the biomass distribution. The main diagonal λ = mεa2 distinguishes the region
of bottom-up control λ < 1 with pyramids (both regular and inverted), from the region of top-down control λ > 1 with cascade
(alternating) patterns. The other diagonal κ = ε/m affects the top-heaviness of the biomass distribution, as the global slope
of the distribution is given by Bi+1/Bi ∼

√
κf . The fraction f of production lost to consumers is given by (14). In cascade

patterns, low-biomass and high-biomass levels i and i + 1 alternate, with Bi+1/Bi ∼
√
κλ = εa (larger than the global slope,

which still holds betwen levels Bi+1 and Bi−1). (c) Identifying trophic structure from data. Given the biomass per trophic
level and the mass ratio M between levels, we can compute the total biomass in each body size class W . Fish in kelp forests
exhibit a top-heavy (positive) scaling B(W ) ∼W 0.45 [43]. We show in main text that this scaling cannot hold across multiple
trophic levels, except for an unphysical value of conversion efficiency ε > 1 in formula (16). It may, however, be found between
two adjacent levels under strong top-down control (17).

high basal energy influx ρ � 1. This limit ensures that
trophic levels cannot go extinct, and that our description
is robust to changes in food chain length or primary pro-
duction. We show in Appendix S1 how our results can
be extended to arbitrary mortality rates.

Biomass and production

One of the most central predictions of food chain the-
ory is the distribution of energy among trophic levels,
in the form of either biomass or growth. Since Elton
[1], energetic arguments have been used to predict pyra-
midal or hierarchical patterns (Fig. 3), but few studies
have investigated when this structure can emerge dynam-
ically [28, 44, 45].

We see in Fig. 3a that biomass patterns vary along
two dimensions: ma and εa, the strength of negative and
positive interactions in (4) (Box 1). To better understand
how biomass is distributed, we must combine these two
quantities, taking either their product or their ratio,

λ = mεa2, κ = ε/m (11)

i.e. the diagonals represented on Fig. 3b.

As shown in Box 1, the product λ denotes the strength
of predation feedback, i.e. how much a trophic level lim-
its itself through its predators. The ratio κ indicates
whether biomass accumulates toward the top or the bot-
tom of the chain. Notice in (4) that if we can neglect pre-
dation losses, then Bi/Bi−1 ∼ εa =

√
κλ, whereas if we

can neglect self-regulation, then Bi+1/Bi−1 ∼ ε/m = κ.
In both limits, larger κ leads to more top-heavy chains.

Between these two limits, a useful proxy for the im-
portance of top-down control is

fi =
maBi+1

εaBi−1
=

Bi+1

κBi−1
(12)

which can be interpreted as the fraction of production at
level i lost to consumer i+ 1.

If we assume a pyramidal structure, i.e. a constant
biomass ratio between adjacent levels Bi+1/Bi, then fi
must also be constant and we get the scaling

Bi+1 = κfBi−1, Bi ∼ (κf)i/2 (13)

This is indeed a possible solution of the equilibrium equa-
tion (4) with f given by

f

(1− f)2
= mεa2 ≡ λ. (14)
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Thus, λ and κ together define the trend of the biomass
pyramid (13) toward bottom-heaviness (κf < 1) or top-
heaviness (κf > 1), illustrated in Fig. 3.

Yet we also expect this pyramidal structure to disap-
pear for strong top-down control, i.e. low self-regulation,
as in (10). For λ & 1, a cascade pattern emerges. Start-
ing from the top level, the chain alternates between high
and low-biomass levels (Fig. 3a), controlling each other
through their antagonistic interaction. High-biomass lev-
els remove a large fraction f of their prey’s production,
and they still follow the scaling (13), which we call the
global slope of the cascade. With increasing λ, low-
biomass levels converge toward the same scaling, with
a smaller prefactor.

We can show (see Appendix S1) that the biomass ratio
between high- and low-biomass levels is Bi+1/Bi ≈

√
κλ.

