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Abstract

Synapses between cortical neurons are subject to constant modifications through
synaptic plasticity mechanisms, which are believed to underlie learning and memory
formation. The strengths of excitatory and inhibitory synapses in the cortex follow a
right-skewed long-tailed distribution. Similarly, the firing rates of excitatory and
inhibitory neurons also follow a right-skewed long-tailed distribution. How these
distributions come about and how they maintain their shape over time is currently not
well understood. Here we propose a spiking neural network model that explains the
origin of these distributions as a consequence of the interaction of spike-timing
dependent plasticity (STDP) of excitatory and inhibitory synapses and a multiplicative
form of synaptic normalisation. Specifically, we show that the combination of additive
STDP and multiplicative normalisation leads to lognormal-like distributions of
excitatory and inhibitory synaptic efficacies as observed experimentally. The shape of
these distributions remains stable even if spontaneous fluctuations of synaptic efficacies
are added. In the same network, lognormal-like distributions of the firing rates of
excitatory and inhibitory neurons result from small variability in the spiking thresholds
of individual neurons. Interestingly, we find that variation in firing rates is strongly
coupled to variation in synaptic efficacies: neurons with the highest firing rates develop
very strong connections onto other neurons. Finally, we define an impact measure for
individual neurons and demonstrate the existence of a small group of neurons with an
exceptionally strong impact on the network, that arise as a result of synaptic plasticity.
In summary, synaptic plasticity and small variability in neuronal parameters underlie a
neural oligarchy in recurrent neural networks.

Author summary

Our brain’s neural networks are composed of billions of neurons that exchange signals
via trillions of synapses. Are these neurons created equal, or do they contribute in
similar ways to the network dynamics? Or do some neurons wield much more power
than others? Recent experiments have shown that some neurons are much more active
than the average neuron and that some synaptic connections are much stronger than
the average synaptic connection. However, it is still unclear how these properties come
about in the brain. Here we present a neural network model that explains these findings
as a result of the interaction of synaptic plasticity mechanisms that modify synapses’
efficacies. The model reproduces recent findings on the statistics of neuronal firing rates
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and synaptic efficacies and predicts a small class of neurons with exceptionally high
impact on the network dynamics. Such neurons may play a key role in brain disorders
such as epilepsy.

Introduction 1

Are cortical networks “democratic” structures in which the voice of every neuron has 2

about the same weight? Or do some neurons wield much more influence than others? 3

And, if so, what mechanisms give rise to this concentration of power? Recent 4

experiments have suggested large inequalities between neurons and synapses. 5

Specifically, a persistent observation is the presence of skewed, long-tailed distributions 6

in firing rates [1–3] and synaptic efficacies [2, 4–9]. In most cases, distributions of 7

neuronal variables take on approximately lognormal [3] or power-law [10,11] shapes. 8

Such strongly skewed distributions may have important implications for computation in 9

neuronal networks, for instance effective signal transmission [12], population burst 10

propagation [13] and enlarging the dynamical range of the network [14]. Since the 11

strength of individual synapses in networks of neurons is under constant change due to 12

activity-dependent and homeostatic plasticity [15,16], as well as spontaneous 13

fluctuations [6, 17], it is unclear how long-tailed distributions of synaptic weights arise 14

and remain stable. Recent recurrent neural network models of the cortex have 15

demonstrated that long-tailed weight distributions for excitatory-to-excitatory weights 16

can be achieved by a combination of spike-timing dependent plasticity (STDP) and 17

homeostatic mechanisms or structural plasticity of synapses [18–20]. Furthermore, at a 18

phenomenological level it has been argued that such distributions can result from a 19

simple stochastic model called a Kesten process [21]. Recently, inhibitory weights have 20

also been observed to follow a strongly skewed distribution in the hippocampus [22] and 21

in neuronal cultures of the cortex [23]. Although inhibitory synapses are also subject to 22

STDP (iSTDP; [24–26], and homeostatic processes [27,28], it is currently not known 23

how long-tailed distributions of inhibitory weights arise simultaneously with long-tailed 24

distributions of excitatory weights in the cortex, together with long-tailed distributions 25

of firing rates in excitatory and inhibitory neurons [1]. Although a previous study has 26

proposed learning rules that could connect both properties [29], it is unclear how these 27

distributions arise under the influence of biologically plausible plasticity mechanisms, 28

and how they persist in the presence of spontaneous synaptic remodeling [6, 17]. 29

Additionally, the long-tailed weight distribution and long-tailed firing rate distribution 30

might be linked at the neuron level, for example in the form of ‘hub’ neurons. Hub 31

neurons are thought to be highly connected in terms of number of synapses and/or 32

synaptic strength, and exert a strong influence on network activity, [30–33], 33

correlations [34–37], and information propagation [33]. Indeed, neurons with high firing 34

rates may form strongly interconnected populations [38]. 35

In this study, we investigate whether the combination of STDP and synaptic 36

normalisation can explain long-tailed distributions of inhibitory and excitatory synaptic 37

weights and firing rates, and how the two are connected. We also address the 38

contribution of spontaneous activity-independent fluctuations in synaptic efficacies [17]. 39

We investigate these issues using a model from the family of self-organising recurrent 40

neural networks (SORN; [20,39]) with leaky integrate-and-fire neurons, and STDP in 41

excitatory and inhibitory synapses. The proposed model is the first to simultaneously 42

explain 1) lognormal-like distributions of excitatory and inhibitory firing rates from 43

small variability in spiking thresholds, 2) the simultaneous emergence of long-tailed 44

lognormal-like distributions of excitatory-to-excitatory and inhibitory-to-excitatory 45

synaptic efficacies, and 3) their persistence in the face of substantial spontaneous weight 46

remodeling. Furthermore, the model predicts a form of “neural oligarchy” — the 47
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existence of a small group of extremely powerful neurons that exert a strong influence 48

over the rest of the network. 49

Materials and methods 50

Neuron and network model 51

We adapt the self-organising recurrent neural network model (SORN; [39]) to work with 52

leaky integrate-and-fire (LIF) neurons (LIF-SORN; [20]). Our model consists of 400 53

excitatory and 80 inhibitory conductance-based LIF neurons. The 54

excitatory-to-excitatory (E-E), excitatory-to-inhibitory (E-I), inhibitory-to-excitatory, 55

(I-E), and inhibitory-to-inhibitory (I-I) connections are initialised randomly with a 56

connection probability of 0.02 for E-E connections, 0.1 for E-I and I-E connections, and 57

0.5 for I-I connections (Fig. 1A, Table 1). Autapses are not allowed. Each connection 58

type has a fixed delay. 59

Table 1. Parameters of the network model.

Network
parameters

Description Value

Ne number of excitatory neurons 400
Ni number of inhibitory neurons 80
pe,i connection probability from excitatory to excitatory neuron 0.02
pe,i connection probability from excitatory to inhibitory neuron 0.1
pi,e connection probability from inhibitory to excitatory neuron 0.1
pi,i connection probability from inhibitory to inhibitory neuron 0.5
de,e axonal delay from excitatory to excitatory neuron 1.5 ms
de,i axonal delay from excitatory to inhibitory neuron 0.5 ms
di,e axonal delay from inhibitory to excitatory neuron 1.0 ms
di,i axonal delay from inhibitory to inhibitory neuron 1.0 ms

Table legend: Network parameters.