Since f ≤ 1, for large λ this ratio can become much
larger than the global slope

√
κf . Thus, if one can only

observe two adjacent trophic levels, their biomass ratio
may give the illusion of a steep inverted pyramid, as in
the empirical example in Fig. 3c discussed below.

Biomass-size scaling

The distribution of energy among trophic levels is more
readily observed when these levels are clearly distinct,
e.g. in simple plant-herbivore-carnivore chains. In many
systems, however, trophic height is not so easily assessed.
Instead, the most immediate property of an organism
is often its size, especially in aquatic food webs. The
study of these ecosystems thus relies on the distribution
of abundance or total biomass per size class [18, 21].

Assuming a fixed relationship between size and trophic
height, the pyramidal slope (13) can be translated into
a continuous distribution as a function of body mass (or
size) Wi. Since the metabolic rate mi is also less acces-
sible than body size, many studies posit an allometric
scaling of metabolism with size, mi ∼ W−β

i [30] with
some exponent β measured empirically.

Let us define the predator-prey body mass ratio M ,
which is assumed to be constant throughout the chain:

M =
Wi+1

Wi
, Wi ∼M i, i ∼ logWi/ logM. (15)

We thus have an expression for the trophic level i for size
class Wi. By substituting this into the exponent in (13)
and using the allometric scaling m ∼ M−β , we find the
biomass-size scaling for a continuous variable W

B(W ) ∼W b, b =
1

2

(
β +

log(εf)

logM

)
. (16)

We can deduce the number of individuals per size class,
B(W )/W , also known as size spectrum [18, 19]. Pre-
vious studies [36] have used the energetic argument (7)

and obtained a similar prediction, but with a different
exponent: b = β + logE/ logM . Our formula extends it
with two terms coming from the predation feedback: the
fraction of production removal f , and the prefactor 1/2.
The two formulas coincide if f � 1 (f ≈ λ) as shown in
Appendix S1.

From metabolic data, it is generally estimated that β ∈
[0, 13 ] [46–48]. While top-heavy pyramidal distributions
are allowed by (16), they are expected to have at most
exponent b ≤ β/2 ≤ 1

6 (given ε, f ≤ 1 and assuming
that consumers are larger, M > 1). For instance, in an
oceanic food chain, large mammal biomass could at most
exceed unicell biomass by two orders of magnitude. In
fact, it has been proposed that B(W ) is approximately
flat, b ≈ 0, over many orders of magnitude in marine
data [21].

A steeper slope in the scaling may only be seen over
a limited size range, between a low-biomass level and
a high-biomass level in a cascade pattern, Bi+1/Bi ≈√
κλ = εa, giving

b =
log εa

logM
. (17)

We now show that we can use the biomass-size exponent
to probe the structure of an empirical food chain.

The “paradox” of positive biomass-size scaling

Fish in kelp forests exhibit a top-heavy biomass dis-
tribution per size class, as shown in Fig. 3c. A recent
study [43] described this pattern as a paradox, because
its slope appears steeper than allowed by energetics: the
authors find B(W ) ∼ W b with exponent b ≈ 0.4, sug-
gesting an impossible efficiency ε > 1 in formula (16).

To solve this paradox, we first notice that the exponent
b is measured over a limited size range, spanning less than
two trophic levels. Indeed, the study uses stable isotope
analysis to estimate the mass ratio between trophic levels,
but the observed spectrum covers only body masses from
32 to 2048g (a ratio of 64 between the largest and the
smallest fish). Thus, it may be misleading to analyze this
spectrum as a multi-level biomass pyramid described by
formula (16).