The LIF membrane equation for a single excitatory or inhibitory point neuron in the 60

network is: 61

τm
dV

dt
= El − V + ge (Ee − V ) + gi (Ei − V ) + ξext (t) , (1)

where V is the membrane potential in volt, El the leak reversal potential, and Ee and 62

Ei are the reversal potentials for excitatory and inhibitory synaptic inputs, respectively. 63

The synaptic conductances are ge for excitation and gi for inhibition. The values of τe 64

and τi are chosen based on kinetics of AMPA and GABA receptors [40]; see Table 2 for 65

all neuronal parameters. The term ξext provides an external input of 1 mV to the 66

membrane voltage of the excitatory and inhibitory neurons, at random, Poisson 67

distributed times. Concretely, the external input times for each neuron are sampled 68

from an exponential distribution with τext = 3 ms, at a resolution of 0.1 ms, resulting in 69

on average 333 input events per second. 70

For every incoming spike, the conductance of the associated synapse is increased by 71

the value of the weight we or wi: 72

dge
dt

= −ge
τe

+ we

∑
k

δ (t− tk) (2)

73

dgi
dt

= −gi
τi

+ wi

∑
l

δ (t− tl) (3)
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Table 2. Neuronal parameters.

Neuronal
parameters

Description Value

τe EPSP time constant 3 ms
τi IPSP time constant 10 ms
τm membrane time constant 20 ms
Ee excitatory reversal potential 0 mV
Ei inhibitory reversal potential -80 mV
El leak reversal potential -60 mV
µe
Vθ

mean firing threshold for excitatory neurons -50 mV

µi
Vθ

mean firing threshold for inhibitory neurons -51 mV

σe
Vθ

variance of firing threshold for excitatory neurons 1 mV

σi
Vθ

variance of firing threshold for inhibitory neurons 1 mV

Vreset reset potential -60 mV
ξext amplitude of external input 1 mV
τext decay constant of exponential sampling of external input times 3 ms

Table legend: Neuronal parameters.

where tk and tl are spike times from an excitatory or inhibitory input respectively, and 74

we is the synaptic weight of the excitatory connection and wi that of the inhibitory 75

connection. When the membrane potential reaches the threshold Vθ, a spike is 76

generated and the membrane potential is reset to the resting potential Vreset 77

V → Vreset . (4)

The spiking thresholds Vθ are sampled for each neuron from a Gaussian distribution 78

with mean µe
Vθ

and µi
Vθ

, and standard deviation σe
Vθ

and σi
Vθ

for excitatory and 79

inhibitory neurons, respectively. Doing so creates heterogeneous firing rates in the 80

neuronal population of the model. Membrane potential values are initialised as 81

uniformly random between -50 mV and -55 mV. We set Vreset = El. There is no 82

absolute refractory period for spiking. In equations (1), (2) and (3), conductances are 83

unitless and therefore so are the synaptic weights. 84

Synaptic Plasticity 85

The network incorporates several different types of plasticity. The E-E synapses are 86

endowed with temporally asymmetrical spike-timing dependent plasticity (eSTDP; 87

Fig. 1B), and the I-E connections with symmetrical STDP (iSTDP; Fig. 1C). Both E-E 88

and I-E synapses are subject to homeostatic normalisation of the weights, described in 89

detail below. 90

Contrary to previous works (e.g. [18, 20]) there is no intrinsic homeostatic plasticity 91

and no structural plasticity in this model. This choice was made in order to allow a 92

broad distribution of firing rates to emerge from Gaussian variability in spiking 93

thresholds, and to demonstrate that the STDP rules and the synaptic normalisation are 94

sufficient to account for stable activity levels. 95

The eSTDP rule is as follows: For the temporal difference between a presynaptic and 96

a postsynaptic spike ∆t = tpre − tpost, the change in synaptic efficacy is given by: 97
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∆we =


Ae

LTP exp

(
∆t

τLTP

)
for ∆t < 0

Ae
LTD exp

(
−∆t

τLTD

)
for ∆t ≥ 0 ,

(5)

with ALTP > 0 and ALTD < 0. In this model, eSTDP and iSTDP favour LTP over 98

LTD [41]. The depression area within the eSTDP window is set to 80 percent of the 99

potentiation area, creating here a small advantage for LTP. In synapses from inhibitory 100

to excitatory neurons, additive iSTDP is applied: 101

∆wi =


Ai

pre exp

(
∆t

τpre

)
for ∆t < 0

Ai
post exp

(
−∆t

τpost

)
for ∆t ≥ 0 .

(6)

We consider by default τpre= τpost = τLTP, so that the time constants for iSTDP match 102

the LTP time constant in eSTDP. The values of Ai
pre and Ai

post are identical in the 103

symmetric iSTDP learning rule (Fig. 1C). The symmetric iSTDP window, first 104

employed in a recurrent neural network that self-organises into a balanced state [42] has 105

been shown recently to exist in auditory cortex [26]. Besides the symmetric iSTDP 106

(Fig. 1C), we also test a pre-LTP and a post-LTP iSTDP (Suppl. Fig. 4A). 107

To include a form of depression in the iSTDP, a fixed value LTDα is subtracted for 108

every pre-synaptic spike [42] 109

wi → wi − LTDα . (7)

The LTD part of iSTDP can be included by setting LTDα to nonzero values. We 110

consider iSTDP with LTDα = 0 and with LTDα = 0.02. Neither E-E nor I-E weights 111

are allowed to become negative. 112

Besides eSTDP and iSTDP, the synapses are equipped with a homeostatic 113

mechanism: synaptic normalisation (SN) of the E-E and I-E weights, scaled 114

proportionally to the total incoming weight onto each excitatory neuron. This fast, 115

homeostatic mechanism [43] is based on the premise of having limited numbers of 116

synaptic building blocks such as neurotransmitter receptors or scaffolding proteins in 117

the postsynaptic neuron at any time, which leads to a competition for these building 118

blocks between synapses of the same type [44]. Although there exists evidence for SN in 119

glutamatergic and GABAergic synapses [27,28,43] as well as slow scaling [9, 45] within 120

dendritic branches [46], we make the assumption that the SN in these synapses is fast, 121

and that the homeostatic change depends on the weight in a multiplicative fashion [44]. 122

The SN works as follows: all excitatory (inhibitory) weights onto a neuron are regularly 123

updated as 124

we,j → we,j

(
1 + ηSN

(
Te,e∑Ke

m=1 we,m

− 1

))
, (8)

wi,k → wi,k

(
1 + ηSN

(
Ti,e∑Ki

n=1 wi,n

− 1

))
. (9)

where Te,e is the target sum of E-E weights, and Ti,e the target sum of I-E weights 125

onto one excitatory neuron (see Table 3 for plasticity parameters). The values Ke and 126
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Ki are the total number of excitatory and inhibitory synapses onto that particular 127

neuron in the network. Since connectivity is initialised at random between neuron pairs, 128

Ke and Ki follow a binomial distribution over the population. The E-E and I-E weights 129

are all initialised at 0.0015. The E-I and I-I weights, which are not subject to eSTDP or 130

iSTDP in our model, are initialised by full rescaling so that the weights onto each 131

neuron sum exactly to Te,i and Ti,i, respectively (see Table 3 for values). The SN for 132

E-E and I-E weights (equations (8) and (9)) is implemented every second, to save 133

computation time. 134

Table 3. Plasticity parameters.

Plasticity
parameters

STDP Description Value

Ae
LTP amplitude of LTP in eSTDP 0.1× 10−3

Ae
LTD amplitude of LTD in eSTDP −0.04× 10−3

Ai
pre amplitude of iSTDP for ∆t < 0 0.1× 10−3

Ai
post amplitude of iSTDP for ∆t > 0 0.1× 10−3

τLTP decay constant of LTP in eSTDP 15.0 ms
τLTD decay constant of LTD in eSTDP 30.0 ms
τpre decay constant of iSTDP for ∆t < 0 15.0 ms
τpost decay constant of iSTDP for ∆t > 0 15.0 ms
LTDα pre-spike triggered LTD for iSTDP 0.0 ∼ 0.02× 10−3

Synaptic
Normalisation

Description Value

Te,e max input sum of E-E synapses 50× 10−3

Te,i max input sum of E-I synapses 60× 10−3

Ti,e max input sum of I-E synapses 15× 10−3

Ti,i max input sum of I-I synapses 60× 10−3

Spontaneous
Weight Changes

Description Value

µe mean of spontaneous E-E weight changes 0.025× 10−3

µi mean of spontaneous I-E weight changes 0.025× 10−3

σe standard deviation of spontaneous E-E weight changes 0.1× 10−3

σi standard deviation of spontaneous I-E weight changes 0.1× 10−3

Table listing all plasticity parameters. Although E-I and I-I synapses are not subject to plasticity during the simulation, Te,i
and Ti,i are used at network initialisation to set the weights for these connections.

The simulations of the network run on custom-built code in Python and the neural 135

simulator Brian [47]. 136

Quantification of spike correlations and firing rates 137

To compute the spike-time correlations between neurons, we bin the spikes in 100 ms 138

bins. Since spike-time correlations depend on the bin size for the spikes [48], we choose 139

the bin size large enough to allow for large enough correlations, but so as not to exceed 140

the mean inter-spike interval for excitatory and inhibitory neurons [48]. To obtain the 141

firing rates for each neuron, the total number of spikes in each neuron is simply divided 142

by the length of the entire simulation. The histograms of firing rates that are shown on 143

a semilog scale contain exponentially distributed bins, resulting in equally spaced bins 144

in the figure. These histograms are normalised by dividing each bin value by the bin 145

width, as was done in previous work highlighting lognormal distributions [5]. A 146
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lognormal curve is fitted to the distributions using the SciPy package curve fit. The 147

histograms on linear axes are not normalised unless stated explicitly. We investigate if 148

the firing rate distribution in the population is a direct result of the interaction between 149

the distribution of membrane potentials of the neurons, and their spiking thresholds. 150

For this we acquire the distribution of membrane potentials visited over 50 seconds by a 151

neuron in which spiking is disabled, and average over Ne of such distributions. The 152

expected number of spikes for each neuron is then computed as the area of the mean 153

membrane potential distribution for a given spiking threshold sampled from the 154

Gaussian distribution. This process is repeated for 10000 putative neurons. 155

Analysis of synaptic efficacy distributions 156

We record the weights in the network at every second, just before and just after SN is 157

applied. We verify if the weight dynamics reaches an equilibrium by checking if the 158

mean and standard deviation of the weight distribution reach a stable point over time. 159

We then create histograms of the weight distribution at the final time point of the 160

simulation, after the distributions of E-E and I-E weights have stabilised (40000 161

seconds). The visualisation of the weight distribution follows the same rules as the firing 162

rate distribution. 163

Definition of hub neurons 164

Hub neurons are neurons with stronger and more numerous outgoing connections. Since 165

the number of outgoing connections is initialised randomly and fixed during the 166

simulation, only hub neurons with stronger connections are considered here. To detect 167

the presence of hub neurons, we split the excitatory neurons into a group with the ten 168

percent highest firing rates (high) and the rest of the neurons (control). The outgoing 169

weights from the high group and the control group are then compared: if the high group 170

has significantly larger outgoing weights on average, this suggests that the high-firing 171

neurons are also better connected. The inhibitory neurons are compared in the same 172

way. Only the plastic synapses (E-E and I-E weights) are taken into account. To 173

determine the impact of a neuron m on the network, we employ 174

Impactm = Rm

Nmout∑
k=1

wmk . (10)

where Rm is the average firing rate of the neuron recorded over 200 seconds after weight 175

stabilisation, Nm
out the number of its efferent synapses, and wmk the weight of each of 176

these synapses at the end of the 200 second interval. The impact is verified for 177

excitatory neurons with their E-E synapses, and inibitory neurons with their I-E 178

synapses. 179

Stochastic models of weight dynamics 180

We hypothesise that the weight distributions found in the network simulation can be 181

explained by simple stochastic processes. We consider three such processes: a uniform 182

stochastic model (USM), a nonuniform stochastic model (NSM), and a Kesten 183

model [21,49]. In these models, a synaptic weight is reduced to a stochastic variable w 184

that evolves under random additive and multiplicative changes over a number of steps. 185

First, in the USM we let w change according to SN and STDP, where the STDP 186

changes are random and any spike-time combination is assumed to be equally probable. 187

Therefore, the USM disregards the likelihood of specific correlations between pre- and 188

post spike times at a synapse. We start with a random variable wt that represents a 189
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synaptic weight at a time step t. We keep I-E weights and E-E weights in the stochastic 190

models between 0 ≤ wt ≤ Ti,e, and 0 ≤ wt ≤ Te,e, respectively. The weight wt is 191

modified Nstep = 5000 times in an additive way by randomly sampling an STDPupdate 192

Arand
t from the STDP windows shown in Fig. 1B-C. However, some neurons in the 193

network have intrinsically higher firing rates compared to other neurons, which may 194

give some weights an advantage over others when competing for limited postsynaptic 195

resources. We therefore assume that some weights benefit from more frequent STDP 196

updates. We sample the number of updates λSTDP for each wm from a lognormal 197

distribution that is fitted to the observed firing rates in the network. The number of 198

updates nmSTDP for each wmt is sampled from a Poisson distribution with mean λmSTDP, 199

since the average firing rate in each neuron and thus for each weight in the simulation 200

does not change over time but the number of updates in each step is variable. For each 201

time step, a weight wm therefore receives the update 202

wmt+1 = wmt + nmSTDPA
rand
t . (11)

Furthermore, in the network simulation, not all neurons receive the same number of 203

inhibitory or excitatory synapses. How much a weight is changed by SN depends on the 204

number of competing neighbours it has. We therefore mimic the variability in in-degree 205

of I-E (E-E) synapses by sampling a number ntotal from a binomial distribution, where 206

ntotal represents the number of inhibitory or excitatory synapses onto a postsynaptic 207

excitatory neuron given the random connectivity, numbers of neurons, and connectivity 208

fractions in the network for inhibitory-to-excitatory and excitatory-to-excitatory 209

neurons. We take ntotal instances of wm and normalise them together with equation (8) 210

and (9). Normalisation is performed at every step, although the same results are 211

obtained when SN is slower. The process is then repeated Ne times, to represent all 212

postsynaptic excitatory neurons in the network. The total distribution of w should then 213

closely resemble the distribution of weights in the network if its shape is purely the 214

result of random STDP updates combined with multiplicative SN. 215

Second, we consider a nonuniform stochastic model (NSM), which is identical to the 216