Instead, we suggest a top-down cascade pattern
(Fig. 3c), with the largest fish in the sample belonging to
a high-biomass level. In that case, equation (17) yields
εa ≈ 28, suggesting trophic interactions far stronger than
self-regulation. We thus expect strong trophic cascades,
which could be tested by predator removal. It is also
important to note that the assumption of constant mass
ratio M , used by [43] to convert between size classes and
trophic levels, may be problematic as M is very widely
distributed in different interactions (Fig. S4).
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Box 3: Stability properties

We study the quantitative stability properties of the model
in Box 1, i.e. its response to various types of perturbations.
The dynamical equation (1) becomes

1

Bi

dBi

dt
= ξi(t) + gi −DiBi + εαi,i−1Bi−1 − αi+1,iBi+1

(18)

where ξi(t) represents the perturbation.
We focus on two types of long-term perturbations. In the first
case, we compute the effect of a constant press perturbation
ξi(t) = ξ on one trophic level at a time. This can be inter-
preted as a permanent change ∆gi of its growth or mortality
term, up to complete removal of the level. We predict the
resulting change in abundance ∆Nj at each level.
In the second case, we add demographic stochasticity to one
level at a time, ξi(t) = W (t)/

√
Bi with W (t) a white noise

term (see Appendix S1). For each choice of the perturbed
level, we then compute the covariance matrix of the biomass
fluctuations of all levels. On the diagonal of this matrix,
we find the variance of each level. The inverse of its trace,
invariability, has been widely used as an empirical stability
measure [49]. These two properties are connected to other
stability properties, such as structural stability and return
time to equilibrium [50, 51].
In Fig. 4, we show results for relative stability metrics,
rescaled by equilibrium abundances Beqi :

Vij =
∆Bi/B

eq
i

∆gj/B
eq
j

, C
(k)
ij =

cov(Bi(t), Bj(t))

Beqi Beqj
(19)

with Vij the relative response of level i to a press on j, and

C(k) the relative covariance matrix between all levels created
by perturbing level k only. The diagonal element C

(k)
ii is

the coefficient of variation (CV) of level i. This rescaling re-
veals clear pyramidal or cascade patterns that are essentially
determined by a single parameter, λ. When using absolute
metrics (Fig. S1), these patterns are skewed by the biomass
distribution and less apparent to the eye.

STABILITY PATTERNS

Trophic cascades and response to a press

Trophic cascades are studied by comparing systems
where the top predator is absent or present, e.g. [55],
or modifying its abundance by a smaller amount.

More generally, we consider a long-term decrease or
increase in any trophic level’s biomass, due for instance
to harvesting or nutrient enrichment. It can be modelled
as a press perturbation (Box 3), equivalent to a change
∆gi of the growth or mortality rate, gi, of one trophic
level in (1). We then study the matrix of the relative
responses ∆Bj/Bj to a press ∆gi/Bi, shown in Fig. 4a.

Upward propagation of perturbations, whereby a de-
crease (increase) in the abundance of a trophic level leads
to a decrease (increase) at all higher levels, appears as a
blue lower triangle in the press response matrix in Fig. 4a.
This dominates the community response when λ < 1.
Downward cascades are characterized by alternating neg-
ative and positive responses of the levels below the per-

turbed level, which appear in alternating red and blue in
the upper triangle of the response matrix. They domi-
nate when λ > 1. This coincides with the qualitative shift
in the shape of the biomass distribution (Fig. 3), illus-
trating the tight connection between patterns in biomass
and patterns in stability, see e.g. [54].

We show here these patterns when the food chain is not
limited by energy loss (small ρ = r/g, see Box 1), and cas-
cade strength only depends on λ. In energy-limited food
chains (large ρ), the picture is more complex. In Ap-
pendix S1, we compare a trophic level’s biomass before
and after predator removal, and show that, depending
on all dynamical parameters, both increase with basal
energy flux g but either may increase faster. There is no
simple prediction for how g (e.g. nutrient enrichment) af-
fects trophic cascades: when it is large, cascade strength
is independent from it, and when it is small, the depen-
dence may go in either direction.

Variability under stochastic perturbations

Bottom-up and top-down effects can also be measured
as correlations in empirical time series [52, 53]. Correl-
ative measures capture directional trends, such as the
press response discussed above, as well as undirected
fluctuations. These fluctuations also contain information
about the food chain structure.

In the model, we can impose stochastic noise on one
level and measure the variances and covariances of all
levels’ time series (Fig. 4b). We rescale them by equi-
librium biomasses to obtain a relative covariance matrix
(Box 3). The diagonal elements of this matrix are the
squares of the coefficient of variation (hereafter CV) for
each trophic level.