USM in all aspects but one: the STDP updates are not sampled randomly from the 217

STDP windows, but the sampling probabilities are weighted by the spike-time 218

cross-correlations between neuron pairs. To obtain these correlations, spikes are 219

recorded from the network for 200 seconds after the weights have reached equilibrium, 220

and cross-correlations are computed as Peason’s correlation coefficients over spike-time 221

lags between -100 and 100 ms surrounding the spike, covering the relevant part of the 222

eSTDP and iSTDP windows, using spike bins of 5 ms. These correlations are averaged 223

over all connected I-E and E-E neuron pairs, and averaged over 10 trials. 224

Cross-correlation curves are then shifted upwards additively by the minimal value to 225

remove negative values, normalised to obtain an area of 1.0, and overlaid with the 226

STDP windows to weigh sampling probabilities for the NSM. 227

Third, we consider that the weights might behave according to a Kesten process [49]. 228

A variable w that follows a Kesten process is defined by the following iteration: 229

wt+1 = awt + bt . (12)

where a and b are independent, stochastic variables. Although the Kesten process can 230

be seen as analogous to the combination of additive STDP and multiplicative SN [50], 231

in our model STDP and SN are not strictly independent nor stochastic, since both 232

terms depend on the collective behaviour of groups of weights and their current state. 233

We can however quantify the difference of our results from a Kesten process by 234

assuming weighted random STDP sampling as in the NSM, setting bt = nmLTPA
rand
t , and 235

gleaning the distribution for a from the SN factors that were obtained from the network 236

simulation. In the network model, the USM and the NSM, the SN is stabilising the 237
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weights in a non-random manner that depends on the collective weight state (Equation 238

(8) and (9)) and therefore also the state of the weight itself. Because of the independent 239

sampling of a in the Kesten process, the SN factor is not directly related to the exact 240

value of w at any time, as opposed to the USM and NSM. All three stochastic models 241

(USM, NSM, Kesten) are performed for parameters representing both E-E and I-E 242

weights and their distributions are compared to their respective distributions from the 243

network simulations. 244

Spontaneous fluctuations of weights 245

To investigate whether the lognormal-like distributions persist in the presence of 246

spontaneous fluctuations of the synapses, we add random Gaussian noise to the 247

synaptic weights (“weight noise”) at each second, with mean µwe = µwi = 0.025× 10−3
248

and standard deviation σwe and σwi = 0.1× 10−3 for for E-E weigths and I-E weights, 249

respectively. Since we consider fluctuations in the order of activity-dependent changes 250

through STDP [17], we set σwe and σwi equal to Ae
LTP and Ai

pre, the amplitude of LTP 251

in the eSTDP and iSTDP rules. The weight noise is applied independently in each 252

weight in the network. During the spontaneous fluctuations, we maintain eSTDP 253

(iSTDP) with SN in the E-E (I-E) weights. We also study the effect of TTX on the 254

fluctuations of synaptic efficacies. In the TTX condition, eSTDP and iSTDP are 255

rendered inactive but SN and the spontaneous fluctuations remain active. 256

Results 257

The network maintains asynchronous irregular activity and low 258

correlations 259

The LIF-SORN with iSTDP displays a number of properties commonly seen in cortical 260

networks (Fig. 2). Specifically, the spike-correlations are low [51], and spike patterns are 261

irregular for excitatory and inhibitory neurons [52, 53]. A sample of population spiking 262

is shown in Fig. 2A, with excitatory (inhibitory) spikes shown in green (purple). 263

Evidently, some neurons spike often and others are relatively silent. In Fig. 2B, a 264

random excitatory neuron receiving excitatory and inhibitory inputs is shown with its 265

membrane potential, excitatory and inhibitory conductances, and currents. To 266

determine whether the neurons spike asynchronously, we calculate the distribution of 267

coefficients of variation (CVs) of inter-spike intervals (ISIs) of each neuron in the 268

network. A CV of 1.0 is a property of a neuron firing according to a Poisson process, 269

while a lower value indicates more periodic firing patterns. Figure 2C shows that both 270

excitatory neurons (mean of distribution: 0.77) and inhibitory neurons (mean of 271

distribution: 0.76) fire moderately aperiodically. Moreover, spike-time correlations 272

between excitatory neurons, between inhibitory neurons, and between excitatory and 273

inhibitory neurons are low, indicating a network with low synchrony (Fig. 2D). Though 274

the network activity is not perfectly decorrelated, based on these observations we 275

conclude that the network is close to the asynchronous state [54,55]. 276

Development of lognormal-like distributions of firing rates 277

Since the incoming excitatory and inhibitory conductance onto neurons in the network 278

is normalised over time (equation (8) and (9)), setting all neuronal parameters equal 279

leads to a network where all excitatory or inhibitory neurons fire on average at the same 280

rate. However when we sample the spiking thresholds of individual neurons from a 281

normal distribution with 1 mV variance, the average firing rates in the network become 282
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heterogeneous across neurons. Importantly, the distributions of firing rates of excitatory 283

and inhibitory neurons follow a lognormal-like shape (Fig. 3A-B) as seen in recordings 284

from rat auditory cortex [1] and hippocampus [2]. Because it is not directly clear how 285

lognormal-like distributed firing rates relate to normally distributed spiking thresholds, 286

we propose that the observed firing rates are directly the result of the interaction 287

between the spiking threshold sampling distribution (Fig. 3C, red curve) and the values 288

that the membrane potential in an average neuron typically visits over time, when its 289

spiking mechanism is disabled (Fig. 3C, blue curve). The expected number of spikes can 290

then be computed by iteratively sampling from the spiking threshold curve and 291

determining how many times the average neuron’s membrane voltage crosses the 292

threshold. The resulting distributions of expected number of spikes per neuron follow a 293

lognormal-like shape (Fig. 3D), suggesting that lognormal-like distributed firing rates 294

can already arise from the interaction of near-Gaussian membrane dynamics and small 295

Gaussian variability in the spiking thresholds. 296

Lognormal-like excitatory and inhibitory weight distributions 297

Next, we wish to find how synaptic weight distributions are shaped by plasticity 298

mechanisms. During self-organisation, the E-E (I-E) weights evolve under the influence 299

of eSTDP (iSTDP) and SN. An example of the dynamics of weights during the 300

simulation is shown in Fig. 4A-B. Due to the SN in E-E and I-E synapses, the mean 301

weight in the network remains approximately constant, after some initial transients 302

which are due to ‘soft’ normalisation (equations (8) and (9); Fig. 4A-B, thick lines). 303

After 40000 (10000) seconds of self-organisation, the standard deviation of the E-E 304

weight (I-E weight) distribution stabilises (Suppl. Fig. 1). The weights have formed 305

stable, right-skewed long-tailed distributions (Fig. 4C-D; a lognormal fit is shown in the 306

orange curve, see also videos ?? and ??), although the individual E-E and I-E weights 307

continue to change. The weight distributions of the E-E and I-E weights resemble 308

lognormal-like distributions seen in experiments [2, 4, 5, 7–9,23]. In Fig. 5, the mean of 309

the distributions over 10 independent instances of the network is shown. The 310

lognormal-like shapes are still present after 40000 seconds of self-organisation, just 311

before (Fig. 5) and just after (Suppl. Fig. 2A-D) normalisation is applied. The 312

distributions are not exactly lognormal (compare lognormal fit to data points in Fig. 5), 313

in line with experimental findings [5] . 314

For E-E weights, a lognormal-like distribution is found when combining eSTDP with 315