For low λ � 1, the trophic level with the highest CV
(shown on the diagonal of the relative covariance ma-
trix) is the one that is directly perturbed, and this per-
turbation propagates only to higher levels, which covary
positively.

For intermediate and large λ & 1, we see a distinct
checkerboard pattern (covariance cascade) for all levels
below the perturbed one, reflecting the tendency of prey
abundaces to fluctuate in opposition to their predators.

We also note that, deep in the top-down regime λ� 1,
the level with the lowest CV is always the top predator,
while its prey has the highest CV, and lower levels alter-
nate between the two, similarly to theoretical patterns in
production and biomass [3, 4, 54]. Perturbing intermedi-
ate levels (see C(3) in Fig. 4b) gives rise to a “two-step”
covariance cascade: species two levels apart exhibit anti-
correlated fluctuations. This can be interpreted as a cas-
cade between predator-prey pairs, rather than between
individual levels, due to the prey being tightly controlled
by its predator.
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FIG. 4. Map of responses to perturbations (Box 3). Some food chains display bottom-up patterns where variations in abundance
are correlated across all trophic levels [52]. Other chains display top-down trophic cascades, with anticorrelations between
adjacent levels [53]. These correlations can be measured in directional trends, resulting from press perturbations such as
nutrient enrichment, or in undirected population fluctuations. (a) Long-term response to a press perturbation. The matrix
Vij measures the relative biomass change ∆Bi/Bi in response to a relative change of growth rate ∆gj/Bj . (b) Covariance of

fluctuating time series. Applying a stochastic perturbation on one level k at a time gives a covariance matrix C
(k)
ij , different

for each perturbed level k. The diagonal element C
(k)
ii is the squared coefficient of variation (CV) of level i. The CV of the

perturbed level is highlighted for comparison. In (a) and (b) colors (and arrows on the side diagrams) represent the sign and
strength of the response, rescaled here by the largest coefficient of each matrix. We see that the main diagonal axis of the map,
λ = ma × εa (the feedback of a level on itself through its predators), determines the nature of the response. Matrices V and

C(k) are both invariant along the other diagonal κ = εa/ma, which controls the chain’s top-heaviness in Fig. 3. This invariance
does not hold for absolute stability metrics, see Fig. S1. In the bottom-up region (λ� 1), the perturbed species is the one that

responds most strongly, and perturbations only propagate upward, as illustrated by C(1) and C(4) where we affect either the
basal or top level. In the top-down region (λ� 1), a trophic cascade pattern (anticorrelated levels) is seen in V and C(k). We
also find an alternating pattern in the CV, with the top level being least variable and its prey being most variable, no matter
which level is perturbed [54].

In a dynamical model with a nonlinear functional re-
sponse, these anticorrelated fluctuations around equilib-
rium could announce the transition to more complex dy-
namical regimes such as predator-prey cycles, or chaos,
as we note in Discussion.

EMPIRICAL APPLICATIONS

We now illustrate how the synthetic model can be used
to interpret and connect diverse empirical phenomena.

Theoretical patterns, from pyramids to cascades, have

been identified above under the assumption that the pa-
rameters λ and κ are constant throughout the chain, due
to equations (2) and (3). These idealized patterns pro-
vide meaningful intutions, but they can be distorted by
large parameter variations between trophic levels [28, 44].

In empirical settings, we do not expect all trophic levels
and interactions to follow this simple parameterization.
Different ecological processes need not follow the same
scaling with metabolic rates, and most food chains in-
volve organisms belonging to distinct taxonomic classes,
with vastly different physiologies.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/361246doi: bioRxiv preprint 

https://doi.org/10.1101/361246
http://creativecommons.org/licenses/by-nc/4.0/


10

We compiled data on thousands of predator-prey pairs
(Fig. S3 to S5) and found that the metabolic ratio m
varies over four orders of magnitude, m ∈ [10−2, 102].
While the body size ratio M displays a clear skew toward
predators being larger than their prey, there is no such
skew in metabolic ratio: faster and slower consumers are
equally common in the dataset, with significant variation
between and within taxonomic classes.