SN (Fig. 5A-B), as was shown before in [20] and [18] , in which eSTDP and SN were 316

complemented with structural plasticity. We here use a different approach, leaving out 317

structural plasticity, but applying a small bias in the eSTDP rule, in favour of 318

potentiation. The result is a lognormal-like distribution of E-E weights (Fig. 5A-B). 319

The I-E weights also follow this distribution when LTDα = 0 (Fig. 5C-D), meaning the 320

iSTDP is purely potentiating. Thus, the combination of an additive potentiating STDP 321

rule, together with SN results in lognormal-like distributions of E-E and I-E weights. 322

What happens if the STDP rule contains more LTD than LTP, or when SN is left out? 323

When LTDα is increased to 0.02, the I-E weight distribution changes and loses its 324

lognormal-like shape (Fig. 5C, blue curve), indicating that strong LTD in the iSTDP 325

rule can move the shape of the weight distribution away from the unimodal shape, 326

pushing most weights to the zero boundary and a small number of weights to the 327

maximum weight. A graphical representation of how LTP and LTD shape the 328

distribution of E-E and I-E weights is shown in Fig. 6. The multiplicative SN pushes 329

competing weights toward each other when LTP is dominant (Fig. 6A), which for a 330

population of weights will lead to a unimodal distribution. Conversely, SN pushes the 331

weights away from each other when LTD is dominant (Fig. 6B), which for a population 332

of weights will lead to a bimodal distribution. Therefore, the lognormal-like shape of the 333
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I-E weight distribution observed in Fig. 4 and 5 is a specific result of the interaction of 334

potentiating iSTDP and multiplicative SN. On the other hand, when SN is removed, the 335

weights are allowed to move freely between the zero boundary and the maximal weight 336

boundary through STDP. However, in this case, the distribution becomes distorted and 337

weights heap up at the maximal weight boundary (Suppl. Fig. 2E, purple curve). 338

Likewise, when LTD is added, the distribution shifts leftward again (shown for I-E 339

weights, Suppl. Fig. 2E, blue curve). In other words, when SN is left out, or LTD is too 340

strong, the weight distribution loses its lognormal-like shape, and becomes bimodal. 341

Lognormal-like distributions have been observed in the weights of cortical [5, 8] and 342

hippocampal [2] populations, although the observed distributions usually show slight 343

deviations from a lognormal shape (see also [18, 23, 56]). We conclude that I-E and E-E 344

weights in our network may form through the combination of potentiating STDP and 345

SN a right-skewed long-tailed distribution that resembles a lognormal distribution, but 346

as in the experimental observations, is not in fact precisely and entirely lognormal. 347

Weight-dependent changes through STDP maintain strong 348

weights 349

To understand how the changes in STDP can lead to such lognormal-like distributions, 350

we investigated how changes in synaptic efficacies depend on the current synaptic 351

efficacy. For the E-E weights, eSTDP contributes both LTP and to a lesser degree, LTD 352

(Fig. 7A, top), following the eSTDP learning rule (Fig. 1B). For the I-E weights, there is 353

only potentiation through iSTDP as we set here LTDα = 0 (Fig. 7B, top). For both 354

E-E and I-E weights, the SN provides the downscaling to compensate for the 355

potentiation through eSTDP and iSTDP (Fig. 7A-B, middle). Interestingly, one can see 356

that although the magnitude of downscaling is larger for some large weights, other large 357

weights are not scaled down as much despite their size (observe the blue points that lie 358

close to the zero change line in Fig. 7A-B, middle figures). If all weights in a population 359

are subject to multiplicative weight-dependent depression with the same factor, weights 360

settle into a symmetric distribution [57,58], but a sublinear dependence of depression on 361

weights can lead to asymmetry in the weight population, through symmetry 362

breaking [59,60]. A sublinear dependence of LTD on weight for larger weights has 363

already been included in an STDP-based learning rule engineered to produce 364

lognormal-like distributions of weights, by maintaining the large weights inside the tail 365

of the distribution [60]. Indeed one can observe in the total changes for each synapse, 366

namely the sum of changes from STDP and SN, that many large weights do not 367

demonstrate absolute changes as large as their smaller counterparts (Fig. 7A-B, bottom 368

figures, compare left to right half of the figure). The same small population of large 369

weights therefore maintains the tail of the lognormal-like weight distribution over time. 370

Such persistently large weights are in line with findings of higher stability of large 371

dendritic spines compared to small spines [6, 9, 61,62]. 372

Emergence of excitatory and inhibitory hub neurons 373

Next, we attempt to find out whether hub neurons are present in the network. We 374

hypothesized that neurons with high firing rates may develop strong outgoing weights 375

due to STDP. Since neurons with high firing rates give rise to more STDP events, their 376

outgoing weights will have an advantage when competing with synapses from less active 377

neurons onto the same target neuron. This principle works well for classical eSTDP 378

rules, but is even more likely to apply when the STDP rule is in itself mostly 379

potentiating (see Fig. 7 and Methods). To investigate the relation between individual 380

neuron’s firing rates and their outgoing weights in our network, we separate the neurons 381

into two groups: the 10 percent highest firing neurons (high-firing), and the remainder 382
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of the neurons (control), and observe the mean outgoing weight for each category. Fig. 8 383

shows that despite considerable variability, the mean outgoing weight of high-firing 384

neurons is larger than that of control neurons. The result is significant for both 385

excitatory neurons with their outgoing E-E weights (Wilcoxon rank-sum test, 386

p= 2.60× 10−126 , Fig. 8A), and inhibitory neurons with their outgoing I-E weights 387

(Wilcoxon rank-sum test, p= 1.48× 10−121, Fig. 8B). As all weights start at the same 388

value, the split in the outgoing weight populations happens over time due to plasticity. 389

A neuron with a high firing rate therefore has a higher probability of making its 390

outgoing weights larger, exploiting STDP to achieve a stronger influence on the network. 391

With the above, we replicate findings by Effenberger and colleagues (‘driver 392

neurons’, [19]), and extend them to inhibitory neurons. Moreover, the impact of a 393

neuron on the rest of the network should be a function of both its firing rate and its 394

outgoing weights (see Methods). The distribution of impacts is more strongly skewed 395

and close to exponential, for both excitatory and inhibitory neurons (Fig. 8C-D). In 396

summary, firing rates and STDP-driven competition in synapses combine to create a 397

neural oligarchy with a small number of highly influential excitatory and inhibitory 398

neurons. 399

A simplified stochastic model for excitatory and inhibitory 400

weight dynamics 401

Since previous studies suggested that a stochastic process can be a good model for the 402

dynamics of synapses [21,50], we investigate whether simplified stochastic models can 403

account for the lognormal-like weight distributions we have shown. In these models, a 404

weight is treated as a stochastic variable w that evolves over a number of time steps. 405

We consider stochastic processes which assume the variable w is subject to random 406

additive updates sampled from the STDP window (Fig. 1B-C), and collective 407

multiplicative SN (see Methods). We test three such processes, a nonuniform stochastic 408

model (NSM), a uniform stochastic model (USM), and a Kesten model [21,49]. 409

First we consider the NSM, in which w is updated by randomly sampling the STDP 410

window in a nonuniform manner. Sampling probabilities in the STDP window are 411

determined by the average correlation coefficient between pre- and postsynaptic spike 412

times, ranging over the relevant time lags for STDP, which is shown in Fig. 9A and B. 413