Biomass conversion efficiency ε has a smaller range of
variation, often estimated around 10 − 20% [32, 33, 38,
56], but it may still differ between trophic levels [30],
and we note in Discussion the issues with quantifying
interaction strength α and self-regulation D.

In the following, we thus allow different parameters
for each trophic level, and show how the model can be
parameterized using empirical evidence to produce quan-
titative predictions.

Differences between aquatic and terrestrial
herbivory

Food web ecology has long focused on explaining dis-
similarities between aquatic and terrestrial food webs [7].
One striking difference is that aquatic herbivores con-
sume on average f = 51% of primary production across
many ecosystems, while terrestrial herbivory only re-
moves f = 18% of plant production [57]. This discrep-
ancy has been explained by terrestrial autotrophs hav-
ing slower turnover than their consumers, while aquatic
autotrophs, especially phytoplankton, have much faster
turnover [7]. In some systems, this allows aquatic herbi-
vores to consume close to 100% of phytoplankton biomass
and production each day [42].

The consistency of this explanation can be tested quan-
titatively in our model, as we show in Fig. 5. Using mea-
surements on f , we can compute λ = f/(1− f)2. Then,
using the median metabolic ratio m for either aquatic
or terrestrial herbivory in the metabolic data (Fig. S3 to
S5), we check that λ ∼ 1/m, in agreement with the sce-
nario of resource-driven consumption (Box 2, energetic
paradigm).

Furthermore, aquatic herbivore populations have been
shown to be less stable (higher CV, defined in Box 3) than
terrestrial herbivores [59]. Using the scaling λ ∼ 1/m
and the data for herbivore-plant metabolic ratios m, we
have computed herbivore CV for each pair in the simplest
theoretical setting (a two-level chain with equal noise on
both levels). Doing all possible pair comparisons between
aquatic herbivores and terrestrial ones, we find that the
former tend to have higher CV. The aquatic-terrestrial
CV ratio is widely distributed but centered around the
empirical range [1.5,2.1] found in [59].

Hence, functioning and stability differences between
aquatic and terrestrial food chains could both have a
physiological origin in metabolic rates, consistent with

the metabolic scaling assumed in the energetic paradigm,
but accounting for predation mortality.

Cascade strength in tritrophic chains

Trophic cascade strength is commonly measured as the
logarithmic change (log ratio) in plant biomass ∆ logB1

in response to predator manipulation [60]. It is related
to the relative response shown in Fig. 4a by ∆B1/B1 =
exp(∆ logB1)− 1.

In a meta-analysis, the plant biomass log ratio was
found to exhibit strong positive correlation to the car-
nivore’s metabolic rate, m3, and negative correlation
to herbivore’s, m2 [10]. This correlation can be pre-
dicted in a three-level chain (see Appendix S1) under
two conditions: first, the carnivore must have signifi-
cant self-regulation D3; second, its attack rate must scale
with its own metabolic rate, α32 ∼ m3, in agreement
with consumer-driven consumption (Box 2, dynamical
paradigm) and in contrast with what was found above
for herbivory.

Another salient property of cascades is whether the ef-
fect attenuates or intensifies down the chain, e.g. whether
plants are less or more affected than herbivores by car-
nivore removal [6, 61]. This factor has been measured
empirically, and explained by different biological mech-
anisms (from plant defenses to external subsidies) in a
variety of systems. In the three-level chain, we find

τ ≡ −∆B1/B1

∆B2/B2
=

f1
1− f1

, (20)

indicating that, without the need to invoke additional
mechanisms, attenuation happens if the fraction of con-
sumed primary production is less than half, f1 < 50%,
while intensification happens otherwise.

From data on herbivory [57], we estimate an amplifica-
tion factor τ ≈ 1 in aquatic foodwebs, meaning that cas-
cade effects tend to propagate without attenuation. By
contrast, we expect fast-decaying cascades with τ ≈ 0.2
in terrestrial systems. In Fig. 5, we use additional data on
τ from [27] and f from [42] to show that these predictions
are plausible, although with large variance. Combined
with the previous section, this is indicative evidence that
metabolic rates may cause the main trend in trophic cas-
cade attenuation.

The stabilizing role of metabolic scaling

Previous studies have emphasized a possible stabiliz-
ing role of allometric scaling [30]. Since predators are
larger than their prey, allometric scaling suggests that
they should have slower metabolism. With a median size

ratio M ≈ 80 [62], mi ∼ W
−1/4
i gives a metabolic ratio
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FIG. 5. Empirical functioning and stability patterns, and their relationships predicted by the synthetic model. (A) Aquatic
herbivory accounts on average for f = 51% primary production removal across various ecosystems, while (B) terrestrial
herbivory only removes f = 18% of production [57]. They also differ by their median metabolic ratio m, measured from
compiled data in Fig. S3 [46, 58]. The corresponding values of λ are compatible with the scaling λ ∼ 1/m predicted by resource-
driven consumption (Box 2). We then study stability properties (Box 3) using a two-level chain model with uniform noise.
Parameterizing this model with m for each pair of species in the dataset, we obtain a distribution of CV for each ecosystem.
We find that aquatic herbivores are less stable (higher CV) than terrestrial ones, in agreement with empirical data [59]. (C)
Empirical measurements of the trophic cascade amplification factor τ in tritrophic chains [27], compared to predictions from
data on removed production f for the basal level [42]. Measurements are grouped by the nature of the primary producer
(bars are 25th to 75th percentiles), with phytoplankton-based chains exhibiting weaker cascades than expected from their large
consumed fraction f . Despite considerable variance, we find indicative evidence of consistency between these various patterns.

m ≈ 0.3. These studies have shown that this favors sta-
bility and coexistence in dynamical simulations of com-
plex food webs.

Our food chain model can reach a similar or opposite
conclusion, with a simple explanation. Consumer-driven
consumption (αi+1,i ∼ mi+1) gives λ ∼ m, as noted in
Box 2. Therefore, slower predators with lower m induce
weaker predation feedback λ, which leads to greater sta-
bility (Fig. 4), in qualitative agreement with the simula-
tion studies. This scaling is supported by observations
on cascade strength in the previous section.

On the other hand, for resource-driven consump-
tion (αi+1,i ∼ mi), we reach the opposite conclusion:
λ ∼ 1/m and slower consumers destabilize the system.
This is supported by the fact that aquatic herbivores have
both lower metabolic ratio m and higher variability than
terrestrial ones (Fig. 5).

These two conflictual lines of evidence challenge any
simple and universal stability argument for metabolic
scaling [30]. We note that, despite predators being gen-
erally larger than their prey, there is no global tendency
for them to have a slower metabolism, as we show in data
compiled from multiple studies (Fig. S3 to S5). There-

fore, it may be that different ecological settings favor
either slower or faster consumer metabolism.

DISCUSSION

Our understanding of many ecological phenomena re-
lies on intuitions developed from simple food chains. De-
spite its fundamental role, this body of work has become
increasingly fragmented. First, functioning and stability
patterns, such as biomass pyramids and trophic cascades,
have become disjoint topics. The former are often ana-
lyzed with energetic arguments, and the latter with dy-
namical models (Fig. 1). But these approaches are based
on conflicting assumptions, as we clarified by embedding
them in the same formalism (Fig. 2).

Second, food chain behaviors arise from the interac-
tion of multiple ecological parameters: basal energy in-
flux g, predator-prey metabolic ratio m, biomass con-
version efficiency ε or interaction strength a. Many em-
pirical and theoretical studies have investigated a single
axis at a time, occasionally reaching contradictory con-
clusions. We have shown here that the action of these
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key parameters can only be understood in conjunction.
We have summarized the main food chain patterns,

and the parameters that control them, in a concise map
with two main axes. Its first axis is given by the syn-
thetic parameter λ, which denotes the strength of top-
down control in the chain, as it quantifies the feedack of
a trophic level on itself through its predators (Box 1).