The distribution of the random variable w from the NSM (orange curve), that uses this 414

cross-correlation, closely resembles the mean distribution of E-E weights (Fig. 9C, green 415

curve) and I-E weights (Fig. 9D, purple curve) in the network. This means that the 416

lognormal-like distributions found here are not strongly dependent on variabilities in 417

spike correlations across weights or a specific order of updates by STDP at each weight. 418

Rather, random independent STDP events in the synapses combined with SN govern 419

the qualitative properties of the distributions of E-E and I-E weights to create a 420

lognormal-like shape. The combination of a random additive update with a 421

multiplicative scaling of a stochastic variable as described in the NSM above is 422

reminiscent of a Kesten process, a simple stochastic process that depends on two 423

independent random variables, one additive and one multiplicative [49]. Indeed, a recent 424

study phenomenologically described the dynamics of synaptic weights in networks of 425

cultured neurons with such a process [21]. The Kesten model is here identical to the 426

NSM, except that the multiplicative factor a is a random parameter and does not 427

depend on the state of w. If we sample from the distribution of SN factors from the 428

network simulation to generate values of a and implement a Kesten model for Nstep 429

steps, the Kesten distributions take on a lognormal-like shape (Fig. 9C-D, blue curve), 430

but are not as close to the distributions of E-E and I-E weights from the network 431

simulations (Fig. 9C-D, purple and green curves) or the NSM (Fig. 9C-D, orange curves). 432
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Based on the above results, we find that the NSM is a more accurate description of the 433

dynamics of E-E and I-E weights in the network than the Kesten model. 434

One may argue that the lognormal-like weight distributions obtained in the NSM are 435

simply a result of the sampling of different numbers of STDP updates for different 436

neurons from another lognormal distribution, but even if the firing rates are equal for 437

all inhibitory and for all excitatory neurons in the network, the distributions of weights 438

are still close to lognormal (Suppl. Fig. 3A-B, purple and green curves), as are the 439

corresponding NSMs (Suppl. Fig. 3A-B, orange curves). 440

Since the NSM uses the spike cross-correlations to bias sampling from the iSTDP 441

and eSTDP windows, we also wish to ask whether these correlations are strictly 442

necessary to obtain the logormal-like distribution from STDP sampling. We therefore 443

consider uniform sampling of the STDP window in the USM. The resulting distribution 444

is similar to the distribution from the network simulation for I-E weights, but not for 445

E-E weights (Suppl. Fig. 3C-D). Since the main difference between eSTDP and iSTDP 446

in our model is the presence of LTD for eSTDP, we verified the distributions resulting 447

from the USM and the NSM with various amounts of LTD (Suppl. Fig. 3E-F) . The 448

distribution for the weights from the USM is only lognormal-like for zero LTD 449

(Suppl. Fig. 3E) This explains why the USM matches well with the I-E weights from the 450

network, since the iSTDP window contains no LTD for LTDα = 0. In other words, since 451

the USM is only close to lognormal when there is no LTD, this suggests the 452

precise-spike time correlations do not matter in the absence of LTD. Implementing 453

different iSTDP window shapes with LTDα = 0 in the network model confirms this 454

(Suppl. Fig. 4). Conversely, the USM does not resemble the distribution from the 455

network when LTD is 80 percent of LTP or larger (Suppl. Fig. 3E). The NSM however 456

yields a lognormal-like distribution regardless of the amount of LTD (Suppl. Fig. 3F). 457

Since the peak in cross-correlation lies in the range for LTP in eSTDP, the spike 458

correlations sample the LTP area of the STDP window more than the LTD area. 459

Therefore, when the STDP window contains LTD, the presence of specific spike time 460

correlations induced by the synapse is necessary to ensure a bias toward LTP and the 461

emergence of a lognormal-like distribution of the weights. On the other hand, when 462

there is only potentiation in the STDP window, random sampling of LTP events 463

combined with SN already leads to a lognormal-like distribution. 464

Lognormal-like distributions persist with spontaneous 465

fluctuations 466

Recent results in cell cultures have shown that besides activity-dependent plasticity, 467

spine sizes exhibit random changes that are independent of neuronal activity in the 468

network [6] and of the local activity near each synapse [17]. In fact, [17] have 469

demonstrated that the contribution of the spontaneous changes is at least as large as 470

the contribution from the activity-dependent changes. Moreover, synapses continue to 471

change in the presence of TTX, which abolishes spiking activity [6, 23]. 472

To see whether the weight distributions we found can still exist in the presence of 473

such strong random fluctuations in the weight, we add independent changes to each 474

weight (“weight noise”) throughout the simulation. The weight noise is sampled from a 475

Gaussian distribution for both E-E and I-E weights. When the means of the Gaussians 476

µwe and µwi are positive, thereby favouring random potentiation in the weights, limiting 477

distributions with lognormal-like shapes are found for both E-E and I-E weights 478

(Fig. 10A-B). Importantly, these distributions persist in the absence of activity and 479

activity-dependent changes (Fig. 10A-B, light coloured curves relating to TTX), in line 480

with experimental findings [6, 23]. However, when µwe and µwi are negative, weights 481

move away from their lognormal-like shape (Suppl. Fig. 5). Similarly to our results in 482
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Fig. 5C (blue curve), this suggests that if random fluctuations mostly consist of negative 483

changes, the combination of random weight changes and multiplicative SN does not lead 484

to lognormal-like weight distributions. This is equally valid in the absence of activity 485

(Suppl. Fig. 5, TTX). We conclude that although dynamics and distributions of weights 486

are affected, approximately long-tailed right-skewed distributions of weights can exist 487

even in the presence of strong spontaneous fluctuations of E-E and I-E weights, as long 488

as they contain a bias towards positive changes. Importantly, lognormal-like 489

distributions can be seen even if the spontaneous fluctuations are of the same order of 490

magnitude as the changes through LTP in eSTDP and iSTDP, and in the absence of 491

activity-dependent plasticity like STDP. 492

Discussion 493

The motivation of this work was to address whether cortical networks resemble a 494

democracy, where the voice of every neuron has about the same weight, or whether they 495

resemble an oligarchy, where a small set of neurons exerts an extreme influence over the 496

network. Furthermore, we wanted to elucidate what mechanisms might give rise to such 497

a concentration of power in cortical networks. Using a spiking neural network model we 498

showed that a lognormal-like distributions of excitatory and inhibitory weights can 499

result from the combination of additive STDP rules and multiplicative synaptic 500

normalization as long as the net effect of STDP is biased towards potentiation. We also 501

showed that these lognormal-like distributions can exist while individual weights 502

fluctuate over time through either purely activity-dependent changes or spontaneous 503

random alterations in the weights [17]. Moreover, we showed that small Gaussian 504

variability in spiking thresholds results in highly skewed lognormal-like distributions of 505

firing rates across the population [2] that are maintained over time [63]. The most 506

active neurons in the tail of the distribution develop into hub neurons with strong 507

efferent synapses, which potentiate due to a competitive advantage against synapses 508

from less active neurons onto the same post-synaptic target neuron. Finally, we showed 509

that the combination of high firing rate and strong efferent synapses allows these hub 510