The bottom-up regime (λ < 1) is characterized by
pyramidal patterns, regular or inverted, in various func-
tioning and stability properties (Fig. 3 and 4). In the
top-down regime (λ > 1), alternating cascade patterns
are found instead.

The second synthetic parameter, κ, controls the over-
all top-heaviness of the biomass distribution, but has no
effect on essential stability properties (Fig. 4). Counter-
intuitively, top-heavy distributions do not imply strong
top-down control: species with more efficient assimilation
and slower turnover can acquire and store larger amounts
of energy, without necessarily exerting stronger pressure
on lower levels.

A third parameter, ρ, modulates these patterns with-
out creating qualitatively new regimes. It represents the
fraction of energy lost to mortality and metabolic costs,
and is important only if these losses significantly reduce
a trophic level’s biomass. When ρ � 1 (low metabolic
costs r or high basal energy influx g), its precise value
becomes irrelevant to food chain dynamics.

By combining the ingredients of the energetic and dy-
namical paradigms (Fig. 2), the synthetic approach ex-
plains their discrepancies, recovers their main results,
and extends them beyond their traditional scope.

These results provide an intuitive basis for understand-
ing relationships observed in data or complex simula-
tions, and advancing our understanding of a number of
standing empirical paradoxes. We have shown that they
could provide new quantitative predictions on relation-
ships between consumption, metabolism and trophic cas-
cade strength.

Self-regulation

We have shown that self-regulation is at the heart of
the main disagreement between the energetic and dy-
namical approaches (Fig. 2). By preventing consumers
from growing until they divert all of their resource’s pro-
duction, self-regulation stabilizes the dynamics [63], at-
tenuates top-down cascades, and gives rise to bottom-up
pyramidal patterns, where each level’s dynamics depends
on its energy influx only.

Few studies reliably quantify trophic interaction
strength α [34], and fewer provide estimates of self-
regulation D [35]. But we have shown in Fig. 5 that
indirect estimates of their ratio a = α/D can be obtained
from various empirical patterns, allowing us to evaluate
the relative importance of self-regulation.

Many food web models, e.g. [30], do not admit explicit
self-regulation in the form of density-dependent mortal-
ity Di, except at the basal level. Nevertheless, they often
contain predator interference [64] which is widely sup-
ported by empirical evidence [22, 35].

Interference plays a similar self-regulating role at equi-
librium. For instance, this can be seen in the dynamics
of a consumer with a Type II functional response and
predator interference,

1

Bi

dBi
dt

= −r + ε
αBi−1

1 + IBi︸︷︷︸
Interference

+HαBi−1︸ ︷︷ ︸
Handling

(21)

where I is the interference strength and H is the handling
time. At equilibrium, we find

0 = −r − (rI)Bi + (ε− rH)αBi−1 (22)

which is identical to the top predator’s equilibrium in our
Lotka-Volterra model (1) with self-regulation D = rI and
a reduced conversion efficiency ε− rH.

The limit of strong interference, where the denomina-
tor in (21) reduces to IBi, has been widely discussed
as a ratio-dependent functional response [65]. We show
in Appendix S1 that it also allows a pyramidal biomass
distribution. We interpret ratio-dependence and density-
dependent mortality as two examples in a wider range of
self-regulation mechanisms, and expect that our qualita-
tive results may extend to other forms of density depen-
dence stabilizing the dynamics [22, 66].

Disentangling effects of primary productivity

This synthetic approach sheds a new light on the effects
of primary productivity on food chain behaviors [26, 59].
In Box 1, we defined primary productivity as g1 = gm1,
where g is tied to nutrient supply and m1 to autotroph
metabolism. There are thus two ways in which ecosys-
tems can differ in their primary productivity.

Nutrient enrichment increases the basal energy influx
g. All else being equal, this will increase the total
biomass, but produce inconsistent effects on stability and
trophic cascades. We show in Appendix S1 that these ef-
fects can be positive or negative depending on the other
parameters, and they vanish at high values of g, when
growth is not limited by metabolic losses.