neurons to exert an extremely high influence on the rest of the network. 511

We found that lognormal-like distributions of excitatory and inhibitory synaptic 512

efficacies appear in the network if the net effect of STDP is potentiating. Two factors 513

contribute to this. First, the STDP windows favour potentiation. Specifically, our 514

iSTDP window only contains contains potentiation. Second, the spiking correlations in 515

the network bias the sampling of the STDP window such that potentiation dominates, 516

as we have demonstrated for E-E synapses. 517

Another mechanism contributing to the lognormal-like distributions of synaptic 518

efficacies is the presence of multiplicative normalization. While their is evidence for fast 519

synaptic normalization mechanisms, keeping the sum of efficacies on dendritic branches 520

approximately constant [43], we are not aware of evidence that such normalization is 521

multiplicative. However, synaptic scaling mechanisms operating on longer time scales 522

are thought to be multiplicative [9, 45]. We consider it a plausible assumption that fast 523

normalization also works multiplicatively [44]. A recent model by Tosi and Beggs [64] 524

has also produced lognormal-like firing rates and synaptic efficacies. Their model relies 525

on a hypothesized metaplasticity mechanism, for which experimental evidence seems to 526

be lacking so far. In contrast, our model is capable of producing these distributions with 527

only well-established plasticity mechanisms [15,26,28,43,45]. 528

The key prediction from our model is the existence of a class of highly influential 529

hub neurons that possess both high firing rates and strong efferent connections. This 530

prediction could be tested using modern connectomics approaches in the following way. 531

First, highly active neurons are identified through an appropriate recording technique. 532
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Second, the axon is reconstructed and the sizes of efferent synapses are measured. We 533

predict that in such an experiment, highly active neurons will have stronger efferent 534

synapses on average. The presence of strongly interconnected neurons in terms of 535

synapse numbers has a strong effect on network functioning, affecting neuronal 536

synchrony [65] and criticality [66]. Subgroups of strongly interconnected hub neurons 537

have also been implicated in pathological states, namely hyperexcitability in the 538

epileptic hippocampus [67]. It must be noted that in our study, the hub neurons do not 539

possess on average larger numbers of synapses than the remainder of the neurons, since 540

the network is connected randomly. However the hub neurons do have stronger outgoing 541

weights and their impact on the network is highly pronounced, which may parallel the 542

functional properties of neurons with more numerous synapses. The neural oligarchy 543

that emerges from local processes at the neuron level may therefore be a critical feature 544

of cortical functioning in health and disease. 545

The current network model is strongly simplified in a number of aspects. First, the 546

synapses onto inhibitory neurons are not modified by plasticity, while experimental 547

results in the visual cortex suggest these synapses do exhibit activity-dependent 548

changes [68]. It will be necessary to address fully plastic networks to study the 549

co-evolution of all synapses in an excitatory-inhibitory recurrent network. Moreover, 550

although normalisation is implemented for each second in the current model, there is 551

evidence for homeostatic mechanisms that come into effect over much longer periods [69]. 552

We do predict that as long as the plasticity events in between the normalisation events 553

are mostly instances of potentiation, and of small amplitude, the lognormal-like 554

distribution of weights is guaranteed even over long timescales of normalisation. We also 555

do not address here the pruning and creation of synaptic connections with multi-synapse 556

connections per neuron pair [70–72]. How the distributions of inhibitory weights are 557

affected by the appearance of multi-synapse connections is a subject for future study. 558

Also, eSTDP and iSTDP are assumed to act equally fast, something that is problematic 559

if inhibition itself acts as the major homeostatic mechanism by [69]. However if one 560

assumes that synaptic normalisation in excitatory synapses acts rapidly, [43], the 561

network need not rely on inhibitory plasticity to prevent runaway excitation. Although 562

a comprehensive theoretical foundation for fully understanding the effects of inhibitory 563

plasticity in recurrent neuronal networks may still be lacking [73], the various possible 564

functions and consequences of iSTDP are beginning to be elucidated [74]. 565

Conclusion 566

In conclusion, our model suggests that cortical networks may resemble oligarchies, 567

where a few neurons with high firing rates and strong efferent connections may exert a 568

powerful influence over the rest of the network. On the one hand, this may have 569

important implications for information processing in these networks [12,13]. On the 570

other hand, this may also be important for network disorders such as epilepsy, where 571

such highly influential neurons are believed to play a key role in the initiation and 572

spreading of aberrant activity [67]. 573
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Supporting information 578

S6 Video. The distribution of E-E weights evolves over time. The 579

distribution of E-E weights from an example trial is shown in the video, along with the 580

lognormal fit to the distribution.The evolution is shown for 5-second steps over a 200 581

second interval. Weights are recorded just before SN. 582

S7 Video. The distribution of I-E weights evolves over time. The 583

distribution of I-E weights from an example trial is shown in the video, along with the 584

lognormal fit to the distribution.The evolution is shown for 1-second steps over a 40 585

second interval. Weights are recorded just before SN. 586
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Fig 1. Overview of the network with excitatory and inhibitory STDP. A:
Schematic of the network with randomly connected excitatory and inhibitory LIF
neurons. B: The STDP learning rule in the E-E weights (eSTDP). The dark green curve
shows the amount LTD for a weight at wmax,e. The synapses are also equipped with
synaptic normalisation (equation (8) and (9)). C: The STDP learning rule in the I-E
synapses (iSTDP).

Fig 2. Activity in the network with eSTDP, symmetric iSTDP, and SN. A:
Spike raster plot of the inhibitory population, and a portion of the excitatory
population, during the 498th to 500th second of a simulation. B: A momentary view of
the membrane potential and synaptic currents onto a representative excitatory neuron
in the network during the same interval as in A. Top, membrane potential. The firing
threshold is indicated in blue. Spikes are shown with vertical lines. Middle, conductance
dynamics (see equations (1), (2), (3)). Bottom, excitatory (green) and inhibitory (red)
currents. C: Coefficient of variation of the inter-spike intervals of excitatory (left) and
inhibitory (right) neurons, during a 500 second simulation. D: Distributions of spike
cross-correlations between neurons (left, excitatory-excitatory; middle,
inhibitory-inhibitory; right, excitatory-inhibitory) taken from a 500 second simulation.
Correlations were computed using 100 ms bins for the spikes.
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Fig 3. Lognormal distributions of firing rates in excitatory and inhibitory
neurons. A: Mean distributions of firing rates of the excitatory neurons during
simulations of 5000 seconds. Firing rates are obtained from the total number of spikes
during the simulation intervals. The light colour shows the standard error. The yellow
curves show lognormal fits. The distributions are shown both on a linear and a semilog
scale and are averaged over 10 trials. In the bottom figure, the histogram binsizes are
corrected to be linear on the logscale, and bin values are corrected by dividing them
through the bin width. B: Same as in A but for inhibitory neurons. C: Blue, mean
distributions of membrane voltage recordings from 400 neurons over 50 seconds, where
spiking is disabled. The light blue indicates the standard deviation over neurons. Red,
Normal distribution used for sampling spiking thresholds at network initialisation. D:
Distribution of expected number of spikes estimated for 10000 neurons, based on
sampling from the blue and red curves in C. Top, excitatory neurons. Bottom,
inhibitory neurons.
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Fig 4. Weight dynamics of a single simulation in the network with eSTDP,
iSTDP and SN. A: Evolution of 10 random E-E weights after 10000 seconds of
self-organisation. The thick line indicates the mean of all E-E weights in the network.
B: Distribution of the E-E weights in a single simulation after 10000 seconds of
self-organisation. The orange curve is a lognormal fit. The histogram bins are chosen to
be linear on the logscale, and bin values are divided by their corresponding bin width.
C: Evolution of 10 random I-E weights. Here, LTDα = 0.0. D: Distribution of the I-E
weights after 10000 seconds of self-organisation.