On the other hand, an increased metabolic rate m1

can have a consistent effect on stability. The evidence in
Fig. 5 suggests that when primary producers have faster
metabolism than their consumers, as in aquatic systems,
one finds stronger trophic cascades and more variability.

This provides a tentative explanation for conflicting
empirical findings on the effects of primary productivity,
especially in cross-ecosystem comparisons where g, m1

and other parameters may all vary [5, 10].
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Application to real food webs

Our idealized food chain model trades realism for ease
of interpretation and mathematical treatment. Yet, a
complex web structure is an ubiquitous feature of real
trophic interactions, and nonlinear functional responses
(how consumption depends on the density of predator,
prey, and even third parties) can be added to capture
physiological and behavioral characteristics [40].

We expect these two ingredients to have predictable
effects in the region of bottom-up control, but far more
complex ones in the region of top-down control.

When self-regulation greatly exceeds predation losses
(λ � 1), there are no complex dynamical feedbacks, as
each species determines its consumers’ abundance but is
almost unaffected by them. In that case, food chain mod-
els can easily be amended to account for additional fluxes,
e.g. for omnivorous predators [15] or structured popula-
tions [38]. Different functional responses affect quantita-
tive results, but may not lead to qualitatively different
dynamical regimes.

For weak self-regulation (λ � 1), however, food web
dynamics may become excitable and lead to cycles or
chaos, unless species satisfy complex conditions [67–69].
Even qualitative functioning and stability properties be-
come sensitive to interactions motifs and functional re-
sponses, as described in a vast literature [9, 25, 70–72],
and it is challenging to extend our near-equilibrium re-
sults to these nonequilibrium dynamics.

Nevertheless, coherent top-down patterns, such as
trophic cascades, are well-attested in various ecosys-
tems [5, 73]. This suggests that our simple approach
remains valid in some limits: either for particular sets
of species, or for averages over large communities. One
might be able to unfold a complex web into its essential
chain-like structure [74] to parameterize our model from
more realistic descriptions.

Conclusions and prospects

While static energy pyramids, dynamical fluctuations
and trophic cascades have been studied with different ap-
proaches, they all arise from the same food chain struc-
ture. We have synthesized these basic predictions in a
simple two-dimensional map, whose axes combine physi-
ological and ecological parameters.

This map is divided in two regions, in which either
pyramidal or cascade patterns can be found across a
wide range of stability and functioning properties. This
dichotomy reflects two intrinsically different dynamical
regimes, one dominated by donor control and the other
by antagonistic feedbacks. But rather than extremes on
a continuum, these regimes have often been approached
as alternative ways to understand and model food chains,

each ingrained in a long tradition and associated with its
own set of questions and methods.

We therefore emphasize the need for consistency be-
tween the results of these different approaches. Consider-
able empirical and theoretical efforts have been expended
on prediction and cross-ecosystem comparison of partic-
ular patterns. It is now important to systematically con-
front these diverse observations within each ecosystem,
from metabolism and density-dependence to variability
and trophic cascades, to provide rigorous foundations for
our understanding of trophic dynamics.

Another issue is the possibility for patterns to have
causes outside the studied ecosystem. External energy
subsidies, e.g. influxes of organic matter, or a predation
range coupling multiple local communities, may be re-
sponsible for stronger trophic cascades [75] and top-heavy
distributions [14, 76]. While a single pattern cannot rule
out external causes, multiple stability and functioning
patterns all pointing toward the same food chain struc-
ture would be a strong signal against this possibility.

This synthesis has been called for in conceptual frame-
works [29], but it must become quantitatively precise if it
is to solve long-standing empirical paradoxes. The rela-
tionships that we have summarized here should become
part of a larger quantitative toolbox designed to provide
better insight into the essential trophic structure of an
ecosystem. For these predictions to hold in diverse eco-
logical communities, they must be robust to the addition
of complex structure, a question which emerging theoret-
ical tools [77] and better integration with data may help
answer in future studies.
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