Fig 5. Average distributions of 10 trials of E-E and I-E weights in the
network with iSTDP with SN in I-E synapses. A: Mean distribution of E-E
weights. The dark point show the average, the light point show the standard error of
the mean over 10 independent trials. The orange curve is a lognormal fit to the mean
distribution. B: Mean distribution of E-E weights plotted with uniform bin spacing on a
logscale, in which bin values are corrected for their corresponding bin width. C: Mean
distributions of I-E weights, for LTDα = 0 (purple points), and LTDα = 0.02 (blue
points). A line is drawn between the blue points for visibility. D: As in B but for I-E
weights, with LTDα = 0. In all subfigures, the weights are recorded just before SN.
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Fig 6. Weight dynamics shaped by LTP, LTD and SN. A: Graphic description
of changes in two competing postsynaptic weights under LTP-dominated plasticity
(green areas) with multiplicative SN (dotted lines). The sum of the weights is
maintained at Tmax. When LTP dominates, the two weights are pushed towards the
centre, obtaining intermediate values close together. B: An excess of LTD (green areas)
pushes two competing weights away from each other through SN (dotted lines), with
one weight approaching zero and the other weight gaining nearly all of the Tmax.

Fig 7. Distribution of synaptic weight changes, as a function of current
weight. A: Weight changes for E-E weights. Top, the changes in E-E weight due to
eSTDP. Each point represents a separate weight that changed. The dotted line indicates
zero change. Changes are recorded during the last two seconds of a 10000 second
simulation. Middle, changes in the same E-E weights due to SN. Bottom, combined
effects of eSTDP and SN for the same weights. B: Same as in A but for I-E weights and
iSTDP with LTDα = 0.
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Fig 8. Connection between firing rates and mean outgoing nonzero weight
in excitatory and inhibitory neurons. A: Mean outgoing weight for excitatory
neurons, sorted into high- and low firing categories (high and control, respectively). The
errorbar shows the standard deviation over all weights within the high group and the
control group. Data is from a single trial. B: Same as in A but for inhibitory neurons.
C: Distribution of impact values for excitatory neurons. The histogram contains
neurons from 10 trials of 200 seconds each, recorded after weight stabilisation. The
yellow line shows an exponential fit. D: as in C but for inhibitory neurons.
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Fig 9. Comparison of E-E and I-E weight distributions to a nonuniform
stochastic model (NSM) and a Kesten model. A: mean cross-correlations of
spike times over all connected excitatory-to-excitatory neuron pairs. The mean
correlation over 10 trials is shown in a solid line, while the shaded area indicates the
standard error of the mean over 10 trials. Cross-correlations are recorded over a 200
second interval after the weights have reached equilibrium, with a spike bin of 5 ms. B:
As in A but for all connected inhibitory-to-excitatory neuron pairs. C: weight
distributions of E-E weights from the network simulation (green) and from two
stochastic processes, the NSM (orange) and the Kesten model (blue). The distributions
are averaged over 10 trials. D: as in C but for I-E weights. The distribution of the I-E
weights is shown (purple) as well as the corresponding distribution from the NSM
(orange) and the Kesten model (blue). Here, LTDα = 0.
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Fig 10. Weight distributions under spontaneous fluctuations of E-E and
I-E weights under normal and silent conditions. A: Distributions of E-E weights
in the presence of spontaneous fluctuations of E-E and I-E weights. In the case of TTX,
weights change due to spontaneous fluctuations and SN only, meaning eSTDP and
iSTDP are inactive. Dotted lines show the lognormal fit to the weight distributions. B:
Same as in A but for I-E weights. In both panels, µwe = µwi = 0.025× 10−3 and σwe =
σwi = 0.1× 10−3. Distributions are averaged over 10 trials.

Suppl. Fig. 1. The weight dynamics stabilise over time. A: Evolution of the
mean (dark green) and standard deviation (light green) of all E-E weights over time in a
single trial. B: Evolution of the mean (dark magenta) and standard deviation (light
magenta) of all I-E weights over time in a single trial.
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Suppl. Fig. 2. Average distributions of 10 trials of E-E and I-E weights,
recorded just after SN. A: Mean distribution of E-E weights. The dark point show
the average, the light point show the standard error of the mean over 10 independent
trials. The orange curve is a lognormal fit to the mean distribution. B: Mean
distribution of E-E weights plotted with uniform bin spacing on a logscale, in which bin
values are corrected for their corresponding bin width. C: Mean distributions of I-E
weights, for LTDα = 0 (purple points), and LTDα = 0.02 (blue points). A line is drawn
between the blue points for visibility. D: As in B but for I-E weights, with LTDα = 0.
In all subfigures, the weights are recorded just after SN. E: Average distributions of I-E
weights in the network without SN in the I-E synapses. The cases for LTDα = 0
(purple), and LTDα = 0.02 (blue) are shown. The vertical dotted line indicates the
maximum I-E weight Ti,e. The distributions are taken after 10000 seconds and averaged
over 5 trials. The light colour shows the standard error of the mean. A line is drawn
between the points for visibility.
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Suppl. Fig. 3. Comparison of E-E and I-E weight distributions from the
network simulation to variations on the NSM and USM. A: The E-E weight
distribution resulting from a network simulation with homogeneous firing rates for
inhibitory and excitatory neurons (green) and its corresponding NSM distribution
(orange) with eSTDP. B: as in A but for I-E weights and iSTDP, showing the
distribution for I-E weights (purple) and its matching NSM distribution (orange). Here,
LTDα = 0. C: The E-E weight distribution from the network simulation (green) and its
matching USM distribution (orange). D: The I-E weight distribution from the network
simulation (purple) and its matching USM distribution (orange). E: The USM for E-E
weights is shown for various quantities of LTD in the eSTDP window. F: as in E but for
the NSM. All distributions are averaged over 10 trials.
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Suppl. Fig. 4. Average distributions of 10 trials of I-E and E-E weights in
the network with iSTDP with SN in I-E synapses, shown for other iSTDP
window types. A: iSTDP learning window and average I-E weights for pre-LTP
iSTDP. The total amount of LTP is equal to the symmetric iSTDP window in Fig. 1.
The yellow curve shows the lognormal fit. B: Same as in A but for post-LTP iSTDP.

Suppl. Fig. 5. Weight distributions under spontaneous fluctuations of E-E
and I-E weights under normal and silent conditions, for negative µwe and
µwi. A: Distributions of E-E weights in the presence of spontaneous fluctuations of E-E
and I-E weights. In the case of TTX, weights change due to spontaneous fluctuations
and SN only, meaning eSTDP and iSTDP are inactive. The area of the histogram is
normalised to 1.0. Dotted lines connect the data points for visibility. B: Same as in A
but for I-E weights. In both panels, µwe = µwi = −0.025× 10−3 and σwe = σwi =
0.1× 10−3. Distributions are averaged over 10 trials, and each bin value is divided by
the bin width.
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